blob: dd92af89bb0dc1a6e3ab1e58d0b389d6eea3119c [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_ARM64
#include "src/arm64/macro-assembler-arm64-inl.h"
#include "src/code-stubs.h"
#include "src/counters.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/frame-constants.h"
#include "src/frames.h"
#include "src/objects-inl.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
// Load the InternalArray function from the native context.
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, result);
}
// Load the built-in InternalArray function from the current context.
static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
Register result) {
// Load the InternalArray function from the native context.
__ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, result);
}
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
ExitFrameType exit_frame_type) {
__ Mov(x5, ExternalReference(address, masm->isolate()));
if (exit_frame_type == BUILTIN_EXIT) {
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
RelocInfo::CODE_TARGET);
} else {
DCHECK(exit_frame_type == EXIT);
__ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame),
RelocInfo::CODE_TARGET);
}
}
namespace {
void AdaptorWithExitFrameType(MacroAssembler* masm,
Builtins::ExitFrameType exit_frame_type) {
// ----------- S t a t e -------------
// -- x0 : number of arguments excluding receiver
// -- x1 : target
// -- x3 : new target
// -- x5 : entry point
// -- sp[0] : last argument
// -- ...
// -- sp[4 * (argc - 1)] : first argument
// -- sp[4 * argc] : receiver
// -----------------------------------
__ AssertFunction(x1);
// Make sure we operate in the context of the called function (for example
// ConstructStubs implemented in C++ will be run in the context of the caller
// instead of the callee, due to the way that [[Construct]] is defined for
// ordinary functions).
__ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
// CEntryStub expects x0 to contain the number of arguments including the
// receiver and the extra arguments.
__ Add(x0, x0, BuiltinExitFrameConstants::kNumExtraArgsWithReceiver);
// Insert extra arguments.
Register padding = x10;
__ LoadRoot(padding, Heap::kTheHoleValueRootIndex);
__ SmiTag(x11, x0);
__ Push(padding, x11, x1, x3);
// Jump to the C entry runtime stub directly here instead of using
// JumpToExternalReference. We have already loaded entry point to x5
// in Generate_adaptor.
__ Mov(x1, x5);
CEntryStub stub(masm->isolate(), 1, kDontSaveFPRegs, kArgvOnStack,
exit_frame_type == Builtins::BUILTIN_EXIT);
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
}
} // namespace
void Builtins::Generate_AdaptorWithExitFrame(MacroAssembler* masm) {
AdaptorWithExitFrameType(masm, EXIT);
}
void Builtins::Generate_AdaptorWithBuiltinExitFrame(MacroAssembler* masm) {
AdaptorWithExitFrameType(masm, BUILTIN_EXIT);
}
void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_InternalArrayConstructor");
Label generic_array_code;
// Get the InternalArray function.
GenerateLoadInternalArrayFunction(masm, x1);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ Ldr(x10, FieldMemOperand(x1, JSFunction::kPrototypeOrInitialMapOffset));
__ Tst(x10, kSmiTagMask);
__ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
__ CompareObjectType(x10, x11, x12, MAP_TYPE);
__ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_ArrayConstructor");
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the Array function.
GenerateLoadArrayFunction(masm, x1);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ Ldr(x10, FieldMemOperand(x1, JSFunction::kPrototypeOrInitialMapOffset));
__ Tst(x10, kSmiTagMask);
__ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction);
__ CompareObjectType(x10, x11, x12, MAP_TYPE);
__ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction);
}
// Run the native code for the Array function called as a normal function.
__ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
__ Mov(x3, x1);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(x2, FieldMemOperand(x2, SharedFunctionInfo::kCodeOffset));
__ Add(x2, x2, Code::kHeaderSize - kHeapObjectTag);
__ Br(x2);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- x0 : argument count (preserved for callee)
// -- x1 : target function (preserved for callee)
// -- x3 : new target (preserved for callee)
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the target function and the new target.
// Push another copy as a parameter to the runtime call.
__ SmiTag(x0);
__ Push(x0, x1, x3, padreg);
__ PushArgument(x1);
__ CallRuntime(function_id, 1);
__ Move(x2, x0);
// Restore target function and new target.
__ Pop(padreg, x3, x1, x0);
__ SmiUntag(x0);
}
__ Add(x2, x2, Code::kHeaderSize - kHeapObjectTag);
__ Br(x2);
}
namespace {
void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
Label post_instantiation_deopt_entry;
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : constructor function
// -- x3 : new target
// -- cp : context
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_JSConstructStubHelper");
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
Label already_aligned;
Register argc = x0;
if (__ emit_debug_code()) {
// Check that FrameScope pushed the context on to the stack already.
__ Peek(x2, 0);
__ Cmp(x2, cp);
__ Check(eq, AbortReason::kUnexpectedValue);
}
// Push number of arguments.
__ SmiTag(x11, argc);
__ Push(x11, padreg);
// Add a slot for the receiver, and round up to maintain alignment.
Register slot_count = x2;
Register slot_count_without_rounding = x12;
__ Add(slot_count_without_rounding, argc, 2);
__ Bic(slot_count, slot_count_without_rounding, 1);
__ Claim(slot_count);
// Preserve the incoming parameters on the stack.
__ LoadRoot(x10, Heap::kTheHoleValueRootIndex);
// Compute a pointer to the slot immediately above the location on the
// stack to which arguments will be later copied.
__ SlotAddress(x2, argc);
// Poke the hole (receiver) in the highest slot.
__ Str(x10, MemOperand(x2));
__ Tbnz(slot_count_without_rounding, 0, &already_aligned);
// Store padding, if needed.
__ Str(padreg, MemOperand(x2, 1 * kPointerSize));
__ Bind(&already_aligned);
// Copy arguments to the expression stack.
{
Register count = x2;
Register dst = x10;
Register src = x11;
__ Mov(count, argc);
__ SlotAddress(dst, 0);
__ Add(src, fp, StandardFrameConstants::kCallerSPOffset);
__ CopyDoubleWords(dst, src, count);
}
// ----------- S t a t e -------------
// -- x0: number of arguments (untagged)
// -- x1: constructor function
// -- x3: new target
// If argc is odd:
// -- sp[0*kPointerSize]: argument n - 1
// -- ...
// -- sp[(n-1)*kPointerSize]: argument 0
// -- sp[(n+0)*kPointerSize]: the hole (receiver)
// -- sp[(n+1)*kPointerSize]: padding
// -- sp[(n+2)*kPointerSize]: padding
// -- sp[(n+3)*kPointerSize]: number of arguments (tagged)
// -- sp[(n+4)*kPointerSize]: context (pushed by FrameScope)
// If argc is even:
// -- sp[0*kPointerSize]: argument n - 1
// -- ...
// -- sp[(n-1)*kPointerSize]: argument 0
// -- sp[(n+0)*kPointerSize]: the hole (receiver)
// -- sp[(n+1)*kPointerSize]: padding
// -- sp[(n+2)*kPointerSize]: number of arguments (tagged)
// -- sp[(n+3)*kPointerSize]: context (pushed by FrameScope)
// -----------------------------------
// Call the function.
