blob: 47c08f262261474d0df9c34565deea28c11e9a6b [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
#define V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
#include <vector>
#include "src/arm64/assembler-arm64.h"
#include "src/bailout-reason.h"
#include "src/base/bits.h"
#include "src/globals.h"
// Simulator specific helpers.
#if USE_SIMULATOR
// TODO(all): If possible automatically prepend an indicator like
// UNIMPLEMENTED or LOCATION.
#define ASM_UNIMPLEMENTED(message) \
__ Debug(message, __LINE__, NO_PARAM)
#define ASM_UNIMPLEMENTED_BREAK(message) \
__ Debug(message, __LINE__, \
FLAG_ignore_asm_unimplemented_break ? NO_PARAM : BREAK)
#if DEBUG
#define ASM_LOCATION(message) __ Debug("LOCATION: " message, __LINE__, NO_PARAM)
#define ASM_LOCATION_IN_ASSEMBLER(message) \
Debug("LOCATION: " message, __LINE__, NO_PARAM)
#else
#define ASM_LOCATION(message)
#define ASM_LOCATION_IN_ASSEMBLER(message)
#endif
#else
#define ASM_UNIMPLEMENTED(message)
#define ASM_UNIMPLEMENTED_BREAK(message)
#define ASM_LOCATION(message)
#define ASM_LOCATION_IN_ASSEMBLER(message)
#endif
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
#define kReturnRegister0 x0
#define kReturnRegister1 x1
#define kReturnRegister2 x2
#define kJSFunctionRegister x1
#define kContextRegister cp
#define kAllocateSizeRegister x1
#define kInterpreterAccumulatorRegister x0
#define kInterpreterBytecodeOffsetRegister x19
#define kInterpreterBytecodeArrayRegister x20
#define kInterpreterDispatchTableRegister x21
#define kJavaScriptCallArgCountRegister x0
#define kJavaScriptCallNewTargetRegister x3
#define kRuntimeCallFunctionRegister x1
#define kRuntimeCallArgCountRegister x0
#define LS_MACRO_LIST(V) \
V(Ldrb, Register&, rt, LDRB_w) \
V(Strb, Register&, rt, STRB_w) \
V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \
V(Ldrh, Register&, rt, LDRH_w) \
V(Strh, Register&, rt, STRH_w) \
V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \
V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \
V(Str, CPURegister&, rt, StoreOpFor(rt)) \
V(Ldrsw, Register&, rt, LDRSW_x)
#define LSPAIR_MACRO_LIST(V) \
V(Ldp, CPURegister&, rt, rt2, LoadPairOpFor(rt, rt2)) \
V(Stp, CPURegister&, rt, rt2, StorePairOpFor(rt, rt2)) \
V(Ldpsw, CPURegister&, rt, rt2, LDPSW_x)
#define LDA_STL_MACRO_LIST(V) \
V(Ldarb, ldarb) \
V(Ldarh, ldarh) \
V(Ldar, ldar) \
V(Ldaxrb, ldaxrb) \
V(Ldaxrh, ldaxrh) \
V(Ldaxr, ldaxr) \
V(Stlrb, stlrb) \
V(Stlrh, stlrh) \
V(Stlr, stlr)
#define STLX_MACRO_LIST(V) \
V(Stlxrb, stlxrb) \
V(Stlxrh, stlxrh) \
V(Stlxr, stlxr)
// ----------------------------------------------------------------------------
// Static helper functions
// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset);
inline MemOperand UntagSmiFieldMemOperand(Register object, int offset);
// Generate a MemOperand for loading a SMI from memory.
inline MemOperand UntagSmiMemOperand(Register object, int offset);
// ----------------------------------------------------------------------------
// MacroAssembler
enum BranchType {
// Copies of architectural conditions.
// The associated conditions can be used in place of those, the code will
// take care of reinterpreting them with the correct type.
integer_eq = eq,
integer_ne = ne,
integer_hs = hs,
integer_lo = lo,
integer_mi = mi,
integer_pl = pl,
integer_vs = vs,
integer_vc = vc,
integer_hi = hi,
integer_ls = ls,
integer_ge = ge,
integer_lt = lt,
integer_gt = gt,
integer_le = le,
integer_al = al,
integer_nv = nv,
// These two are *different* from the architectural codes al and nv.
// 'always' is used to generate unconditional branches.
// 'never' is used to not generate a branch (generally as the inverse
// branch type of 'always).
always, never,
// cbz and cbnz
reg_zero, reg_not_zero,
// tbz and tbnz
reg_bit_clear, reg_bit_set,
// Aliases.
kBranchTypeFirstCondition = eq,
kBranchTypeLastCondition = nv,
kBranchTypeFirstUsingReg = reg_zero,
kBranchTypeFirstUsingBit = reg_bit_clear
};
inline BranchType InvertBranchType(BranchType type) {
if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
return static_cast<BranchType>(
NegateCondition(static_cast<Condition>(type)));
} else {
return static_cast<BranchType>(type ^ 1);
}
}
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
enum TargetAddressStorageMode {
CAN_INLINE_TARGET_ADDRESS,
NEVER_INLINE_TARGET_ADDRESS
};
enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };
// The macro assembler supports moving automatically pre-shifted immediates for
// arithmetic and logical instructions, and then applying a post shift in the
// instruction to undo the modification, in order to reduce the code emitted for
// an operation. For example:
//
// Add(x0, x0, 0x1f7de) => movz x16, 0xfbef; add x0, x0, x16, lsl #1.
//
// This optimisation can be only partially applied when the stack pointer is an
// operand or destination, so this enumeration is used to control the shift.
enum PreShiftImmMode {
kNoShift, // Don't pre-shift.
kLimitShiftForSP, // Limit pre-shift for add/sub extend use.
kAnyShift // Allow any pre-shift.
};
class TurboAssembler : public Assembler {
public:
TurboAssembler(Isolate* isolate, void* buffer, int buffer_size,
CodeObjectRequired create_code_object);
// The Abort method should call a V8 runtime function, but the CallRuntime
// mechanism depends on CEntryStub. If use_real_aborts is false, Abort will
// use a simpler abort mechanism that doesn't depend on CEntryStub.
//
// The purpose of this is to allow Aborts to be compiled whilst CEntryStub is
// being generated.
bool use_real_aborts() const { return use_real_aborts_; }
class NoUseRealAbortsScope {
public:
explicit NoUseRealAbortsScope(TurboAssembler* tasm)
: saved_(tasm->use_real_aborts_), tasm_(tasm) {
tasm_->use_real_aborts_ = false;
}
~NoUseRealAbortsScope() { tasm_->use_real_aborts_ = saved_; }
private:
bool saved_;
TurboAssembler* tasm_;
};
void set_has_frame(bool value) { has_frame_ = value; }
bool has_frame() const { return has_frame_; }
Isolate* isolate() const { return isolate_; }
Handle<HeapObject> CodeObject() {
DCHECK(!code_object_.is_null());
return code_object_;
}
#if DEBUG
void set_allow_macro_instructions(bool value) {
allow_macro_instructions_ = value;
}
bool allow_macro_instructions() const { return allow_macro_instructions_; }
#endif
// Activation support.
void EnterFrame(StackFrame::Type type);
void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
// Out-of-line constant pool not implemented on arm64.
UNREACHABLE();
}
void LeaveFrame(StackFrame::Type type);
inline void InitializeRootRegister();
void Mov(const Register& rd, const Operand& operand,
DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
void Mov(const Register& rd, uint64_t imm);
inline void Mov(const Register& rd, const Register& rm);
void Mov(const VRegister& vd, int vd_index, const VRegister& vn,
int vn_index) {
DCHECK(allow_macro_instructions());
mov(vd, vd_index, vn, vn_index);
}
void Mov(const VRegister& vd, const VRegister& vn, int index) {
DCHECK(allow_macro_instructions());
mov(vd, vn, index);
}
void Mov(const VRegister& vd, int vd_index, const Register& rn) {
DCHECK(allow_macro_instructions());
mov(vd, vd_index, rn);
}
void Mov(const Register& rd, const VRegister& vn, int vn_index) {
DCHECK(allow_macro_instructions());
mov(rd, vn, vn_index);
}
// This is required for compatibility with architecture independent code.
// Remove if not needed.
void Move(Register dst, Register src);
void Move(Register dst, Handle<HeapObject> x);
void Move(Register dst, Smi* src);
// NEON by element instructions.
#define NEON_BYELEMENT_MACRO_LIST(V) \
V(fmla, Fmla) \
V(fmls, Fmls) \
V(fmul, Fmul) \
V(fmulx, Fmulx) \
V(mul, Mul) \
V(mla, Mla) \
V(mls, Mls) \
V(sqdmulh, Sqdmulh) \
V(sqrdmulh, Sqrdmulh) \
V(sqdmull, Sqdmull) \
V(sqdmull2, Sqdmull2) \
V(sqdmlal, Sqdmlal) \
V(sqdmlal2, Sqdmlal2) \
V(sqdmlsl, Sqdmlsl) \
V(sqdmlsl2, Sqdmlsl2) \
V(smull, Smull) \
V(smull2, Smull2) \
V(smlal, Smlal) \
V(smlal2, Smlal2) \
V(smlsl, Smlsl) \
V(smlsl2, Smlsl2) \
V(umull, Umull) \
V(umull2, Umull2) \
V(umlal, Umlal) \
V(umlal2, Umlal2) \
V(umlsl, Umlsl) \
V(umlsl2, Umlsl2)
#define DEFINE_MACRO_ASM_FUNC(ASM, MASM) \
void MASM(const VRegister& vd, const VRegister& vn, const VRegister& vm, \
int vm_index) { \
DCHECK(allow_macro_instructions()); \
ASM(vd, vn, vm, vm_index); \
}
NEON_BYELEMENT_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
#undef DEFINE_MACRO_ASM_FUNC
// NEON 2 vector register instructions.
