blob: 920a84dbdfd24a65ad5c0e3b34e11cbe617ca4e8 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_ARM64_UTILS_ARM64_H_
#define V8_ARM64_UTILS_ARM64_H_
#include <cmath>
#include "src/arm64/constants-arm64.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
// These are global assumptions in v8.
STATIC_ASSERT((static_cast<int32_t>(-1) >> 1) == -1);
STATIC_ASSERT((static_cast<uint32_t>(-1) >> 1) == 0x7FFFFFFF);
uint32_t float_sign(float val);
uint32_t float_exp(float val);
uint32_t float_mantissa(float val);
uint32_t double_sign(double val);
uint32_t double_exp(double val);
uint64_t double_mantissa(double val);
float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa);
double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa);
// An fpclassify() function for 16-bit half-precision floats.
int float16classify(float16 value);
// Bit counting.
int CountLeadingZeros(uint64_t value, int width);
int CountLeadingSignBits(int64_t value, int width);
int CountTrailingZeros(uint64_t value, int width);
int CountSetBits(uint64_t value, int width);
int LowestSetBitPosition(uint64_t value);
int HighestSetBitPosition(uint64_t value);
uint64_t LargestPowerOf2Divisor(uint64_t value);
int MaskToBit(uint64_t mask);
template <typename T>
T ReverseBytes(T value, int block_bytes_log2) {
DCHECK((sizeof(value) == 4) || (sizeof(value) == 8));
DCHECK((1U << block_bytes_log2) <= sizeof(value));
// Split the 64-bit value into an 8-bit array, where b[0] is the least
// significant byte, and b[7] is the most significant.
uint8_t bytes[8];
uint64_t mask = 0xff00000000000000;
for (int i = 7; i >= 0; i--) {
bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
mask >>= 8;
}
// Permutation tables for REV instructions.
// permute_table[0] is used by REV16_x, REV16_w
// permute_table[1] is used by REV32_x, REV_w
// permute_table[2] is used by REV_x
DCHECK((0 < block_bytes_log2) && (block_bytes_log2 < 4));
static const uint8_t permute_table[3][8] = {{6, 7, 4, 5, 2, 3, 0, 1},
{4, 5, 6, 7, 0, 1, 2, 3},
{0, 1, 2, 3, 4, 5, 6, 7}};
T result = 0;
for (int i = 0; i < 8; i++) {
result <<= 8;
result |= bytes[permute_table[block_bytes_log2 - 1][i]];
}
return result;
}
// NaN tests.
inline bool IsSignallingNaN(double num) {
uint64_t raw = bit_cast<uint64_t>(num);
if (std::isnan(num) && ((raw & kDQuietNanMask) == 0)) {
return true;
}
return false;
}
inline bool IsSignallingNaN(float num) {
uint32_t raw = bit_cast<uint32_t>(num);
if (std::isnan(num) && ((raw & kSQuietNanMask) == 0)) {
return true;
}
return false;
}
inline bool IsSignallingNaN(float16 num) {
const uint16_t kFP16QuietNaNMask = 0x0200;
return (float16classify(num) == FP_NAN) && ((num & kFP16QuietNaNMask) == 0);
}
template <typename T>
inline bool IsQuietNaN(T num) {
return std::isnan(num) && !IsSignallingNaN(num);
}
// Convert the NaN in 'num' to a quiet NaN.
inline double ToQuietNaN(double num) {
DCHECK(std::isnan(num));
return bit_cast<double>(bit_cast<uint64_t>(num) | kDQuietNanMask);
}
inline float ToQuietNaN(float num) {
DCHECK(std::isnan(num));
return bit_cast<float>(bit_cast<uint32_t>(num) |
static_cast<uint32_t>(kSQuietNanMask));
}
// Fused multiply-add.
inline double FusedMultiplyAdd(double op1, double op2, double a) {
return fma(op1, op2, a);
}
inline float FusedMultiplyAdd(float op1, float op2, float a) {
return fmaf(op1, op2, a);
}
} // namespace internal
} // namespace v8
#endif // V8_ARM64_UTILS_ARM64_H_