ParameterCount actual(argc);
__ InvokeFunction(x1, x3, actual, CALL_FUNCTION);
// Restore the context from the frame.
__ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// Restore smi-tagged arguments count from the frame. Use fp relative
// addressing to avoid the circular dependency between padding existence and
// argc parity.
__ Ldrsw(x1,
UntagSmiMemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ DropArguments(x1, TurboAssembler::kCountExcludesReceiver);
__ Ret();
}
// The construct stub for ES5 constructor functions and ES6 class constructors.
void Generate_JSConstructStubGeneric(MacroAssembler* masm,
bool restrict_constructor_return) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : constructor function
// -- x3 : new target
// -- lr : return address
// -- cp : context pointer
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_JSConstructStubGeneric");
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
Label post_instantiation_deopt_entry, not_create_implicit_receiver;
if (__ emit_debug_code()) {
// Check that FrameScope pushed the context on to the stack already.
__ Peek(x2, 0);
__ Cmp(x2, cp);
__ Check(eq, AbortReason::kUnexpectedValue);
}
// Preserve the incoming parameters on the stack.
__ SmiTag(x0);
__ Push(x0, x1, padreg, x3);
// ----------- S t a t e -------------
// -- sp[0*kPointerSize]: new target
// -- sp[1*kPointerSize]: padding
// -- x1 and sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: number of arguments (tagged)
// -- sp[4*kPointerSize]: context (pushed by FrameScope)
// -----------------------------------
__ Ldr(x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w4, FieldMemOperand(x4, SharedFunctionInfo::kCompilerHintsOffset));
__ TestAndBranchIfAnySet(w4, SharedFunctionInfo::kDerivedConstructorMask,
&not_create_implicit_receiver);
// If not derived class constructor: Allocate the new receiver object.
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
x4, x5);
__ Call(BUILTIN_CODE(masm->isolate(), FastNewObject),
RelocInfo::CODE_TARGET);
__ B(&post_instantiation_deopt_entry);
// Else: use TheHoleValue as receiver for constructor call
__ Bind(&not_create_implicit_receiver);
__ LoadRoot(x0, Heap::kTheHoleValueRootIndex);
// ----------- S t a t e -------------
// -- x0: receiver
// -- Slot 4 / sp[0*kPointerSize]: new target
// -- Slot 3 / sp[1*kPointerSize]: padding
// -- Slot 2 / sp[2*kPointerSize]: constructor function
// -- Slot 1 / sp[3*kPointerSize]: number of arguments (tagged)
// -- Slot 0 / sp[4*kPointerSize]: context
// -----------------------------------
// Deoptimizer enters here.
masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
masm->pc_offset());
__ Bind(&post_instantiation_deopt_entry);
// Restore new target from the top of the stack.
__ Peek(x3, 0 * kPointerSize);
// Restore constructor function and argument count.
__ Ldr(x1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
__ Ldrsw(x12,
UntagSmiMemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Copy arguments to the expression stack. The called function pops the
// receiver along with its arguments, so we need an extra receiver on the
// stack, in case we have to return it later.
// Overwrite the new target with a receiver.
__ Poke(x0, 0);
// Push two further copies of the receiver. One will be popped by the called
// function. The second acts as padding if the number of arguments plus
// receiver is odd - pushing receiver twice avoids branching. It also means
// that we don't have to handle the even and odd cases specially on
// InvokeFunction's return, as top of stack will be the receiver in either
// case.
__ Push(x0, x0);
// ----------- S t a t e -------------
// -- x3: new target
// -- x12: number of arguments (untagged)
// -- sp[0*kPointerSize]: implicit receiver (overwrite if argc odd)
// -- sp[1*kPointerSize]: implicit receiver
// -- sp[2*kPointerSize]: implicit receiver
// -- sp[3*kPointerSize]: padding
// -- x1 and sp[4*kPointerSize]: constructor function
// -- sp[5*kPointerSize]: number of arguments (tagged)
// -- sp[6*kPointerSize]: context
// -----------------------------------
// Round the number of arguments down to the next even number, and claim
// slots for the arguments. If the number of arguments was odd, the last
// argument will overwrite one of the receivers pushed above.
__ Bic(x10, x12, 1);
__ Claim(x10);
// Copy the arguments.
{
Register count = x2;
Register dst = x10;
Register src = x11;
__ Mov(count, x12);
__ SlotAddress(dst, 0);
__ Add(src, fp, StandardFrameConstants::kCallerSPOffset);
__ CopyDoubleWords(dst, src, count);
}
// Call the function.
__ Mov(x0, x12);
ParameterCount actual(x0);
__ InvokeFunction(x1, x3, actual, CALL_FUNCTION);
// ----------- S t a t e -------------
// -- sp[0*kPointerSize]: implicit receiver
// -- sp[1*kPointerSize]: padding
// -- sp[2*kPointerSize]: constructor function
// -- sp[3*kPointerSize]: number of arguments
// -- sp[4*kPointerSize]: context
// -----------------------------------
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
masm->pc_offset());
// Restore the context from the frame.
__ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, do_throw, other_result, leave_frame;
// If the result is undefined, we jump out to using the implicit receiver.
__ CompareRoot(x0, Heap::kUndefinedValueRootIndex);
__ B(eq, &use_receiver);
// Otherwise we do a smi check and fall through to check if the return value
// is a valid receiver.
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(x0, &other_result);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ JumpIfObjectType(x0, x4, x5, FIRST_JS_RECEIVER_TYPE, &leave_frame, ge);
// The result is now neither undefined nor an object.
__ Bind(&other_result);
__ Ldr(x4, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
__ Ldr(x4, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w4, FieldMemOperand(x4, SharedFunctionInfo::kCompilerHintsOffset));
if (restrict_constructor_return) {
// Throw if constructor function is a class constructor
__ TestAndBranchIfAllClear(w4, SharedFunctionInfo::kClassConstructorMask,
&use_receiver);
} else {
__ TestAndBranchIfAnySet(w4, SharedFunctionInfo::kClassConstructorMask,
&use_receiver);
__ CallRuntime(
Runtime::kIncrementUseCounterConstructorReturnNonUndefinedPrimitive);
__ B(&use_receiver);
}
__ Bind(&do_throw);
__ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ Bind(&use_receiver);
__ Peek(x0, 0 * kPointerSize);
__ CompareRoot(x0, Heap::kTheHoleValueRootIndex);
__ B(eq, &do_throw);
__ Bind(&leave_frame);
// Restore smi-tagged arguments count from the frame.
__ Ldrsw(x1,
UntagSmiMemOperand(fp, ConstructFrameConstants::kLengthOffset));
// Leave construct frame.
}
// Remove caller arguments from the stack and return.
__ DropArguments(x1, TurboAssembler::kCountExcludesReceiver);
__ Ret();
}
} // namespace
void Builtins::Generate_JSConstructStubGenericRestrictedReturn(
MacroAssembler* masm) {
Generate_JSConstructStubGeneric(masm, true);
}
void Builtins::Generate_JSConstructStubGenericUnrestrictedReturn(
MacroAssembler* masm) {
Generate_JSConstructStubGeneric(masm, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSBuiltinsConstructStubHelper(masm);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ PushArgument(x1);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the value to pass to the generator
// -- x1 : the JSGeneratorObject to resume
// -- lr : return address
// -----------------------------------
__ AssertGeneratorObject(x1);
// Store input value into generator object.