#define NEON_2VREG_MACRO_LIST(V) \
V(abs, Abs) \
V(addp, Addp) \
V(addv, Addv) \
V(cls, Cls) \
V(clz, Clz) \
V(cnt, Cnt) \
V(faddp, Faddp) \
V(fcvtas, Fcvtas) \
V(fcvtau, Fcvtau) \
V(fcvtms, Fcvtms) \
V(fcvtmu, Fcvtmu) \
V(fcvtns, Fcvtns) \
V(fcvtnu, Fcvtnu) \
V(fcvtps, Fcvtps) \
V(fcvtpu, Fcvtpu) \
V(fmaxnmp, Fmaxnmp) \
V(fmaxnmv, Fmaxnmv) \
V(fmaxp, Fmaxp) \
V(fmaxv, Fmaxv) \
V(fminnmp, Fminnmp) \
V(fminnmv, Fminnmv) \
V(fminp, Fminp) \
V(fminv, Fminv) \
V(fneg, Fneg) \
V(frecpe, Frecpe) \
V(frecpx, Frecpx) \
V(frinta, Frinta) \
V(frinti, Frinti) \
V(frintm, Frintm) \
V(frintn, Frintn) \
V(frintp, Frintp) \
V(frintx, Frintx) \
V(frintz, Frintz) \
V(frsqrte, Frsqrte) \
V(fsqrt, Fsqrt) \
V(mov, Mov) \
V(mvn, Mvn) \
V(neg, Neg) \
V(not_, Not) \
V(rbit, Rbit) \
V(rev16, Rev16) \
V(rev32, Rev32) \
V(rev64, Rev64) \
V(sadalp, Sadalp) \
V(saddlp, Saddlp) \
V(saddlv, Saddlv) \
V(smaxv, Smaxv) \
V(sminv, Sminv) \
V(sqabs, Sqabs) \
V(sqneg, Sqneg) \
V(sqxtn2, Sqxtn2) \
V(sqxtn, Sqxtn) \
V(sqxtun2, Sqxtun2) \
V(sqxtun, Sqxtun) \
V(suqadd, Suqadd) \
V(sxtl2, Sxtl2) \
V(sxtl, Sxtl) \
V(uadalp, Uadalp) \
V(uaddlp, Uaddlp) \
V(uaddlv, Uaddlv) \
V(umaxv, Umaxv) \
V(uminv, Uminv) \
V(uqxtn2, Uqxtn2) \
V(uqxtn, Uqxtn) \
V(urecpe, Urecpe) \
V(ursqrte, Ursqrte) \
V(usqadd, Usqadd) \
V(uxtl2, Uxtl2) \
V(uxtl, Uxtl) \
V(xtn2, Xtn2) \
V(xtn, Xtn)
#define DEFINE_MACRO_ASM_FUNC(ASM, MASM) \
void MASM(const VRegister& vd, const VRegister& vn) { \
DCHECK(allow_macro_instructions()); \
ASM(vd, vn); \
}
NEON_2VREG_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
#undef DEFINE_MACRO_ASM_FUNC
#undef NEON_2VREG_MACRO_LIST
// NEON 2 vector register with immediate instructions.
#define NEON_2VREG_FPIMM_MACRO_LIST(V) \
V(fcmeq, Fcmeq) \
V(fcmge, Fcmge) \
V(fcmgt, Fcmgt) \
V(fcmle, Fcmle) \
V(fcmlt, Fcmlt)
#define DEFINE_MACRO_ASM_FUNC(ASM, MASM) \
void MASM(const VRegister& vd, const VRegister& vn, double imm) { \
DCHECK(allow_macro_instructions()); \
ASM(vd, vn, imm); \
}
NEON_2VREG_FPIMM_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
#undef DEFINE_MACRO_ASM_FUNC
// NEON 3 vector register instructions.
#define NEON_3VREG_MACRO_LIST(V) \
V(add, Add) \
V(addhn2, Addhn2) \
V(addhn, Addhn) \
V(addp, Addp) \
V(and_, And) \
V(bic, Bic) \
V(bif, Bif) \
V(bit, Bit) \
V(bsl, Bsl) \
V(cmeq, Cmeq) \
V(cmge, Cmge) \
V(cmgt, Cmgt) \
V(cmhi, Cmhi) \
V(cmhs, Cmhs) \
V(cmtst, Cmtst) \
V(eor, Eor) \
V(fabd, Fabd) \
V(facge, Facge) \
V(facgt, Facgt) \
V(faddp, Faddp) \
V(fcmeq, Fcmeq) \
V(fcmge, Fcmge) \
V(fcmgt, Fcmgt) \
V(fmaxnmp, Fmaxnmp) \
V(fmaxp, Fmaxp) \
V(fminnmp, Fminnmp) \
V(fminp, Fminp) \
V(fmla, Fmla) \
V(fmls, Fmls) \
V(fmulx, Fmulx) \
V(frecps, Frecps) \
V(frsqrts, Frsqrts) \
V(mla, Mla) \
V(mls, Mls) \
V(mul, Mul) \
V(orn, Orn) \
V(orr, Orr) \
V(pmull2, Pmull2) \
V(pmull, Pmull) \
V(pmul, Pmul) \
V(raddhn2, Raddhn2) \
V(raddhn, Raddhn) \
V(rsubhn2, Rsubhn2) \
V(rsubhn, Rsubhn) \
V(sabal2, Sabal2) \
V(sabal, Sabal) \
V(saba, Saba) \
V(sabdl2, Sabdl2) \
V(sabdl, Sabdl) \
V(sabd, Sabd) \
V(saddl2, Saddl2) \
V(saddl, Saddl) \
V(saddw2, Saddw2) \
V(saddw, Saddw) \
V(shadd, Shadd) \
V(shsub, Shsub) \
V(smaxp, Smaxp) \
V(smax, Smax) \
V(sminp, Sminp) \
V(smin, Smin) \
V(smlal2, Smlal2) \
V(smlal, Smlal) \
V(smlsl2, Smlsl2) \
V(smlsl, Smlsl) \
V(smull2, Smull2) \
V(smull, Smull) \
V(sqadd, Sqadd) \
V(sqdmlal2, Sqdmlal2) \
V(sqdmlal, Sqdmlal) \
V(sqdmlsl2, Sqdmlsl2) \
V(sqdmlsl, Sqdmlsl) \
V(sqdmulh, Sqdmulh) \
V(sqdmull2, Sqdmull2) \
V(sqdmull, Sqdmull) \
V(sqrdmulh, Sqrdmulh) \
V(sqrshl, Sqrshl) \
V(sqshl, Sqshl) \
V(sqsub, Sqsub) \
V(srhadd, Srhadd) \
V(srshl, Srshl) \
V(sshl, Sshl) \
V(ssubl2, Ssubl2) \
V(ssubl, Ssubl) \
V(ssubw2, Ssubw2) \
V(ssubw, Ssubw) \
V(subhn2, Subhn2) \
V(subhn, Subhn) \
V(sub, Sub) \
V(trn1, Trn1) \
V(trn2, Trn2) \
V(uabal2, Uabal2) \
V(uabal, Uabal) \
V(uaba, Uaba) \
V(uabdl2, Uabdl2) \
V(uabdl, Uabdl) \
V(uabd, Uabd) \
V(uaddl2, Uaddl2) \
V(uaddl, Uaddl) \
V(uaddw2, Uaddw2) \
V(uaddw, Uaddw) \
V(uhadd, Uhadd) \
V(uhsub, Uhsub) \
V(umaxp, Umaxp) \
V(umax, Umax) \
V(uminp, Uminp) \
V(umin, Umin) \
V(umlal2, Umlal2) \
V(umlal, Umlal) \
V(umlsl2, Umlsl2) \
V(umlsl, Umlsl) \
V(umull2, Umull2) \
V(umull, Umull) \
V(uqadd, Uqadd) \
V(uqrshl, Uqrshl) \
V(uqshl, Uqshl) \
V(uqsub, Uqsub) \
V(urhadd, Urhadd) \
V(urshl, Urshl) \
V(ushl, Ushl) \
V(usubl2, Usubl2) \
V(usubl, Usubl) \
V(usubw2, Usubw2) \
V(usubw, Usubw) \
V(uzp1, Uzp1) \
V(uzp2, Uzp2) \
V(zip1, Zip1) \
V(zip2, Zip2)
#define DEFINE_MACRO_ASM_FUNC(ASM, MASM) \
void MASM(const VRegister& vd, const VRegister& vn, const VRegister& vm) { \
DCHECK(allow_macro_instructions()); \
ASM(vd, vn, vm); \
}
NEON_3VREG_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
#undef DEFINE_MACRO_ASM_FUNC
void Bic(const VRegister& vd, const int imm8, const int left_shift = 0) {
DCHECK(allow_macro_instructions());
bic(vd, imm8, left_shift);
}
// This is required for compatibility in architecture independent code.
inline void jmp(Label* L);
void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1);
inline void B(Label* label);
inline void B(Condition cond, Label* label);
void B(Label* label, Condition cond);
void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
void Tbz(const Register& rt, unsigned bit_pos, Label* label);
void Cbnz(const Register& rt, Label* label);
void Cbz(const Register& rt, Label* label);
bool AllowThisStubCall(CodeStub* stub);
void CallStubDelayed(CodeStub* stub);
void CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
// Removes current frame and its arguments from the stack preserving
// the arguments and a return address pushed to the stack for the next call.
// Both |callee_args_count| and |caller_args_count_reg| do not include
// receiver. |callee_args_count| is not modified, |caller_args_count_reg|
// is trashed.
void PrepareForTailCall(const ParameterCount& callee_args_count,
Register caller_args_count_reg, Register scratch0,
Register scratch1);
inline void SmiUntag(Register dst, Register src);
inline void SmiUntag(Register smi);
// Calls Abort(msg) if the condition cond is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cond, AbortReason reason);
void AssertSmi(Register object,
AbortReason reason = AbortReason::kOperandIsNotASmi);
// Like Assert(), but always enabled.
void Check(Condition cond, AbortReason reason);
inline void Debug(const char* message, uint32_t code, Instr params = BREAK);
// Print a message to stderr and abort execution.
void Abort(AbortReason reason);
// If emit_debug_code() is true, emit a run-time check to ensure that
// StackPointer() does not point below the system stack pointer.
//
// Whilst it is architecturally legal for StackPointer() to point below csp,
// it can be evidence of a potential bug because the ABI forbids accesses
// below csp.
//
// If StackPointer() is the system stack pointer (csp), then csp will be
// dereferenced to cause the processor (or simulator) to abort if it is not
// properly aligned.
//
// If emit_debug_code() is false, this emits no code.
void AssertStackConsistency();
// Remaining instructions are simple pass-through calls to the assembler.
inline void Asr(const Register& rd, const Register& rn, unsigned shift);
inline void Asr(const Register& rd, const Register& rn, const Register& rm);
// Try to move an immediate into the destination register in a single
// instruction. Returns true for success, and updates the contents of dst.
// Returns false, otherwise.
bool TryOneInstrMoveImmediate(const Register& dst, int64_t imm);
inline void Bind(Label* label);
static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
CPURegList* TmpList() { return &tmp_list_; }
CPURegList* FPTmpList() { return &fptmp_list_; }
static CPURegList DefaultTmpList();
static CPURegList DefaultFPTmpList();
// Return the stack pointer.
inline const Register& StackPointer() const { return csp; }
// Move macros.
inline void Mvn(const Register& rd, uint64_t imm);
void Mvn(const Register& rd, const Operand& operand);
static bool IsImmMovn(uint64_t imm, unsigned reg_size);
static bool IsImmMovz(uint64_t imm, unsigned reg_size);
void LogicalMacro(const Register& rd, const Register& rn,
const Operand& operand, LogicalOp op);
void AddSubMacro(const Register& rd, const Register& rn,
const Operand& operand, FlagsUpdate S, AddSubOp op);
inline void Orr(const Register& rd, const Register& rn,
const Operand& operand);
void Orr(const VRegister& vd, const int imm8, const int left_shift = 0) {
DCHECK(allow_macro_instructions());
orr(vd, imm8, left_shift);
}
inline void Orn(const Register& rd, const Register& rn,
const Operand& operand);
inline void Eor(const Register& rd, const Register& rn,
const Operand& operand);
inline void Eon(const Register& rd, const Register& rn,
const Operand& operand);
inline void And(const Register& rd, const Register& rn,
const Operand& operand);
inline void Ands(const Register& rd, const Register& rn,
const Operand& operand);
inline void Tst(const Register& rn, const Operand& operand);
inline void Bic(const Register& rd, const Register& rn,
const Operand& operand);
inline void Blr(const Register& xn);
inline void Cmp(const Register& rn, const Operand& operand);
inline void Subs(const Register& rd, const Register& rn,
const Operand& operand);
// Emits a runtime assert that the CSP is aligned.
void AssertCspAligned();
// Copy slot_count stack slots from the stack offset specified by src to
// the stack offset specified by dst. The offsets and count are expressed in
// slot-sized units. Offset dst must be less than src, or the gap between
// them must be greater than or equal to slot_count, otherwise the result is
// unpredictable. The function may corrupt its register arguments. The
// registers must not alias each other.
void CopySlots(int dst, Register src, Register slot_count);
void CopySlots(Register dst, Register src, Register slot_count);
// Copy count double words from the address in register src to the address
// in register dst. There are two modes for this function:
// 1) Address dst must be less than src, or the gap between them must be
// greater than or equal to count double words, otherwise the result is
// unpredictable. This is the default mode.
// 2) Address src must be less than dst, or the gap between them must be
// greater than or equal to count double words, otherwise the result is
// undpredictable. In this mode, src and dst specify the last (highest)
// address of the regions to copy from and to.
// The case where src == dst is not supported.
// The function may corrupt its register arguments. The registers must not
// alias each other.
enum CopyDoubleWordsMode { kDstLessThanSrc, kSrcLessThanDst };
void CopyDoubleWords(Register dst, Register src, Register count,
CopyDoubleWordsMode mode = kDstLessThanSrc);
// Calculate the address of a double word-sized slot at slot_offset from the
// stack pointer, and write it to dst. Positive slot_offsets are at addresses
// greater than sp, with slot zero at sp.
void SlotAddress(Register dst, int slot_offset);
void SlotAddress(Register dst, Register slot_offset);
// Load a literal from the inline constant pool.
inline void Ldr(const CPURegister& rt, const Operand& imm);
// Helper function for double immediate.
inline void Ldr(const CPURegister& rt, double imm);
// Claim or drop stack space without actually accessing memory.
//
// In debug mode, both of these will write invalid data into the claimed or
// dropped space.
//
// If the current stack pointer (according to StackPointer()) is csp, then it
// must be aligned to 16 bytes and the size claimed or dropped must be a
// multiple of 16 bytes.
//
// Note that unit_size must be specified in bytes. For variants which take a
// Register count, the unit size must be a power of two.
inline void Claim(int64_t count, uint64_t unit_size = kXRegSize);
inline void Claim(const Register& count, uint64_t unit_size = kXRegSize);
inline void Drop(int64_t count, uint64_t unit_size = kXRegSize);
inline void Drop(const Register& count, uint64_t unit_size = kXRegSize);
// Drop 'count' arguments from the stack, rounded up to a multiple of two,
// without actually accessing memory.
// We assume the size of the arguments is the pointer size.
// An optional mode argument is passed, which can indicate we need to
// explicitly add the receiver to the count.
enum ArgumentsCountMode { kCountIncludesReceiver, kCountExcludesReceiver };
inline void DropArguments(const Register& count,
ArgumentsCountMode mode = kCountIncludesReceiver);
inline void DropArguments(int64_t count,
ArgumentsCountMode mode = kCountIncludesReceiver);
// Drop 'count' slots from stack, rounded up to a multiple of two, without
// actually accessing memory.
inline void DropSlots(int64_t count);
// Push a single argument, with padding, to the stack.
inline void PushArgument(const Register& arg);
// Re-synchronizes the system stack pointer (csp) with the current stack
// pointer (according to StackPointer()).
//
// This method asserts that StackPointer() is not csp, since the call does
// not make sense in that context.
inline void SyncSystemStackPointer();
// Push the system stack pointer (csp) down to allow the same to be done to
// the current stack pointer (according to StackPointer()). This must be
// called _before_ accessing the memory.
//
// This is necessary when pushing or otherwise adding things to the stack, to
// satisfy the AAPCS64 constraint that the memory below the system stack
// pointer is not accessed. The amount pushed will be increased as necessary
// to ensure csp remains aligned to 16 bytes.
//
// This method asserts that StackPointer() is not csp, since the call does
// not make sense in that context.
inline void BumpSystemStackPointer(const Operand& space);
// Add and sub macros.
inline void Add(const Register& rd, const Register& rn,
const Operand& operand);
inline void Adds(const Register& rd, const Register& rn,
const Operand& operand);
inline void Sub(const Register& rd, const Register& rn,
const Operand& operand);
// Abort execution if argument is not a positive or zero integer, enabled via
// --debug-code.
void AssertPositiveOrZero(Register value);
#define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
inline void FN(const REGTYPE REG, const MemOperand& addr);
LS_MACRO_LIST(DECLARE_FUNCTION)
#undef DECLARE_FUNCTION
// Push or pop up to 4 registers of the same width to or from the stack.
//
// If an argument register is 'NoReg', all further arguments are also assumed
// to be 'NoReg', and are thus not pushed or popped.
//
// Arguments are ordered such that "Push(a, b);" is functionally equivalent
// to "Push(a); Push(b);".
//
// It is valid to push the same register more than once, and there is no
// restriction on the order in which registers are specified.
//
// It is not valid to pop into the same register more than once in one
// operation, not even into the zero register.
//
// The stack pointer must be aligned to 16 bytes on entry and the total size
// of the specified registers must also be a multiple of 16 bytes.
//
// Even if the current stack pointer is not the system stack pointer (csp),
// Push (and derived methods) will still modify the system stack pointer in
// order to comply with ABI rules about accessing memory below the system
// stack pointer.
//
// Other than the registers passed into Pop, the stack pointer and (possibly)
// the system stack pointer, these methods do not modify any other registers.
void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
void Push(const CPURegister& src0, const CPURegister& src1,
const CPURegister& src2, const CPURegister& src3,
const CPURegister& src4, const CPURegister& src5 = NoReg,
const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg);
void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
void Pop(const CPURegister& dst0, const CPURegister& dst1,
const CPURegister& dst2, const CPURegister& dst3,
const CPURegister& dst4, const CPURegister& dst5 = NoReg,
const CPURegister& dst6 = NoReg, const CPURegister& dst7 = NoReg);
void Push(const Register& src0, const VRegister& src1);
// This is a convenience method for pushing a single Handle<Object>.
inline void Push(Handle<HeapObject> object);
inline void Push(Smi* smi);
// Aliases of Push and Pop, required for V8 compatibility.
inline void push(Register src) { Push(src); }
inline void pop(Register dst) { Pop(dst); }
void SaveRegisters(RegList registers);
void RestoreRegisters(RegList registers);
void CallRecordWriteStub(Register object, Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode);
// Alternative forms of Push and Pop, taking a RegList or CPURegList that
// specifies the registers that are to be pushed or popped. Higher-numbered
// registers are associated with higher memory addresses (as in the A32 push
// and pop instructions).
//
// (Push|Pop)SizeRegList allow you to specify the register size as a
// parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and
// kSRegSizeInBits are supported.