__ Str(x0, FieldMemOperand(x1, JSGeneratorObject::kInputOrDebugPosOffset));
__ RecordWriteField(x1, JSGeneratorObject::kInputOrDebugPosOffset, x0, x3,
kLRHasNotBeenSaved, kDontSaveFPRegs);
// Load suspended function and context.
__ Ldr(x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset));
__ Ldr(cp, FieldMemOperand(x4, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
__ Mov(x10, Operand(debug_hook));
__ Ldrsb(x10, MemOperand(x10));
__ CompareAndBranch(x10, Operand(0), ne, &prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ Mov(x10, Operand(debug_suspended_generator));
__ Ldr(x10, MemOperand(x10));
__ CompareAndBranch(x10, Operand(x1), eq,
&prepare_step_in_suspended_generator);
__ Bind(&stepping_prepared);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label stack_overflow;
__ CompareRoot(__ StackPointer(), Heap::kRealStackLimitRootIndex);
__ B(lo, &stack_overflow);
// Get number of arguments for generator function.
__ Ldr(x10, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w10,
FieldMemOperand(x10, SharedFunctionInfo::kFormalParameterCountOffset));
// Claim slots for arguments and receiver (rounded up to a multiple of two).
__ Add(x11, x10, 2);
__ Bic(x11, x11, 1);
__ Claim(x11);
// Store padding (which might be replaced by the receiver).
__ Sub(x11, x11, 1);
__ Poke(padreg, Operand(x11, LSL, kPointerSizeLog2));
// Poke receiver into highest claimed slot.
__ Ldr(x5, FieldMemOperand(x1, JSGeneratorObject::kReceiverOffset));
__ Poke(x5, Operand(x10, LSL, kPointerSizeLog2));
// ----------- S t a t e -------------
// -- x1 : the JSGeneratorObject to resume
// -- x4 : generator function
// -- x10 : argument count
// -- cp : generator context
// -- lr : return address
// -- sp[arg count] : generator receiver
// -- sp[0 .. arg count - 1] : claimed for args
// -----------------------------------
// Push holes for arguments to generator function. Since the parser forced
// context allocation for any variables in generators, the actual argument
// values have already been copied into the context and these dummy values
// will never be used.
{
Label loop, done;
__ Cbz(x10, &done);
__ LoadRoot(x11, Heap::kTheHoleValueRootIndex);
__ Bind(&loop);
__ Sub(x10, x10, 1);
__ Poke(x11, Operand(x10, LSL, kPointerSizeLog2));
__ Cbnz(x10, &loop);
__ Bind(&done);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ Ldr(x3, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(x3, FieldMemOperand(x3, SharedFunctionInfo::kFunctionDataOffset));
__ CompareObjectType(x3, x3, x3, BYTECODE_ARRAY_TYPE);
__ Assert(eq, AbortReason::kMissingBytecodeArray);
}
// Resume (Ignition/TurboFan) generator object.
{
__ Ldr(x0, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w0, FieldMemOperand(
x0, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ Move(x3, x1);
__ Move(x1, x4);
__ Ldr(x5, FieldMemOperand(x1, JSFunction::kCodeOffset));
__ Add(x5, x5, Code::kHeaderSize - kHeapObjectTag);
__ Jump(x5);
}
__ Bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(x1, padreg);
__ PushArgument(x4);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(padreg, x1);
__ Ldr(x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset));
}
__ B(&stepping_prepared);
__ Bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(x1, padreg);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(padreg, x1);
__ Ldr(x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset));
}
__ B(&stepping_prepared);
__ bind(&stack_overflow);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable(); // This should be unreachable.
}
}
static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
Label* stack_overflow) {
UseScratchRegisterScope temps(masm);
Register scratch = temps.AcquireX();
// Check the stack for overflow.
// We are not trying to catch interruptions (e.g. debug break and
// preemption) here, so the "real stack limit" is checked.
Label enough_stack_space;
__ LoadRoot(scratch, Heap::kRealStackLimitRootIndex);
// Make scratch the space we have left. The stack might already be overflowed
// here which will cause scratch to become negative.
__ Sub(scratch, masm->StackPointer(), scratch);
// Check if the arguments will overflow the stack.
__ Cmp(scratch, Operand(num_args, LSL, kPointerSizeLog2));
__ B(le, stack_overflow);
}
// Input:
// x0: new.target.
// x1: function.
// x2: receiver.
// x3: argc.
// x4: argv.
// Output:
// x0: result.
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from JSEntryStub::GenerateBody().
Register new_target = x0;
Register function = x1;
Register receiver = x2;
Register argc = x3;
Register argv = x4;
Register scratch = x10;
Register slots_to_claim = x11;
ProfileEntryHookStub::MaybeCallEntryHook(masm);
{
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
__ Mov(scratch, Operand(ExternalReference(IsolateAddressId::kContextAddress,
masm->isolate())));
__ Ldr(cp, MemOperand(scratch));
__ InitializeRootRegister();
// Claim enough space for the arguments, the receiver and the function,
// including an optional slot of padding.
__ Add(slots_to_claim, argc, 3);
__ Bic(slots_to_claim, slots_to_claim, 1);
// Check if we have enough stack space to push all arguments.
Label enough_stack_space, stack_overflow;
Generate_StackOverflowCheck(masm, slots_to_claim, &stack_overflow);
__ B(&enough_stack_space);
__ Bind(&stack_overflow);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable();
__ Bind(&enough_stack_space);
__ Claim(slots_to_claim);
// Store padding (which might be overwritten).
__ SlotAddress(scratch, slots_to_claim);
__ Str(padreg, MemOperand(scratch, -kPointerSize));
// Store receiver and function on the stack.
__ SlotAddress(scratch, argc);
__ Stp(receiver, function, MemOperand(scratch));
// Copy arguments to the stack in a loop, in reverse order.
// x3: argc.
// x4: argv.
Label loop, done;
// Skip the argument set up if we have no arguments.
__ Cbz(argc, &done);
// scratch has been set to point to the location of the receiver, which
// marks the end of the argument copy.
__ Bind(&loop);
// Load the handle.
__ Ldr(x11, MemOperand(argv, kPointerSize, PostIndex));
// Dereference the handle.
__ Ldr(x11, MemOperand(x11));
// Poke the result into the stack.
__ Str(x11, MemOperand(scratch, -kPointerSize, PreIndex));
// Loop if we've not reached the end of copy marker.
__ Cmp(__ StackPointer(), scratch);
__ B(lt, &loop);
__ Bind(&done);
__ Mov(scratch, argc);
__ Mov(argc, new_target);
__ Mov(new_target, scratch);
// x0: argc.
// x3: new.target.
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
// The original values have been saved in JSEntryStub::GenerateBody().
__ LoadRoot(x19, Heap::kUndefinedValueRootIndex);
__ Mov(x20, x19);
__ Mov(x21, x19);
__ Mov(x22, x19);
__ Mov(x23, x19);
__ Mov(x24, x19);
__ Mov(x25, x19);
__ Mov(x28, x19);
// Don't initialize the reserved registers.