//
// Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
void PushCPURegList(CPURegList registers);
void PopCPURegList(CPURegList registers);
// Calculate how much stack space (in bytes) are required to store caller
// registers excluding those specified in the arguments.
int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion) const;
// Push caller saved registers on the stack, and return the number of bytes
// stack pointer is adjusted.
int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion = no_reg);
// Restore caller saved registers from the stack, and return the number of
// bytes stack pointer is adjusted.
int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion = no_reg);
// Move an immediate into register dst, and return an Operand object for use
// with a subsequent instruction that accepts a shift. The value moved into
// dst is not necessarily equal to imm; it may have had a shifting operation
// applied to it that will be subsequently undone by the shift applied in the
// Operand.
Operand MoveImmediateForShiftedOp(const Register& dst, int64_t imm,
PreShiftImmMode mode);
void CheckPageFlagSet(const Register& object, const Register& scratch,
int mask, Label* if_any_set);
void CheckPageFlagClear(const Register& object, const Register& scratch,
int mask, Label* if_all_clear);
// Perform necessary maintenance operations before a push or after a pop.
//
// Note that size is specified in bytes.
void PushPreamble(Operand total_size);
void PopPostamble(Operand total_size);
void PushPreamble(int count, int size);
void PopPostamble(int count, int size);
// Test the bits of register defined by bit_pattern, and branch if ANY of
// those bits are set. May corrupt the status flags.
inline void TestAndBranchIfAnySet(const Register& reg,
const uint64_t bit_pattern, Label* label);
// Test the bits of register defined by bit_pattern, and branch if ALL of
// those bits are clear (ie. not set.) May corrupt the status flags.
inline void TestAndBranchIfAllClear(const Register& reg,
const uint64_t bit_pattern, Label* label);
inline void Brk(int code);
inline void JumpIfSmi(Register value, Label* smi_label,
Label* not_smi_label = nullptr);
inline void Fmov(VRegister fd, VRegister fn);
inline void Fmov(VRegister fd, Register rn);
// Provide explicit double and float interfaces for FP immediate moves, rather
// than relying on implicit C++ casts. This allows signalling NaNs to be
// preserved when the immediate matches the format of fd. Most systems convert
// signalling NaNs to quiet NaNs when converting between float and double.
inline void Fmov(VRegister fd, double imm);
inline void Fmov(VRegister fd, float imm);
// Provide a template to allow other types to be converted automatically.
template <typename T>
void Fmov(VRegister fd, T imm) {
DCHECK(allow_macro_instructions());
Fmov(fd, static_cast<double>(imm));
}
inline void Fmov(Register rd, VRegister fn);
void Movi(const VRegister& vd, uint64_t imm, Shift shift = LSL,
int shift_amount = 0);
void Movi(const VRegister& vd, uint64_t hi, uint64_t lo);
void Jump(Register target);
void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
void Call(Register target);
void Call(Label* target);
void Call(Address target, RelocInfo::Mode rmode);
void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
void Call(ExternalReference target);
void CallForDeoptimization(Address target, RelocInfo::Mode rmode);
// For every Call variant, there is a matching CallSize function that returns
// the size (in bytes) of the call sequence.
static int CallSize(Register target);
static int CallSize(Label* target);
static int CallSize(Address target, RelocInfo::Mode rmode);
static int CallSize(Handle<Code> code,
RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
// Calls a C function.
// The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_reg_arguments);
void CallCFunction(ExternalReference function, int num_reg_arguments,
int num_double_arguments);
void CallCFunction(Register function, int num_reg_arguments,
int num_double_arguments);
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations. See ECMA-262 9.5: ToInt32.
// Exits with 'result' holding the answer.
void TruncateDoubleToIDelayed(Zone* zone, Register result,
DoubleRegister double_input);
inline void Mul(const Register& rd, const Register& rn, const Register& rm);
inline void Fcvtzs(const Register& rd, const VRegister& fn);
void Fcvtzs(const VRegister& vd, const VRegister& vn, int fbits = 0) {
DCHECK(allow_macro_instructions());
fcvtzs(vd, vn, fbits);
}
inline void Fcvtzu(const Register& rd, const VRegister& fn);
void Fcvtzu(const VRegister& vd, const VRegister& vn, int fbits = 0) {
DCHECK(allow_macro_instructions());
fcvtzu(vd, vn, fbits);
}
inline void Madd(const Register& rd, const Register& rn, const Register& rm,
const Register& ra);
inline void Mneg(const Register& rd, const Register& rn, const Register& rm);
inline void Sdiv(const Register& rd, const Register& rn, const Register& rm);
inline void Udiv(const Register& rd, const Register& rn, const Register& rm);
inline void Msub(const Register& rd, const Register& rn, const Register& rm,
const Register& ra);
inline void Lsl(const Register& rd, const Register& rn, unsigned shift);
inline void Lsl(const Register& rd, const Register& rn, const Register& rm);
inline void Umull(const Register& rd, const Register& rn, const Register& rm);
inline void Smull(const Register& rd, const Register& rn, const Register& rm);
inline void Sxtb(const Register& rd, const Register& rn);
inline void Sxth(const Register& rd, const Register& rn);
inline void Sxtw(const Register& rd, const Register& rn);
inline void Ubfiz(const Register& rd, const Register& rn, unsigned lsb,
unsigned width);
inline void Ubfx(const Register& rd, const Register& rn, unsigned lsb,
unsigned width);
inline void Lsr(const Register& rd, const Register& rn, unsigned shift);
inline void Lsr(const Register& rd, const Register& rn, const Register& rm);
inline void Ror(const Register& rd, const Register& rs, unsigned shift);
inline void Ror(const Register& rd, const Register& rn, const Register& rm);
inline void Cmn(const Register& rn, const Operand& operand);
inline void Fadd(const VRegister& fd, const VRegister& fn,
const VRegister& fm);
inline void Fcmp(const VRegister& fn, const VRegister& fm);
inline void Fcmp(const VRegister& fn, double value);
inline void Fabs(const VRegister& fd, const VRegister& fn);
inline void Fmul(const VRegister& fd, const VRegister& fn,
const VRegister& fm);
inline void Fsub(const VRegister& fd, const VRegister& fn,
const VRegister& fm);
inline void Fdiv(const VRegister& fd, const VRegister& fn,
const VRegister& fm);
inline void Fmax(const VRegister& fd, const VRegister& fn,
const VRegister& fm);
inline void Fmin(const VRegister& fd, const VRegister& fn,
const VRegister& fm);
inline void Rbit(const Register& rd, const Register& rn);
enum AdrHint {
// The target must be within the immediate range of adr.
kAdrNear,
// The target may be outside of the immediate range of adr. Additional
// instructions may be emitted.
kAdrFar
};
void Adr(const Register& rd, Label* label, AdrHint = kAdrNear);
// Add/sub with carry macros.
inline void Adc(const Register& rd, const Register& rn,
const Operand& operand);
// Conditional macros.
inline void Ccmp(const Register& rn, const Operand& operand, StatusFlags nzcv,
Condition cond);
inline void Clz(const Register& rd, const Register& rn);
// Poke 'src' onto the stack. The offset is in bytes.
//
// If the current stack pointer (according to StackPointer()) is csp, then
// csp must be aligned to 16 bytes.
void Poke(const CPURegister& src, const Operand& offset);
// Poke 'src1' and 'src2' onto the stack. The values written will be adjacent
// with 'src2' at a higher address than 'src1'. The offset is in bytes.
//
// If the current stack pointer (according to StackPointer()) is csp, then
// csp must be aligned to 16 bytes.