// x26 : root register (root).
// x27 : context pointer (cp).
// x29 : frame pointer (fp).
Handle<Code> builtin = is_construct
? BUILTIN_CODE(masm->isolate(), Construct)
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the JS internal frame and remove the parameters (except function),
// and return.
}
// Result is in x0. Return.
__ Ret();
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
static void ReplaceClosureCodeWithOptimizedCode(
MacroAssembler* masm, Register optimized_code, Register closure,
Register scratch1, Register scratch2, Register scratch3) {
// Store code entry in the closure.
__ Str(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset));
__ Mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below.
__ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
Register args_size = scratch;
// Get the arguments + receiver count.
__ Ldr(args_size,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ Ldr(args_size.W(),
FieldMemOperand(args_size, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::INTERPRETED);
// Drop receiver + arguments.
if (__ emit_debug_code()) {
__ Tst(args_size, kPointerSize - 1);
__ Check(eq, AbortReason::kUnexpectedValue);
}
__ Lsr(args_size, args_size, kPointerSizeLog2);
__ DropArguments(args_size);
}
// Tail-call |function_id| if |smi_entry| == |marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
Register smi_entry,
OptimizationMarker marker,
Runtime::FunctionId function_id) {
Label no_match;
__ CompareAndBranch(smi_entry, Operand(Smi::FromEnum(marker)), ne, &no_match);
GenerateTailCallToReturnedCode(masm, function_id);
__ bind(&no_match);
}
static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm,
Register feedback_vector,
Register scratch1, Register scratch2,
Register scratch3) {
// ----------- S t a t e -------------
// -- x0 : argument count (preserved for callee if needed, and caller)
// -- x3 : new target (preserved for callee if needed, and caller)
// -- x1 : target function (preserved for callee if needed, and caller)
// -- feedback vector (preserved for caller if needed)
// -----------------------------------
DCHECK(
!AreAliased(feedback_vector, x0, x1, x3, scratch1, scratch2, scratch3));
Label optimized_code_slot_is_cell, fallthrough;
Register closure = x1;
Register optimized_code_entry = scratch1;
__ Ldr(
optimized_code_entry,
FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset));
// Check if the code entry is a Smi. If yes, we interpret it as an
// optimisation marker. Otherwise, interpret is as a weak cell to a code
// object.
__ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_cell);
{
// Optimized code slot is a Smi optimization marker.
// Fall through if no optimization trigger.
__ CompareAndBranch(optimized_code_entry,
Operand(Smi::FromEnum(OptimizationMarker::kNone)), eq,
&fallthrough);
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kLogFirstExecution,
Runtime::kFunctionFirstExecution);
TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry,
OptimizationMarker::kCompileOptimized,
Runtime::kCompileOptimized_NotConcurrent);
TailCallRuntimeIfMarkerEquals(
masm, optimized_code_entry,
OptimizationMarker::kCompileOptimizedConcurrent,
Runtime::kCompileOptimized_Concurrent);
{
// Otherwise, the marker is InOptimizationQueue, so fall through hoping
// that an interrupt will eventually update the slot with optimized code.
if (FLAG_debug_code) {
__ Cmp(
optimized_code_entry,
Operand(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue)));
__ Assert(eq, AbortReason::kExpectedOptimizationSentinel);
}
__ B(&fallthrough);
}
}
{
// Optimized code slot is a WeakCell.
__ bind(&optimized_code_slot_is_cell);
__ Ldr(optimized_code_entry,
FieldMemOperand(optimized_code_entry, WeakCell::kValueOffset));
__ JumpIfSmi(optimized_code_entry, &fallthrough);
// Check if the optimized code is marked for deopt. If it is, call the
// runtime to clear it.
Label found_deoptimized_code;
__ Ldr(scratch2, FieldMemOperand(optimized_code_entry,
Code::kCodeDataContainerOffset));
__ Ldr(
scratch2,
FieldMemOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset));
__ TestAndBranchIfAnySet(scratch2, 1 << Code::kMarkedForDeoptimizationBit,
&found_deoptimized_code);
// Optimized code is good, get it into the closure and link the closure into
// the optimized functions list, then tail call the optimized code.
// The feedback vector is no longer used, so re-use it as a scratch
// register.
ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
scratch2, scratch3, feedback_vector);
__ Add(optimized_code_entry, optimized_code_entry,
Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(optimized_code_entry);
// Optimized code slot contains deoptimized code, evict it and re-enter the
// closure's code.
__ bind(&found_deoptimized_code);
GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot);
}
// Fall-through if the optimized code cell is clear and there is no
// optimization marker.
__ bind(&fallthrough);
}
// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation.
static void AdvanceBytecodeOffset(MacroAssembler* masm, Register bytecode_array,
Register bytecode_offset, Register bytecode,
Register scratch1) {
Register bytecode_size_table = scratch1;
DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
bytecode));
__ Mov(
bytecode_size_table,
Operand(ExternalReference::bytecode_size_table_address(masm->isolate())));
// Check if the bytecode is a Wide or ExtraWide prefix bytecode.
Label load_size, extra_wide;
STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
__ Cmp(bytecode, Operand(0x1));
__ B(hi, &load_size);
__ B(eq, &extra_wide);
// Load the next bytecode and update table to the wide scaled table.
__ Add(bytecode_offset, bytecode_offset, Operand(1));
__ Ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset));
__ Add(bytecode_size_table, bytecode_size_table,
Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount));
__ B(&load_size);
__ Bind(&extra_wide);
// Load the next bytecode and update table to the extra wide scaled table.
__ Add(bytecode_offset, bytecode_offset, Operand(1));
__ Ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset));
__ Add(bytecode_size_table, bytecode_size_table,
Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
// Load the size of the current bytecode.
__ Bind(&load_size);
__ Ldr(scratch1.W(), MemOperand(bytecode_size_table, bytecode, LSL, 2));
__ Add(bytecode_offset, bytecode_offset, scratch1);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// - x1: the JS function object being called.
// - x3: the incoming new target or generator object
// - cp: our context.
// - fp: our caller's frame pointer.
// - lr: return address.
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
Register closure = x1;
Register feedback_vector = x2;
// Load the feedback vector from the closure.
__ Ldr(feedback_vector,
FieldMemOperand(closure, JSFunction::kFeedbackVectorOffset));
__ Ldr(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
// Read off the optimized code slot in the feedback vector, and if there
// is optimized code or an optimization marker, call that instead.
MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, x7, x4, x5);
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ Push(lr, fp, cp, closure);
__ Add(fp, __ StackPointer(), StandardFrameConstants::kFixedFrameSizeFromFp);
// Get the bytecode array from the function object (or from the DebugInfo if
// it is present) and load it into kInterpreterBytecodeArrayRegister.
Label maybe_load_debug_bytecode_array, bytecode_array_loaded;
__ Ldr(x0, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(kInterpreterBytecodeArrayRegister,
FieldMemOperand(x0, SharedFunctionInfo::kFunctionDataOffset));
__ Ldr(x11, FieldMemOperand(x0, SharedFunctionInfo::kDebugInfoOffset));
__ JumpIfNotSmi(x11, &maybe_load_debug_bytecode_array);
__ Bind(&bytecode_array_loaded);
// Increment invocation count for the function.
__ Ldr(x11, FieldMemOperand(closure, JSFunction::kFeedbackVectorOffset));
__ Ldr(x11, FieldMemOperand(x11, Cell::kValueOffset));
__ Ldr(w10, FieldMemOperand(x11, FeedbackVector::kInvocationCountOffset));
__ Add(w10, w10, Operand(1));
__ Str(w10, FieldMemOperand(x11, FeedbackVector::kInvocationCountOffset));
// Check function data field is actually a BytecodeArray object.
if (FLAG_debug_code) {
__ AssertNotSmi(
kInterpreterBytecodeArrayRegister,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, x0, x0,
BYTECODE_ARRAY_TYPE);
__ Assert(
eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Reset code age.
__ Mov(x10, Operand(BytecodeArray::kNoAgeBytecodeAge));
__ Strb(x10, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kBytecodeAgeOffset));
// Load the initial bytecode offset.
__ Mov(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push bytecode array and Smi tagged bytecode array offset.
__ SmiTag(x0, kInterpreterBytecodeOffsetRegister);
__ Push(kInterpreterBytecodeArrayRegister, x0);
// Allocate the local and temporary register file on the stack.
{
// Load frame size from the BytecodeArray object.
__ Ldr(w11, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ Sub(x10, __ StackPointer(), Operand(x11));
__ CompareRoot(x10, Heap::kRealStackLimitRootIndex);
__ B(hs, &ok);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
// Note: there should always be at least one stack slot for the return
// register in the register file.
Label loop_header;
__ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
__ Lsr(x11, x11, kPointerSizeLog2);
// Round up the number of registers to a multiple of 2, to align the stack
// to 16 bytes.
__ Add(x11, x11, 1);
__ Bic(x11, x11, 1);
__ PushMultipleTimes(x10, x11);
__ Bind(&loop_header);
}
// If the bytecode array has a valid incoming new target or generator object
// register, initialize it with incoming value which was passed in x3.
Label no_incoming_new_target_or_generator_register;
__ Ldrsw(x10,
FieldMemOperand(
kInterpreterBytecodeArrayRegister,
BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
__ Cbz(x10, &no_incoming_new_target_or_generator_register);
__ Str(x3, MemOperand(fp, x10, LSL, kPointerSizeLog2));
__ Bind(&no_incoming_new_target_or_generator_register);
// Load accumulator with undefined.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
// Load the dispatch table into a register and dispatch to the bytecode
// handler at the current bytecode offset.
Label do_dispatch;
__ bind(&do_dispatch);
__ Mov(kInterpreterDispatchTableRegister,
Operand(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
__ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ Mov(x1, Operand(x1, LSL, kPointerSizeLog2));
__ Ldr(ip0, MemOperand(kInterpreterDispatchTableRegister, x1));
__ Call(ip0);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// Any returns to the entry trampoline are either due to the return bytecode
// or the interpreter tail calling a builtin and then a dispatch.
// Get bytecode array and bytecode offset from the stack frame.
__ Ldr(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ Ldr(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Check if we should return.
Label do_return;
__ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ Cmp(x1, Operand(static_cast<int>(interpreter::Bytecode::kReturn)));
__ B(&do_return, eq);
// Advance to the next bytecode and dispatch.
AdvanceBytecodeOffset(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, x1, x2);
__ B(&do_dispatch);
__ bind(&do_return);
// The return value is in x0.
LeaveInterpreterFrame(masm, x2);
__ Ret();
// Load debug copy of the bytecode array if it exists.
// kInterpreterBytecodeArrayRegister is already loaded with
// SharedFunctionInfo::kFunctionDataOffset.
__ Bind(&maybe_load_debug_bytecode_array);
__ Ldrsw(x10, UntagSmiFieldMemOperand(x11, DebugInfo::kFlagsOffset));
__ TestAndBranchIfAllClear(x10, DebugInfo::kHasBreakInfo,
&bytecode_array_loaded);
__ Ldr(kInterpreterBytecodeArrayRegister,
FieldMemOperand(x11, DebugInfo::kDebugBytecodeArrayOffset));
__ B(&bytecode_array_loaded);
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register num_args,
Register first_arg_index,
Register spread_arg_out,
ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
Register last_arg_addr = x10;
Register stack_addr = x11;
Register slots_to_claim = x12;
Register slots_to_copy = x13; // May include receiver, unlike num_args.
DCHECK(!AreAliased(num_args, first_arg_index, last_arg_addr, stack_addr,
slots_to_claim, slots_to_copy));
// spread_arg_out may alias with the first_arg_index input.
DCHECK(!AreAliased(spread_arg_out, last_arg_addr, stack_addr, slots_to_claim,
slots_to_copy));
// Add one slot for the receiver.
__ Add(slots_to_claim, num_args, 1);
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Exclude final spread from slots to claim and the number of arguments.
__ Sub(slots_to_claim, slots_to_claim, 1);
__ Sub(num_args, num_args, 1);
}
// Add a stack check before pushing arguments.
Label stack_overflow, done;
Generate_StackOverflowCheck(masm, slots_to_claim, &stack_overflow);
__ B(&done);
__ Bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable();
__ Bind(&done);
// Round up to an even number of slots and claim them.
__ Add(slots_to_claim, slots_to_claim, 1);
__ Bic(slots_to_claim, slots_to_claim, 1);
__ Claim(slots_to_claim);
{
// Store padding, which may be overwritten.
UseScratchRegisterScope temps(masm);
Register scratch = temps.AcquireX();
__ Sub(scratch, slots_to_claim, 1);
__ Poke(padreg, Operand(scratch, LSL, kPointerSizeLog2));
}
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
// Store "undefined" as the receiver arg if we need to.
Register receiver = x14;
__ LoadRoot(receiver, Heap::kUndefinedValueRootIndex);
__ SlotAddress(stack_addr, num_args);
__ Str(receiver, MemOperand(stack_addr));
__ Mov(slots_to_copy, num_args);
} else {
// If we're not given an explicit receiver to store, we'll need to copy it
// together with the rest of the arguments.
__ Add(slots_to_copy, num_args, 1);
}
__ Sub(last_arg_addr, first_arg_index,
Operand(slots_to_copy, LSL, kPointerSizeLog2));
__ Add(last_arg_addr, last_arg_addr, kPointerSize);
// Load the final spread argument into spread_arg_out, if necessary.
if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Ldr(spread_arg_out, MemOperand(last_arg_addr, -kPointerSize));
}
// Copy the rest of the arguments.
__ SlotAddress(stack_addr, 0);
__ CopyDoubleWords(stack_addr, last_arg_addr, slots_to_copy);
}
// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
MacroAssembler* masm, ConvertReceiverMode receiver_mode,
InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x2 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- x1 : the target to call (can be any Object).
// -----------------------------------
// Push the arguments. num_args may be updated according to mode.
// spread_arg_out will be updated to contain the last spread argument, when
// mode == InterpreterPushArgsMode::kWithFinalSpread.