void PokePair(const CPURegister& src1, const CPURegister& src2, int offset);
inline void Sbfx(const Register& rd, const Register& rn, unsigned lsb,
unsigned width);
inline void Bfi(const Register& rd, const Register& rn, unsigned lsb,
unsigned width);
inline void Scvtf(const VRegister& fd, const Register& rn,
unsigned fbits = 0);
void Scvtf(const VRegister& vd, const VRegister& vn, int fbits = 0) {
DCHECK(allow_macro_instructions());
scvtf(vd, vn, fbits);
}
inline void Ucvtf(const VRegister& fd, const Register& rn,
unsigned fbits = 0);
void Ucvtf(const VRegister& vd, const VRegister& vn, int fbits = 0) {
DCHECK(allow_macro_instructions());
ucvtf(vd, vn, fbits);
}
void AssertFPCRState(Register fpcr = NoReg);
void CanonicalizeNaN(const VRegister& dst, const VRegister& src);
void CanonicalizeNaN(const VRegister& reg) { CanonicalizeNaN(reg, reg); }
inline void Cset(const Register& rd, Condition cond);
inline void Fccmp(const VRegister& fn, const VRegister& fm, StatusFlags nzcv,
Condition cond);
inline void Csinc(const Register& rd, const Register& rn, const Register& rm,
Condition cond);
inline void Fcvt(const VRegister& fd, const VRegister& fn);
int ActivationFrameAlignment();
void Ins(const VRegister& vd, int vd_index, const VRegister& vn,
int vn_index) {
DCHECK(allow_macro_instructions());
ins(vd, vd_index, vn, vn_index);
}
void Ins(const VRegister& vd, int vd_index, const Register& rn) {
DCHECK(allow_macro_instructions());
ins(vd, vd_index, rn);
}
inline void Bl(Label* label);
inline void Br(const Register& xn);
inline void Uxtb(const Register& rd, const Register& rn);
inline void Uxth(const Register& rd, const Register& rn);
inline void Uxtw(const Register& rd, const Register& rn);
void Dup(const VRegister& vd, const VRegister& vn, int index) {
DCHECK(allow_macro_instructions());
dup(vd, vn, index);
}
void Dup(const VRegister& vd, const Register& rn) {
DCHECK(allow_macro_instructions());
dup(vd, rn);
}
#define DECLARE_FUNCTION(FN, REGTYPE, REG, REG2, OP) \
inline void FN(const REGTYPE REG, const REGTYPE REG2, const MemOperand& addr);
LSPAIR_MACRO_LIST(DECLARE_FUNCTION)
#undef DECLARE_FUNCTION
#define NEON_2VREG_SHIFT_MACRO_LIST(V) \
V(rshrn, Rshrn) \
V(rshrn2, Rshrn2) \
V(shl, Shl) \
V(shll, Shll) \
V(shll2, Shll2) \
V(shrn, Shrn) \
V(shrn2, Shrn2) \
V(sli, Sli) \
V(sqrshrn, Sqrshrn) \
V(sqrshrn2, Sqrshrn2) \
V(sqrshrun, Sqrshrun) \
V(sqrshrun2, Sqrshrun2) \
V(sqshl, Sqshl) \
V(sqshlu, Sqshlu) \
V(sqshrn, Sqshrn) \
V(sqshrn2, Sqshrn2) \
V(sqshrun, Sqshrun) \
V(sqshrun2, Sqshrun2) \
V(sri, Sri) \
V(srshr, Srshr) \
V(srsra, Srsra) \
V(sshll, Sshll) \
V(sshll2, Sshll2) \
V(sshr, Sshr) \
V(ssra, Ssra) \
V(uqrshrn, Uqrshrn) \
V(uqrshrn2, Uqrshrn2) \
V(uqshl, Uqshl) \
V(uqshrn, Uqshrn) \
V(uqshrn2, Uqshrn2) \
V(urshr, Urshr) \
V(ursra, Ursra) \
V(ushll, Ushll) \
V(ushll2, Ushll2) \
V(ushr, Ushr) \
V(usra, Usra)
#define DEFINE_MACRO_ASM_FUNC(ASM, MASM) \
void MASM(const VRegister& vd, const VRegister& vn, int shift) { \
DCHECK(allow_macro_instructions()); \
ASM(vd, vn, shift); \
}
NEON_2VREG_SHIFT_MACRO_LIST(DEFINE_MACRO_ASM_FUNC)
#undef DEFINE_MACRO_ASM_FUNC
void Umov(const Register& rd, const VRegister& vn, int vn_index) {
DCHECK(allow_macro_instructions());
umov(rd, vn, vn_index);
}
void Tbl(const VRegister& vd, const VRegister& vn, const VRegister& vm) {
DCHECK(allow_macro_instructions());
tbl(vd, vn, vm);
}
void Tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
const VRegister& vm) {
DCHECK(allow_macro_instructions());
tbl(vd, vn, vn2, vm);
}
void Tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
const VRegister& vn3, const VRegister& vm) {
DCHECK(allow_macro_instructions());
tbl(vd, vn, vn2, vn3, vm);
}
void Tbl(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
const VRegister& vn3, const VRegister& vn4, const VRegister& vm) {
DCHECK(allow_macro_instructions());
tbl(vd, vn, vn2, vn3, vn4, vm);
}
void Ext(const VRegister& vd, const VRegister& vn, const VRegister& vm,
int index) {
DCHECK(allow_macro_instructions());
ext(vd, vn, vm, index);
}
void Smov(const Register& rd, const VRegister& vn, int vn_index) {
DCHECK(allow_macro_instructions());
smov(rd, vn, vn_index);
}
// Load-acquire/store-release macros.
#define DECLARE_FUNCTION(FN, OP) \
inline void FN(const Register& rt, const Register& rn);
LDA_STL_MACRO_LIST(DECLARE_FUNCTION)
#undef DECLARE_FUNCTION
// Load an object from the root table.
void LoadRoot(CPURegister destination, Heap::RootListIndex index);
inline void Ret(const Register& xn = lr);
// Perform a conversion from a double to a signed int64. If the input fits in
// range of the 64-bit result, execution branches to done. Otherwise,
// execution falls through, and the sign of the result can be used to
// determine if overflow was towards positive or negative infinity.
//
// On successful conversion, the least significant 32 bits of the result are
// equivalent to the ECMA-262 operation "ToInt32".
//
// Only public for the test code in test-code-stubs-arm64.cc.
void TryConvertDoubleToInt64(Register result, DoubleRegister input,
Label* done);
inline void Mrs(const Register& rt, SystemRegister sysreg);
// Generates function prologue code.
void Prologue();
void Cmgt(const VRegister& vd, const VRegister& vn, int imm) {
DCHECK(allow_macro_instructions());
cmgt(vd, vn, imm);
}
void Cmge(const VRegister& vd, const VRegister& vn, int imm) {
DCHECK(allow_macro_instructions());
cmge(vd, vn, imm);
}
void Cmeq(const VRegister& vd, const VRegister& vn, int imm) {
DCHECK(allow_macro_instructions());
cmeq(vd, vn, imm);
}
inline void Neg(const Register& rd, const Operand& operand);
inline void Negs(const Register& rd, const Operand& operand);
// Compute rd = abs(rm).
// This function clobbers the condition flags. On output the overflow flag is
// set iff the negation overflowed.
//
// If rm is the minimum representable value, the result is not representable.
// Handlers for each case can be specified using the relevant labels.
void Abs(const Register& rd, const Register& rm,
Label* is_not_representable = nullptr,
Label* is_representable = nullptr);
inline void Cls(const Register& rd, const Register& rn);
inline void Cneg(const Register& rd, const Register& rn, Condition cond);
inline void Rev16(const Register& rd, const Register& rn);
inline void Rev32(const Register& rd, const Register& rn);
inline void Fcvtns(const Register& rd, const VRegister& fn);
inline void Fcvtnu(const Register& rd, const VRegister& fn);
inline void Fcvtms(const Register& rd, const VRegister& fn);
inline void Fcvtmu(const Register& rd, const VRegister& fn);
inline void Fcvtas(const Register& rd, const VRegister& fn);
inline void Fcvtau(const Register& rd, const VRegister& fn);
protected:
// The actual Push and Pop implementations. These don't generate any code
// other than that required for the push or pop. This allows
// (Push|Pop)CPURegList to bundle together run-time assertions for a large
// block of registers.
//
// Note that size is per register, and is specified in bytes.
void PushHelper(int count, int size, const CPURegister& src0,
const CPURegister& src1, const CPURegister& src2,
const CPURegister& src3);
void PopHelper(int count, int size, const CPURegister& dst0,
const CPURegister& dst1, const CPURegister& dst2,
const CPURegister& dst3);
void ConditionalCompareMacro(const Register& rn, const Operand& operand,
StatusFlags nzcv, Condition cond,
ConditionalCompareOp op);
void AddSubWithCarryMacro(const Register& rd, const Register& rn,
const Operand& operand, FlagsUpdate S,
AddSubWithCarryOp op);
// Call Printf. On a native build, a simple call will be generated, but if the
// simulator is being used then a suitable pseudo-instruction is used. The
// arguments and stack (csp) must be prepared by the caller as for a normal
// AAPCS64 call to 'printf'.
//
// The 'args' argument should point to an array of variable arguments in their
// proper PCS registers (and in calling order). The argument registers can
// have mixed types. The format string (x0) should not be included.
void CallPrintf(int arg_count = 0, const CPURegister* args = nullptr);
private:
bool has_frame_ = false;
Isolate* const isolate_;
#if DEBUG
// Tell whether any of the macro instruction can be used. When false the
// MacroAssembler will assert if a method which can emit a variable number
// of instructions is called.
bool allow_macro_instructions_;
#endif
// This handle will be patched with the code object on installation.
Handle<HeapObject> code_object_;
// Scratch registers available for use by the MacroAssembler.
CPURegList tmp_list_;
CPURegList fptmp_list_;
bool use_real_aborts_;
// Helps resolve branching to labels potentially out of range.
// If the label is not bound, it registers the information necessary to later
// be able to emit a veneer for this branch if necessary.
// If the label is bound, it returns true if the label (or the previous link
// in the label chain) is out of range. In that case the caller is responsible
// for generating appropriate code.
// Otherwise it returns false.
// This function also checks wether veneers need to be emitted.
bool NeedExtraInstructionsOrRegisterBranch(Label* label,
ImmBranchType branch_type);
void Movi16bitHelper(const VRegister& vd, uint64_t imm);
void Movi32bitHelper(const VRegister& vd, uint64_t imm);
void Movi64bitHelper(const VRegister& vd, uint64_t imm);
void LoadStoreMacro(const CPURegister& rt, const MemOperand& addr,
LoadStoreOp op);
void LoadStorePairMacro(const CPURegister& rt, const CPURegister& rt2,
const MemOperand& addr, LoadStorePairOp op);
};
class MacroAssembler : public TurboAssembler {
public:
MacroAssembler(Isolate* isolate, byte* buffer, unsigned buffer_size,
CodeObjectRequired create_code_object);
// Instruction set functions ------------------------------------------------
// Logical macros.
inline void Bics(const Register& rd, const Register& rn,
const Operand& operand);
inline void Adcs(const Register& rd, const Register& rn,
const Operand& operand);
inline void Sbc(const Register& rd, const Register& rn,
const Operand& operand);
inline void Sbcs(const Register& rd, const Register& rn,
const Operand& operand);
inline void Ngc(const Register& rd, const Operand& operand);
inline void Ngcs(const Register& rd, const Operand& operand);
inline void Ccmn(const Register& rn, const Operand& operand, StatusFlags nzcv,
Condition cond);
void Csel(const Register& rd, const Register& rn, const Operand& operand,
Condition cond);
#define DECLARE_FUNCTION(FN, OP) \
inline void FN(const Register& rs, const Register& rt, const Register& rn);
STLX_MACRO_LIST(DECLARE_FUNCTION)
#undef DECLARE_FUNCTION
// Branch type inversion relies on these relations.