Register num_args = x0;
Register first_arg_index = x2;
Register spread_arg_out =
(mode == InterpreterPushArgsMode::kWithFinalSpread) ? x2 : no_reg;
Generate_InterpreterPushArgs(masm, num_args, first_arg_index, spread_arg_out,
receiver_mode, mode);
// Call the target.
if (mode == InterpreterPushArgsMode::kJSFunction) {
__ Jump(
masm->isolate()->builtins()->CallFunction(ConvertReceiverMode::kAny),
RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- x0 : argument count (not including receiver)
// -- x3 : new target
// -- x1 : constructor to call
// -- x2 : allocation site feedback if available, undefined otherwise
// -- x4 : address of the first argument
// -----------------------------------
__ AssertUndefinedOrAllocationSite(x2);
// Push the arguments. num_args may be updated according to mode.
// spread_arg_out will be updated to contain the last spread argument, when
// mode == InterpreterPushArgsMode::kWithFinalSpread.
Register num_args = x0;
Register first_arg_index = x4;
Register spread_arg_out =
(mode == InterpreterPushArgsMode::kWithFinalSpread) ? x2 : no_reg;
Generate_InterpreterPushArgs(masm, num_args, first_arg_index, spread_arg_out,
ConvertReceiverMode::kNullOrUndefined, mode);
if (mode == InterpreterPushArgsMode::kJSFunction) {
__ AssertFunction(x1);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ Ldr(x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(x4, FieldMemOperand(x4, SharedFunctionInfo::kConstructStubOffset));
__ Add(x4, x4, Code::kHeaderSize - kHeapObjectTag);
__ Br(x4);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Call the constructor with x0, x1, and x3 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
// Call the constructor with x0, x1, and x3 unmodified.
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Smi* interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
__ LoadObject(x1, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline));
__ Add(lr, x1, Operand(interpreter_entry_return_pc_offset->value() +
Code::kHeaderSize - kHeapObjectTag));
// Initialize the dispatch table register.
__ Mov(kInterpreterDispatchTableRegister,
Operand(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Get the bytecode array pointer from the frame.
__ Ldr(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ AssertNotSmi(
kInterpreterBytecodeArrayRegister,
AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, x1, x1,
BYTECODE_ARRAY_TYPE);
__ Assert(
eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ Ldr(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Dispatch to the target bytecode.
__ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ Mov(x1, Operand(x1, LSL, kPointerSizeLog2));
__ Ldr(ip0, MemOperand(kInterpreterDispatchTableRegister, x1));
__ Jump(ip0);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Get bytecode array and bytecode offset from the stack frame.
__ ldr(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ ldr(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Load the current bytecode.
__ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
// Advance to the next bytecode.
AdvanceBytecodeOffset(masm, kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, x1, x2);
// Convert new bytecode offset to a Smi and save in the stackframe.
__ SmiTag(x2, kInterpreterBytecodeOffsetRegister);
__ Str(x2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_CheckOptimizationMarker(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argument count (preserved for callee)
// -- x3 : new target (preserved for callee)
// -- x1 : target function (preserved for callee)
// -----------------------------------
Register closure = x1;
// Get the feedback vector.
Register feedback_vector = x2;
__ Ldr(feedback_vector,
FieldMemOperand(closure, JSFunction::kFeedbackVectorOffset));
__ Ldr(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
// The feedback vector must be defined.
if (FLAG_debug_code) {
__ CompareRoot(feedback_vector, Heap::kUndefinedValueRootIndex);
__ Assert(ne, AbortReason::kExpectedFeedbackVector);
}
// Is there an optimization marker or optimized code in the feedback vector?
MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, x7, x4, x5);
// Otherwise, tail call the SFI code.
GenerateTailCallToSharedCode(masm);
}
void Builtins::Generate_CompileLazyDeoptimizedCode(MacroAssembler* masm) {
// Set the code slot inside the JSFunction to the trampoline to the
// interpreter entry.
__ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(x2, FieldMemOperand(x2, SharedFunctionInfo::kCodeOffset));
__ Str(x2, FieldMemOperand(x1, JSFunction::kCodeOffset));
__ RecordWriteField(x1, JSFunction::kCodeOffset, x2, x5, kLRHasNotBeenSaved,
kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
// Jump to compile lazy.
Generate_CompileLazy(masm);
}
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argument count (preserved for callee)
// -- x3 : new target (preserved for callee)
// -- x1 : target function (preserved for callee)
// -----------------------------------
// First lookup code, maybe we don't need to compile!
Label gotta_call_runtime;
Register closure = x1;
Register feedback_vector = x2;
// Do we have a valid feedback vector?
__ Ldr(feedback_vector,
FieldMemOperand(closure, JSFunction::kFeedbackVectorOffset));
__ Ldr(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
__ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex,
&gotta_call_runtime);
// Is there an optimization marker or optimized code in the feedback vector?
MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, x7, x4, x5);
// We found no optimized code.
Register entry = x7;
__ Ldr(entry,
FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
// If SFI points to anything other than CompileLazy, install that.
__ Ldr(entry, FieldMemOperand(entry, SharedFunctionInfo::kCodeOffset));
__ Move(x5, masm->CodeObject());
__ Cmp(entry, x5);
__ B(eq, &gotta_call_runtime);
// Install the SFI's code entry.
__ Str(entry, FieldMemOperand(closure, JSFunction::kCodeOffset));
__ Mov(x10, entry); // Write barrier clobbers x10 below.
__ RecordWriteField(closure, JSFunction::kCodeOffset, x10, x5,
kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ Add(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(entry);
__ Bind(&gotta_call_runtime);
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
}
// Lazy deserialization design doc: http://goo.gl/dxkYDZ.
void Builtins::Generate_DeserializeLazy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argument count (preserved for callee)
// -- x3 : new target (preserved for callee)
// -- x1 : target function (preserved for callee)
// -----------------------------------
Label deserialize_in_runtime;
Register target = x1; // Must be preserved
Register scratch0 = x2;
Register scratch1 = x4;
CHECK(!scratch0.is(x0) && !scratch0.is(x3) && !scratch0.is(x1));
CHECK(!scratch1.is(x0) && !scratch1.is(x3) && !scratch1.is(x1));
CHECK(!scratch0.is(scratch1));
// Load the builtin id for lazy deserialization from SharedFunctionInfo.
__ AssertFunction(target);
__ Ldr(scratch0,
FieldMemOperand(target, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(scratch1,
FieldMemOperand(scratch0, SharedFunctionInfo::kFunctionDataOffset));
__ AssertSmi(scratch1);
// The builtin may already have been deserialized. If that is the case, it is
// stored in the builtins table, and we can copy to correct code object to
// both the shared function info and function without calling into runtime.
//
// Otherwise, we need to call into runtime to deserialize.
{
// Load the code object at builtins_table[builtin_id] into scratch1.
__ SmiUntag(scratch1);
__ Mov(scratch0, ExternalReference::builtins_address(masm->isolate()));
__ Ldr(scratch1, MemOperand(scratch0, scratch1, LSL, kPointerSizeLog2));
// Check if the loaded code object has already been deserialized. This is
// the case iff it does not equal DeserializeLazy.