STATIC_ASSERT((reg_zero == (reg_not_zero ^ 1)) &&
(reg_bit_clear == (reg_bit_set ^ 1)) &&
(always == (never ^ 1)));
inline void Bfxil(const Register& rd, const Register& rn, unsigned lsb,
unsigned width);
inline void Cinc(const Register& rd, const Register& rn, Condition cond);
inline void Cinv(const Register& rd, const Register& rn, Condition cond);
inline void CzeroX(const Register& rd, Condition cond);
inline void CmovX(const Register& rd, const Register& rn, Condition cond);
inline void Csetm(const Register& rd, Condition cond);
inline void Csinv(const Register& rd, const Register& rn, const Register& rm,
Condition cond);
inline void Csneg(const Register& rd, const Register& rn, const Register& rm,
Condition cond);
inline void Dmb(BarrierDomain domain, BarrierType type);
inline void Dsb(BarrierDomain domain, BarrierType type);
inline void Extr(const Register& rd, const Register& rn, const Register& rm,
unsigned lsb);
inline void Fcsel(const VRegister& fd, const VRegister& fn,
const VRegister& fm, Condition cond);
void Fcvtl(const VRegister& vd, const VRegister& vn) {
DCHECK(allow_macro_instructions());
fcvtl(vd, vn);
}
void Fcvtl2(const VRegister& vd, const VRegister& vn) {
DCHECK(allow_macro_instructions());
fcvtl2(vd, vn);
}
void Fcvtn(const VRegister& vd, const VRegister& vn) {
DCHECK(allow_macro_instructions());
fcvtn(vd, vn);
}
void Fcvtn2(const VRegister& vd, const VRegister& vn) {
DCHECK(allow_macro_instructions());
fcvtn2(vd, vn);
}
void Fcvtxn(const VRegister& vd, const VRegister& vn) {
DCHECK(allow_macro_instructions());
fcvtxn(vd, vn);
}
void Fcvtxn2(const VRegister& vd, const VRegister& vn) {
DCHECK(allow_macro_instructions());
fcvtxn2(vd, vn);
}
inline void Fmadd(const VRegister& fd, const VRegister& fn,
const VRegister& fm, const VRegister& fa);
inline void Fmaxnm(const VRegister& fd, const VRegister& fn,
const VRegister& fm);
inline void Fminnm(const VRegister& fd, const VRegister& fn,
const VRegister& fm);
inline void Fmsub(const VRegister& fd, const VRegister& fn,
const VRegister& fm, const VRegister& fa);
inline void Fnmadd(const VRegister& fd, const VRegister& fn,
const VRegister& fm, const VRegister& fa);
inline void Fnmsub(const VRegister& fd, const VRegister& fn,
const VRegister& fm, const VRegister& fa);
inline void Hint(SystemHint code);
inline void Hlt(int code);
inline void Isb();
inline void Ldnp(const CPURegister& rt, const CPURegister& rt2,
const MemOperand& src);
inline void Movk(const Register& rd, uint64_t imm, int shift = -1);
inline void Msr(SystemRegister sysreg, const Register& rt);
inline void Nop() { nop(); }
void Mvni(const VRegister& vd, const int imm8, Shift shift = LSL,
const int shift_amount = 0) {
DCHECK(allow_macro_instructions());
mvni(vd, imm8, shift, shift_amount);
}
inline void Rev(const Register& rd, const Register& rn);
inline void Sbfiz(const Register& rd, const Register& rn, unsigned lsb,
unsigned width);
inline void Smaddl(const Register& rd, const Register& rn, const Register& rm,
const Register& ra);
inline void Smsubl(const Register& rd, const Register& rn, const Register& rm,
const Register& ra);
inline void Smulh(const Register& rd, const Register& rn, const Register& rm);
inline void Stnp(const CPURegister& rt, const CPURegister& rt2,
const MemOperand& dst);
inline void Umaddl(const Register& rd, const Register& rn, const Register& rm,
const Register& ra);
inline void Umsubl(const Register& rd, const Register& rn, const Register& rm,
const Register& ra);
void Cmle(const VRegister& vd, const VRegister& vn, int imm) {
DCHECK(allow_macro_instructions());
cmle(vd, vn, imm);
}
void Cmlt(const VRegister& vd, const VRegister& vn, int imm) {
DCHECK(allow_macro_instructions());
cmlt(vd, vn, imm);
}
void Ld1(const VRegister& vt, const MemOperand& src) {
DCHECK(allow_macro_instructions());
ld1(vt, src);
}
void Ld1(const VRegister& vt, const VRegister& vt2, const MemOperand& src) {
DCHECK(allow_macro_instructions());
ld1(vt, vt2, src);
}
void Ld1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const MemOperand& src) {
DCHECK(allow_macro_instructions());
ld1(vt, vt2, vt3, src);
}
void Ld1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const VRegister& vt4, const MemOperand& src) {
DCHECK(allow_macro_instructions());
ld1(vt, vt2, vt3, vt4, src);
}
void Ld1(const VRegister& vt, int lane, const MemOperand& src) {
DCHECK(allow_macro_instructions());
ld1(vt, lane, src);
}
void Ld1r(const VRegister& vt, const MemOperand& src) {
DCHECK(allow_macro_instructions());
ld1r(vt, src);
}
void Ld2(const VRegister& vt, const VRegister& vt2, const MemOperand& src) {
DCHECK(allow_macro_instructions());
ld2(vt, vt2, src);
}
void Ld2(const VRegister& vt, const VRegister& vt2, int lane,
const MemOperand& src) {
DCHECK(allow_macro_instructions());
ld2(vt, vt2, lane, src);
}
void Ld2r(const VRegister& vt, const VRegister& vt2, const MemOperand& src) {
DCHECK(allow_macro_instructions());
ld2r(vt, vt2, src);
}
void Ld3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const MemOperand& src) {
DCHECK(allow_macro_instructions());
ld3(vt, vt2, vt3, src);
}
void Ld3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
int lane, const MemOperand& src) {
DCHECK(allow_macro_instructions());
ld3(vt, vt2, vt3, lane, src);
}
void Ld3r(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const MemOperand& src) {
DCHECK(allow_macro_instructions());
ld3r(vt, vt2, vt3, src);
}
void Ld4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const VRegister& vt4, const MemOperand& src) {
DCHECK(allow_macro_instructions());
ld4(vt, vt2, vt3, vt4, src);
}
void Ld4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const VRegister& vt4, int lane, const MemOperand& src) {
DCHECK(allow_macro_instructions());
ld4(vt, vt2, vt3, vt4, lane, src);
}
void Ld4r(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const VRegister& vt4, const MemOperand& src) {
DCHECK(allow_macro_instructions());
ld4r(vt, vt2, vt3, vt4, src);
}
void St1(const VRegister& vt, const MemOperand& dst) {
DCHECK(allow_macro_instructions());
st1(vt, dst);
}
void St1(const VRegister& vt, const VRegister& vt2, const MemOperand& dst) {
DCHECK(allow_macro_instructions());
st1(vt, vt2, dst);
}
void St1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const MemOperand& dst) {
DCHECK(allow_macro_instructions());
st1(vt, vt2, vt3, dst);
}
void St1(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const VRegister& vt4, const MemOperand& dst) {
DCHECK(allow_macro_instructions());
st1(vt, vt2, vt3, vt4, dst);
}
void St1(const VRegister& vt, int lane, const MemOperand& dst) {
DCHECK(allow_macro_instructions());
st1(vt, lane, dst);
}
void St2(const VRegister& vt, const VRegister& vt2, const MemOperand& dst) {
DCHECK(allow_macro_instructions());
st2(vt, vt2, dst);
}
void St3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const MemOperand& dst) {
DCHECK(allow_macro_instructions());
st3(vt, vt2, vt3, dst);
}
void St4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const VRegister& vt4, const MemOperand& dst) {
DCHECK(allow_macro_instructions());
st4(vt, vt2, vt3, vt4, dst);
}
void St2(const VRegister& vt, const VRegister& vt2, int lane,
const MemOperand& dst) {
DCHECK(allow_macro_instructions());
st2(vt, vt2, lane, dst);
}
void St3(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
int lane, const MemOperand& dst) {
DCHECK(allow_macro_instructions());
st3(vt, vt2, vt3, lane, dst);
}
void St4(const VRegister& vt, const VRegister& vt2, const VRegister& vt3,
const VRegister& vt4, int lane, const MemOperand& dst) {
DCHECK(allow_macro_instructions());
st4(vt, vt2, vt3, vt4, lane, dst);
}
void Tbx(const VRegister& vd, const VRegister& vn, const VRegister& vm) {
DCHECK(allow_macro_instructions());
tbx(vd, vn, vm);
}
void Tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
const VRegister& vm) {
DCHECK(allow_macro_instructions());
tbx(vd, vn, vn2, vm);
}
void Tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
const VRegister& vn3, const VRegister& vm) {
DCHECK(allow_macro_instructions());
tbx(vd, vn, vn2, vn3, vm);
}
void Tbx(const VRegister& vd, const VRegister& vn, const VRegister& vn2,
const VRegister& vn3, const VRegister& vn4, const VRegister& vm) {
DCHECK(allow_macro_instructions());
tbx(vd, vn, vn2, vn3, vn4, vm);
}
void LoadObject(Register result, Handle<Object> object);
inline void PushSizeRegList(RegList registers, unsigned reg_size,
CPURegister::RegisterType type = CPURegister::kRegister) {
PushCPURegList(CPURegList(type, reg_size, registers));
}
inline void PopSizeRegList(RegList registers, unsigned reg_size,
CPURegister::RegisterType type = CPURegister::kRegister) {
PopCPURegList(CPURegList(type, reg_size, registers));
}
inline void PushXRegList(RegList regs) {
PushSizeRegList(regs, kXRegSizeInBits);
}
inline void PopXRegList(RegList regs) {
PopSizeRegList(regs, kXRegSizeInBits);
}
inline void PushWRegList(RegList regs) {
PushSizeRegList(regs, kWRegSizeInBits);
}
inline void PopWRegList(RegList regs) {
PopSizeRegList(regs, kWRegSizeInBits);
}
inline void PushDRegList(RegList regs) {
PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kVRegister);
}
inline void PopDRegList(RegList regs) {
PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kVRegister);
}
inline void PushSRegList(RegList regs) {
PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kVRegister);
}
inline void PopSRegList(RegList regs) {
PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kVRegister);
}
// Push the specified register 'count' times.
void PushMultipleTimes(CPURegister src, Register count);
// Sometimes callers need to push or pop multiple registers in a way that is
// difficult to structure efficiently for fixed Push or Pop calls. This scope
// allows push requests to be queued up, then flushed at once. The
// MacroAssembler will try to generate the most efficient sequence required.