__ Move(scratch0, masm->CodeObject());
__ Cmp(scratch1, scratch0);
__ B(eq, &deserialize_in_runtime);
}
{
// If we've reached this spot, the target builtin has been deserialized and
// we simply need to copy it over. First to the shared function info.
Register target_builtin = scratch1;
Register shared = scratch0;
__ Ldr(shared,
FieldMemOperand(target, JSFunction::kSharedFunctionInfoOffset));
CHECK(!x5.is(target) && !x5.is(scratch0) && !x5.is(scratch1));
CHECK(!x9.is(target) && !x9.is(scratch0) && !x9.is(scratch1));
__ Str(target_builtin,
FieldMemOperand(shared, SharedFunctionInfo::kCodeOffset));
__ Mov(x9, target_builtin); // Write barrier clobbers x9 below.
__ RecordWriteField(shared, SharedFunctionInfo::kCodeOffset, x9, x5,
kLRHasNotBeenSaved, kDontSaveFPRegs,
OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
// And second to the target function.
__ Str(target_builtin, FieldMemOperand(target, JSFunction::kCodeOffset));
__ Mov(x9, target_builtin); // Write barrier clobbers x9 below.
__ RecordWriteField(target, JSFunction::kCodeOffset, x9, x5,
kLRHasNotBeenSaved, kDontSaveFPRegs,
OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
// All copying is done. Jump to the deserialized code object.
__ Add(target_builtin, target_builtin,
Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(target_builtin);
}
__ bind(&deserialize_in_runtime);
GenerateTailCallToReturnedCode(masm, Runtime::kDeserializeLazy);
}
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argument count (preserved for callee)
// -- x1 : new target (preserved for callee)
// -- x3 : target function (preserved for callee)
// -----------------------------------
Register argc = x0;
Register new_target = x1;
Register target = x3;
Label failed;
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push argument count, a copy of the target function and the new target,
// together with some padding to maintain 16-byte alignment.
__ SmiTag(argc);
__ Push(argc, new_target, target, padreg);
// Push another copy of new target as a parameter to the runtime call and
// copy the rest of the arguments from caller (stdlib, foreign, heap).
Label args_done;
Register undef = x10;
Register scratch1 = x12;
Register scratch2 = x13;
Register scratch3 = x14;
__ LoadRoot(undef, Heap::kUndefinedValueRootIndex);
Label at_least_one_arg;
Label three_args;
DCHECK_NULL(Smi::kZero);
__ Cbnz(argc, &at_least_one_arg);
// No arguments.
__ Push(new_target, undef, undef, undef);
__ B(&args_done);
__ Bind(&at_least_one_arg);
// Load two arguments, though we may only use one (for the one arg case).
__ Ldp(scratch2, scratch1,
MemOperand(fp, StandardFrameConstants::kCallerSPOffset));
// Set flags for determining the value of smi-tagged argc.
// lt => 1, eq => 2, gt => 3.
__ Cmp(argc, Smi::FromInt(2));
__ B(gt, &three_args);
// One or two arguments.
// If there is one argument (flags are lt), scratch2 contains that argument,
// and scratch1 must be undefined.
__ CmovX(scratch1, scratch2, lt);
__ CmovX(scratch2, undef, lt);
__ Push(new_target, scratch1, scratch2, undef);
__ B(&args_done);
// Three arguments.
__ Bind(&three_args);
__ Ldr(scratch3, MemOperand(fp, StandardFrameConstants::kCallerSPOffset +
2 * kPointerSize));
__ Push(new_target, scratch3, scratch1, scratch2);
__ Bind(&args_done);
// Call runtime, on success unwind frame, and parent frame.
__ CallRuntime(Runtime::kInstantiateAsmJs, 4);
// A smi 0 is returned on failure, an object on success.
__ JumpIfSmi(x0, &failed);
// Peek the argument count from the stack, untagging at the same time.
__ Ldr(w4, UntagSmiMemOperand(__ StackPointer(), 3 * kPointerSize));
__ Drop(4);
scope.GenerateLeaveFrame();
// Drop arguments and receiver.
__ DropArguments(x4, TurboAssembler::kCountExcludesReceiver);
__ Ret();
__ Bind(&failed);
// Restore target function and new target.
__ Pop(padreg, target, new_target, argc);
__ SmiUntag(argc);
}
// On failure, tail call back to regular js by re-calling the function
// which has be reset to the compile lazy builtin.
__ Ldr(x4, FieldMemOperand(new_target, JSFunction::kCodeOffset));
__ Add(x4, x4, Code::kHeaderSize - kHeapObjectTag);
__ Jump(x4);
}
namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
bool java_script_builtin,
bool with_result) {
const RegisterConfiguration* config(RegisterConfiguration::Default());
int allocatable_register_count = config->num_allocatable_general_registers();
int frame_size = BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp +
(allocatable_register_count +
BuiltinContinuationFrameConstants::PaddingSlotCount(
allocatable_register_count)) *
kPointerSize;
// Set up frame pointer.
__ Add(fp, __ StackPointer(), frame_size);
if (with_result) {
// Overwrite the hole inserted by the deoptimizer with the return value from
// the LAZY deopt point.
__ Str(x0,
MemOperand(fp, BuiltinContinuationFrameConstants::kCallerSPOffset));
}
// Restore registers in pairs.
int offset = -BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp -
allocatable_register_count * kPointerSize;
for (int i = allocatable_register_count - 1; i > 0; i -= 2) {
int code1 = config->GetAllocatableGeneralCode(i);
int code2 = config->GetAllocatableGeneralCode(i - 1);
Register reg1 = Register::from_code(code1);
Register reg2 = Register::from_code(code2);
__ Ldp(reg1, reg2, MemOperand(fp, offset));
offset += 2 * kPointerSize;
}
// Restore first register separately, if number of registers is odd.
if (allocatable_register_count % 2 != 0) {
int code = config->GetAllocatableGeneralCode(0);
__ Ldr(Register::from_code(code), MemOperand(fp, offset));
}
if (java_script_builtin) __ SmiUntag(kJavaScriptCallArgCountRegister);
// Load builtin object.
UseScratchRegisterScope temps(masm);
Register builtin = temps.AcquireX();
__ Ldr(builtin,
MemOperand(fp, BuiltinContinuationFrameConstants::kBuiltinOffset));
// Restore fp, lr.
__ Mov(__ StackPointer(), fp);
__ Pop(fp, lr);
// Call builtin.
__ Add(builtin, builtin, Code::kHeaderSize - kHeapObjectTag);
__ Br(builtin);
}
} // namespace
void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, false);
}
void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, false, true);
}
void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, false);
}
void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
MacroAssembler* masm) {
Generate_ContinueToBuiltinHelper(masm, true, true);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kNotifyDeoptimized);
}
// Pop TOS register and padding.
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), x0.code());
__ Pop(x0, padreg);
__ Ret();
}
static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
bool has_handler_frame) {
// Lookup the function in the JavaScript frame.
if (has_handler_frame) {
__ Ldr(x0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ldr(x0, MemOperand(x0, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ Ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ PushArgument(x0);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
// If the code object is null, just return to the caller.