//
// Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of
// register sizes and types.
class PushPopQueue {
public:
explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { }
~PushPopQueue() {
DCHECK(queued_.empty());
}
void Queue(const CPURegister& rt) {
size_ += rt.SizeInBytes();
queued_.push_back(rt);
}
enum PreambleDirective {
WITH_PREAMBLE,
SKIP_PREAMBLE
};
void PushQueued(PreambleDirective preamble_directive = WITH_PREAMBLE);
void PopQueued();
private:
MacroAssembler* masm_;
int size_;
std::vector<CPURegister> queued_;
};
// Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
//
// If the current stack pointer (according to StackPointer()) is csp, then
// csp must be aligned to 16 bytes.
void Peek(const CPURegister& dst, const Operand& offset);
// Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The
// values peeked will be adjacent, with the value in 'dst2' being from a
// higher address than 'dst1'. The offset is in bytes.
//
// If the current stack pointer (according to StackPointer()) is csp, then
// csp must be aligned to 16 bytes.
void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset);
// Variants of Claim and Drop, where the 'count' parameter is a SMI held in a
// register.
inline void ClaimBySMI(const Register& count_smi,
uint64_t unit_size = kXRegSize);
inline void DropBySMI(const Register& count_smi,
uint64_t unit_size = kXRegSize);
// Compare a register with an operand, and branch to label depending on the
// condition. May corrupt the status flags.
inline void CompareAndBranch(const Register& lhs,
const Operand& rhs,
Condition cond,
Label* label);
// Insert one or more instructions into the instruction stream that encode
// some caller-defined data. The instructions used will be executable with no
// side effects.
inline void InlineData(uint64_t data);
// Insert an instrumentation enable marker into the instruction stream.
inline void EnableInstrumentation();
// Insert an instrumentation disable marker into the instruction stream.
inline void DisableInstrumentation();
// Insert an instrumentation event marker into the instruction stream. These
// will be picked up by the instrumentation system to annotate an instruction
// profile. The argument marker_name must be a printable two character string;
// it will be encoded in the event marker.
inline void AnnotateInstrumentation(const char* marker_name);
// Preserve the callee-saved registers (as defined by AAPCS64).
//
// Higher-numbered registers are pushed before lower-numbered registers, and
// thus get higher addresses.
// Floating-point registers are pushed before general-purpose registers, and
// thus get higher addresses.
//
// Note that registers are not checked for invalid values. Use this method
// only if you know that the GC won't try to examine the values on the stack.
void PushCalleeSavedRegisters();
// Restore the callee-saved registers (as defined by AAPCS64).
//
// Higher-numbered registers are popped after lower-numbered registers, and
// thus come from higher addresses.
// Floating-point registers are popped after general-purpose registers, and
// thus come from higher addresses.
void PopCalleeSavedRegisters();
// Align csp for a frame, as per ActivationFrameAlignment, and make it the
// current stack pointer.
inline void AlignAndSetCSPForFrame();
// Helpers ------------------------------------------------------------------
static int SafepointRegisterStackIndex(int reg_code);
template<typename Field>
void DecodeField(Register dst, Register src) {
static const int shift = Field::kShift;
static const int setbits = CountSetBits(Field::kMask, 32);
Ubfx(dst, src, shift, setbits);
}
template<typename Field>
void DecodeField(Register reg) {
DecodeField<Field>(reg, reg);
}
// ---- SMI and Number Utilities ----
inline void SmiTag(Register dst, Register src);
inline void SmiTag(Register smi);
inline void SmiUntagToDouble(VRegister dst, Register src);
inline void SmiUntagToFloat(VRegister dst, Register src);
inline void JumpIfNotSmi(Register value, Label* not_smi_label);
inline void JumpIfBothSmi(Register value1, Register value2,
Label* both_smi_label,
Label* not_smi_label = nullptr);
inline void JumpIfEitherSmi(Register value1, Register value2,
Label* either_smi_label,
Label* not_smi_label = nullptr);
inline void JumpIfEitherNotSmi(Register value1,
Register value2,
Label* not_smi_label);
inline void JumpIfBothNotSmi(Register value1,
Register value2,
Label* not_smi_label);
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object,
AbortReason reason = AbortReason::kOperandIsASmi);
inline void ObjectTag(Register tagged_obj, Register obj);
inline void ObjectUntag(Register untagged_obj, Register obj);
// Abort execution if argument is not a FixedArray, enabled via --debug-code.
void AssertFixedArray(Register object);
// Abort execution if argument is not a JSFunction, enabled via --debug-code.
void AssertFunction(Register object);
// Abort execution if argument is not a JSGeneratorObject (or subclass),
// enabled via --debug-code.
void AssertGeneratorObject(Register object);
// Abort execution if argument is not a JSBoundFunction,
// enabled via --debug-code.
void AssertBoundFunction(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object);
void JumpIfHeapNumber(Register object, Label* on_heap_number,
SmiCheckType smi_check_type = DONT_DO_SMI_CHECK);
void JumpIfNotHeapNumber(Register object, Label* on_not_heap_number,
SmiCheckType smi_check_type = DONT_DO_SMI_CHECK);
// Try to represent a double as a signed 64-bit int.
// This succeeds if the result compares equal to the input, so inputs of -0.0
// are represented as 0 and handled as a success.
//
// On output the Z flag is set if the operation was successful.
void TryRepresentDoubleAsInt64(Register as_int, VRegister value,
VRegister scratch_d,
Label* on_successful_conversion = nullptr,
Label* on_failed_conversion = nullptr) {
DCHECK(as_int.Is64Bits());
TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
on_failed_conversion);
}
// ---- Calling / Jumping helpers ----
void CallStub(CodeStub* stub);
void TailCallStub(CodeStub* stub);
void CallRuntime(const Runtime::Function* f,
int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, save_doubles);
}
void TailCallRuntime(Runtime::FunctionId fid);
// Jump to a runtime routine.
void JumpToExternalReference(const ExternalReference& builtin,
bool builtin_exit_frame = false);
// Registers used through the invocation chain are hard-coded.
// We force passing the parameters to ensure the contracts are correctly
// honoured by the caller.
// 'function' must be x1.
// 'actual' must use an immediate or x0.
// 'expected' must use an immediate or x2.
// 'call_kind' must be x5.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual, Label* done,
InvokeFlag flag, bool* definitely_mismatches);
// On function call, call into the debugger if necessary.
void CheckDebugHook(Register fun, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual);
void InvokeFunctionCode(Register function, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag);
// Invoke the JavaScript function in the given register.
// Changes the current context to the context in the function before invoking.
void InvokeFunction(Register function, Register new_target,
const ParameterCount& actual, InvokeFlag flag);
void InvokeFunction(Register function, const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag);
void InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag);
// ---- Code generation helpers ----
// Frame restart support
void MaybeDropFrames();
// ---------------------------------------------------------------------------
// Support functions.
// Compare object type for heap object. heap_object contains a non-Smi
// whose object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
// It leaves the map in the map register (unless the type_reg and map register
// are the same register). It leaves the heap object in the heap_object
// register unless the heap_object register is the same register as one of the
// other registers.
void CompareObjectType(Register heap_object,
Register map,
Register type_reg,
InstanceType type);
// Compare object type for heap object, and branch if equal (or not.)
// heap_object contains a non-Smi whose object type should be compared with
// the given type. This both sets the flags and leaves the object type in
// the type_reg register. It leaves the map in the map register (unless the
// type_reg and map register are the same register). It leaves the heap
// object in the heap_object register unless the heap_object register is the
// same register as one of the other registers.
void JumpIfObjectType(Register object,
Register map,
Register type_reg,
InstanceType type,
Label* if_cond_pass,
Condition cond = eq);
// Compare instance type in a map. map contains a valid map object whose
// object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
void CompareInstanceType(Register map,
Register type_reg,
InstanceType type);
// Load the elements kind field from a map, and return it in the result
// register.
void LoadElementsKindFromMap(Register result, Register map);
// Compare the object in a register to a value from the root list.
void CompareRoot(const Register& obj, Heap::RootListIndex index);
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(const Register& obj,
Heap::RootListIndex index,
Label* if_equal);
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(const Register& obj,
Heap::RootListIndex index,
Label* if_not_equal);
// Compare the contents of a register with an operand, and branch to true,
// false or fall through, depending on condition.
void CompareAndSplit(const Register& lhs,
const Operand& rhs,
Condition cond,
Label* if_true,
Label* if_false,
Label* fall_through);
// Test the bits of register defined by bit_pattern, and branch to
// if_any_set, if_all_clear or fall_through accordingly.
void TestAndSplit(const Register& reg,
uint64_t bit_pattern,
Label* if_all_clear,
Label* if_any_set,
Label* fall_through);
// ---------------------------------------------------------------------------
// Frames.
void ExitFramePreserveFPRegs();
void ExitFrameRestoreFPRegs();
// Enter exit frame. Exit frames are used when calling C code from generated
// (JavaScript) code.
//
// The only registers modified by this function are the provided scratch
// register, the frame pointer and the stack pointer.
//
// The 'extra_space' argument can be used to allocate some space in the exit
// frame that will be ignored by the GC. This space will be reserved in the
// bottom of the frame immediately above the return address slot.
//
// Set up a stack frame and registers as follows:
// fp[8]: CallerPC (lr)
// fp -> fp[0]: CallerFP (old fp)
// fp[-8]: SPOffset (new csp)
// fp[-16]: CodeObject()
// fp[-16 - fp-size]: Saved doubles, if saved_doubles is true.
// csp[8]: Memory reserved for the caller if extra_space != 0.
// Alignment padding, if necessary.
// csp -> csp[0]: Space reserved for the return address.
//
// This function also stores the new frame information in the top frame, so
// that the new frame becomes the current frame.
void EnterExitFrame(bool save_doubles, const Register& scratch,
int extra_space = 0,
StackFrame::Type frame_type = StackFrame::EXIT);
// Leave the current exit frame, after a C function has returned to generated
// (JavaScript) code.
//
// This effectively unwinds the operation of EnterExitFrame:
// * Preserved doubles are restored (if restore_doubles is true).
// * The frame information is removed from the top frame.
// * The exit frame is dropped.
//
// The stack pointer must be csp on entry.
void LeaveExitFrame(bool save_doubles, const Register& scratch,
const Register& scratch2);
// Load the global proxy from the current context.
void LoadGlobalProxy(Register dst) {
LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
}
// ---------------------------------------------------------------------------
// StatsCounter support
void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
Register scratch2);
// ---------------------------------------------------------------------------
// Garbage collector support (GC).
// Push and pop the registers that can hold pointers, as defined by the
// RegList constant kSafepointSavedRegisters.
void PushSafepointRegisters();
void PopSafepointRegisters();
void CheckPageFlag(const Register& object, const Register& scratch, int mask,
Condition cc, Label* condition_met);
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldMemOperand(reg, off).
void RecordWriteField(
Register object, int offset, Register value, Register scratch,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK);
// For a given |object| notify the garbage collector that the slot |address|
// has been written. |value| is the object being stored. The value and
// address registers are clobbered by the operation.
void RecordWrite(
Register object, Register address, Register value,
LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK);
// ---------------------------------------------------------------------------
// Debugging.
void AssertRegisterIsRoot(
Register reg, Heap::RootListIndex index,
AbortReason reason = AbortReason::kRegisterDidNotMatchExpectedRoot);
// Abort if the specified register contains the invalid color bit pattern.
// The pattern must be in bits [1:0] of 'reg' register.
//
// If emit_debug_code() is false, this emits no code.
void AssertHasValidColor(const Register& reg);
void LoadNativeContextSlot(int index, Register dst);
// Like printf, but print at run-time from generated code.
//
// The caller must ensure that arguments for floating-point placeholders
// (such as %e, %f or %g) are VRegisters, and that arguments for integer
// placeholders are Registers.
//
// At the moment it is only possible to print the value of csp if it is the
// current stack pointer. Otherwise, the MacroAssembler will automatically
// update csp on every push (using BumpSystemStackPointer), so determining its
// value is difficult.
//
// Format placeholders that refer to more than one argument, or to a specific
// argument, are not supported. This includes formats like "%1$d" or "%.*d".
//
// This function automatically preserves caller-saved registers so that
// calling code can use Printf at any point without having to worry about
// corruption. The preservation mechanism generates a lot of code. If this is
// a problem, preserve the important registers manually and then call
// PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
// implicitly preserved.
void Printf(const char * format,
CPURegister arg0 = NoCPUReg,
CPURegister arg1 = NoCPUReg,
CPURegister arg2 = NoCPUReg,
CPURegister arg3 = NoCPUReg);
// Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
//
// The return code from the system printf call will be returned in x0.
void PrintfNoPreserve(const char * format,
const CPURegister& arg0 = NoCPUReg,
const CPURegister& arg1 = NoCPUReg,
const CPURegister& arg2 = NoCPUReg,
const CPURegister& arg3 = NoCPUReg);
private:
// Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
void InNewSpace(Register object,
Condition cond, // eq for new space, ne otherwise.
Label* branch);
// Try to represent a double as an int so that integer fast-paths may be
// used. Not every valid integer value is guaranteed to be caught.
// It supports both 32-bit and 64-bit integers depending whether 'as_int'
// is a W or X register.
//
// This does not distinguish between +0 and -0, so if this distinction is
// important it must be checked separately.
//
// On output the Z flag is set if the operation was successful.
void TryRepresentDoubleAsInt(Register as_int, VRegister value,
VRegister scratch_d,
Label* on_successful_conversion = nullptr,
Label* on_failed_conversion = nullptr);
public:
// Far branches resolving.
//
// The various classes of branch instructions with immediate offsets have
// different ranges. While the Assembler will fail to assemble a branch
// exceeding its range, the MacroAssembler offers a mechanism to resolve
// branches to too distant targets, either by tweaking the generated code to
// use branch instructions with wider ranges or generating veneers.
//
// Currently branches to distant targets are resolved using unconditional
// branch isntructions with a range of +-128MB. If that becomes too little
// (!), the mechanism can be extended to generate special veneers for really
// far targets.
};
// Use this scope when you need a one-to-one mapping between methods and
// instructions. This scope prevents the MacroAssembler from being called and
// literal pools from being emitted. It also asserts the number of instructions
// emitted is what you specified when creating the scope.
class InstructionAccurateScope BASE_EMBEDDED {
public:
explicit InstructionAccurateScope(TurboAssembler* tasm, size_t count = 0)
: tasm_(tasm)
#ifdef DEBUG
,
size_(count * kInstructionSize)
#endif
{
// Before blocking the const pool, see if it needs to be emitted.
tasm_->CheckConstPool(false, true);
tasm_->CheckVeneerPool(false, true);
tasm_->StartBlockPools();
#ifdef DEBUG
if (count != 0) {
tasm_->bind(&start_);
}
previous_allow_macro_instructions_ = tasm_->allow_macro_instructions();
tasm_->set_allow_macro_instructions(false);
#endif
}
~InstructionAccurateScope() {
tasm_->EndBlockPools();
#ifdef DEBUG
if (start_.is_bound()) {
DCHECK(tasm_->SizeOfCodeGeneratedSince(&start_) == size_);
}
tasm_->set_allow_macro_instructions(previous_allow_macro_instructions_);
#endif
}
private:
TurboAssembler* tasm_;
#ifdef DEBUG
size_t size_;
Label start_;
bool previous_allow_macro_instructions_;
#endif
};
// This scope utility allows scratch registers to be managed safely. The
// TurboAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch
// registers. These registers can be allocated on demand, and will be returned
// at the end of the scope.
//
// When the scope ends, the MacroAssembler's lists will be restored to their
// original state, even if the lists were modified by some other means. Note
// that this scope can be nested but the destructors need to run in the opposite
// order as the constructors. We do not have assertions for this.
class UseScratchRegisterScope {
public:
explicit UseScratchRegisterScope(TurboAssembler* tasm)
: available_(tasm->TmpList()),
availablefp_(tasm->FPTmpList()),
old_available_(available_->list()),
old_availablefp_(availablefp_->list()) {
DCHECK_EQ(available_->type(), CPURegister::kRegister);
DCHECK_EQ(availablefp_->type(), CPURegister::kVRegister);
}
~UseScratchRegisterScope();
// Take a register from the appropriate temps list. It will be returned
// automatically when the scope ends.
Register AcquireW() { return AcquireNextAvailable(available_).W(); }
Register AcquireX() { return AcquireNextAvailable(available_).X(); }
VRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); }
VRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); }
VRegister AcquireV(VectorFormat format) {
return VRegister::Create(AcquireNextAvailable(availablefp_).code(), format);
}
Register AcquireSameSizeAs(const Register& reg);
VRegister AcquireSameSizeAs(const VRegister& reg);
private:
static CPURegister AcquireNextAvailable(CPURegList* available);
// Available scratch registers.
CPURegList* available_; // kRegister
CPURegList* availablefp_; // kVRegister
// The state of the available lists at the start of this scope.
RegList old_available_; // kRegister
RegList old_availablefp_; // kVRegister
};
MemOperand ContextMemOperand(Register context, int index = 0);
MemOperand NativeContextMemOperand();
// Encode and decode information about patchable inline SMI checks.
class InlineSmiCheckInfo {
public:
explicit InlineSmiCheckInfo(Address info);
bool HasSmiCheck() const { return smi_check_ != nullptr; }
const Register& SmiRegister() const {
return reg_;
}
Instruction* SmiCheck() const {
return smi_check_;
}
int SmiCheckDelta() const { return smi_check_delta_; }
// Use MacroAssembler::InlineData to emit information about patchable inline
// SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to
// indicate that there is no inline SMI check. Note that 'reg' cannot be csp.
//
// The generated patch information can be read using the InlineSMICheckInfo
// class.
static void Emit(MacroAssembler* masm, const Register& reg,
const Label* smi_check);
// Emit information to indicate that there is no inline SMI check.
static void EmitNotInlined(MacroAssembler* masm) {
Label unbound;
Emit(masm, NoReg, &unbound);
}
private:
Register reg_;
int smi_check_delta_;
Instruction* smi_check_;
// Fields in the data encoded by InlineData.
// A width of 5 (Rd_width) for the SMI register preclues the use of csp,
// since kSPRegInternalCode is 63. However, csp should never hold a SMI or be
// used in a patchable check. The Emit() method checks this.
//
// Note that the total size of the fields is restricted by the underlying
// storage size handled by the BitField class, which is a uint32_t.
class RegisterBits : public BitField<unsigned, 0, 5> {};
class DeltaBits : public BitField<uint32_t, 5, 32-5> {};
};
} // namespace internal
} // namespace v8
#define ACCESS_MASM(masm) masm->
#endif // V8_ARM64_MACRO_ASSEMBLER_ARM64_H_