Label skip;
__ CompareAndBranch(x0, Smi::kZero, ne, &skip);
__ Ret();
__ Bind(&skip);
// Drop any potential handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
if (has_handler_frame) {
__ LeaveFrame(StackFrame::STUB);
}
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ Ldr(x1, MemOperand(x0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ Ldrsw(w1, UntagSmiFieldMemOperand(
x1, FixedArray::OffsetOfElementAt(
DeoptimizationData::kOsrPcOffsetIndex)));
// Compute the target address = code_obj + header_size + osr_offset
// <entry_addr> = <code_obj> + #header_size + <osr_offset>
__ Add(x0, x0, x1);
__ Add(lr, x0, Code::kHeaderSize - kHeapObjectTag);
// And "return" to the OSR entry point of the function.
__ Ret();
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, false);
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, true);
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argc
// -- sp[0] : argArray (if argc == 2)
// -- sp[8] : thisArg (if argc >= 1)
// -- sp[16] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_FunctionPrototypeApply");
Register argc = x0;
Register arg_array = x2;
Register receiver = x1;
Register this_arg = x0;
Register undefined_value = x3;
Register null_value = x4;
__ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex);
__ LoadRoot(null_value, Heap::kNullValueRootIndex);
// 1. Load receiver into x1, argArray into x2 (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
Register saved_argc = x10;
Register scratch = x11;
// Push two undefined values on the stack, to put it in a consistent state
// so that we can always read three arguments from it.
__ Push(undefined_value, undefined_value);
// The state of the stack (with arrows pointing to the slots we will read)
// is as follows:
//
// argc = 0 argc = 1 argc = 2
// -> sp[16]: receiver -> sp[24]: receiver -> sp[32]: receiver
// -> sp[8]: undefined -> sp[16]: this_arg -> sp[24]: this_arg
// -> sp[0]: undefined -> sp[8]: undefined -> sp[16]: arg_array
// sp[0]: undefined sp[8]: undefined
// sp[0]: undefined
//
// There are now always three arguments to read, in the slots starting from
// slot argc.
__ SlotAddress(scratch, argc);
__ Mov(saved_argc, argc);
__ Ldp(arg_array, this_arg, MemOperand(scratch)); // Overwrites argc.
__ Ldr(receiver, MemOperand(scratch, 2 * kPointerSize));
__ Drop(2); // Drop the undefined values we pushed above.
__ DropArguments(saved_argc, TurboAssembler::kCountExcludesReceiver);
__ PushArgument(this_arg);
}
// ----------- S t a t e -------------
// -- x2 : argArray
// -- x1 : receiver
// -- sp[0] : thisArg
// -----------------------------------
// 2. We don't need to check explicitly for callable receiver here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ Cmp(arg_array, null_value);
__ Ccmp(arg_array, undefined_value, ZFlag, ne);
__ B(eq, &no_arguments);
// 4a. Apply the receiver to the given argArray.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ Bind(&no_arguments);
{
__ Mov(x0, 0);
DCHECK(receiver.Is(x1));
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
Register argc = x0;
Register function = x1;
ASM_LOCATION("Builtins::Generate_FunctionPrototypeCall");
// 1. Get the callable to call (passed as receiver) from the stack.
__ Peek(function, Operand(argc, LSL, kXRegSizeLog2));
// 2. Handle case with no arguments.
{
Label non_zero;
Register scratch = x10;
__ Cbnz(argc, &non_zero);
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
// Overwrite receiver with undefined, which will be the new receiver.
// We do not need to overwrite the padding slot above it with anything.
__ Poke(scratch, 0);
// Call function. The argument count is already zero.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
__ Bind(&non_zero);
}
// 3. Overwrite the receiver with padding. If argc is odd, this is all we
// need to do.
Label arguments_ready;
__ Poke(padreg, Operand(argc, LSL, kXRegSizeLog2));
__ Tbnz(argc, 0, &arguments_ready);
// 4. If argc is even:
// Copy arguments two slots higher in memory, overwriting the original
// receiver and padding.
{
Label loop;
Register copy_from = x10;
Register copy_to = x11;
Register count = x12;
Register last_arg_slot = x13;
__ Mov(count, argc);
__ Sub(last_arg_slot, argc, 1);
__ SlotAddress(copy_from, last_arg_slot);
__ Add(copy_to, copy_from, 2 * kPointerSize);
__ CopyDoubleWords(copy_to, copy_from, count,
TurboAssembler::kSrcLessThanDst);
// Drop two slots. These are copies of the last two arguments.
__ Drop(2);
}
// 5. Adjust argument count to make the original first argument the new
// receiver and call the callable.
__ Bind(&arguments_ready);
__ Sub(argc, argc, 1);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argc
// -- sp[0] : argumentsList (if argc == 3)
// -- sp[8] : thisArgument (if argc >= 2)
// -- sp[16] : target (if argc >= 1)
// -- sp[24] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_ReflectApply");
Register argc = x0;
Register arguments_list = x2;
Register target = x1;
Register this_argument = x4;
Register undefined_value = x3;
__ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex);
// 1. Load target into x1 (if present), argumentsList into x2 (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
// Push four undefined values on the stack, to put it in a consistent state
// so that we can always read the three arguments we need from it. The
// fourth value is used for stack alignment.
__ Push(undefined_value, undefined_value, undefined_value, undefined_value);
// The state of the stack (with arrows pointing to the slots we will read)
// is as follows:
//
// argc = 0 argc = 1 argc = 2
// sp[32]: receiver sp[40]: receiver sp[48]: receiver
// -> sp[24]: undefined -> sp[32]: target -> sp[40]: target
// -> sp[16]: undefined -> sp[24]: undefined -> sp[32]: this_argument
// -> sp[8]: undefined -> sp[16]: undefined -> sp[24]: undefined
// sp[0]: undefined sp[8]: undefined sp[16]: undefined
// sp[0]: undefined sp[8]: undefined
// sp[0]: undefined
// argc = 3
// sp[56]: receiver
// -> sp[48]: target
// -> sp[40]: this_argument
// -> sp[32]: arguments_list
// sp[24]: undefined
// sp[16]: undefined
// sp[8]: undefined
// sp[0]: undefined
//
// There are now always three arguments to read, in the slots starting from
// slot (argc + 1).
Register scratch = x10;
__ SlotAddress(scratch, argc);
__ Ldp(arguments_list, this_argument,
MemOperand(scratch, 1 * kPointerSize));
__ Ldr(target, MemOperand(scratch, 3 * kPointerSize));
__ Drop(4); // Drop the undefined values we pushed above.
__ DropArguments(argc, TurboAssembler::kCountExcludesReceiver);
__ PushArgument(this_argument);
}
// ----------- S t a t e -------------
// -- x2 : argumentsList
// -- x1 : target
// -- sp[0] : thisArgument
// -----------------------------------
// 2. We don't need to check explicitly for callable target here,
// since that's the first thing the Call/CallWithArrayLike builtins
// will do.
// 3. Apply the target to the given argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argc
// -- sp[0] : new.target (optional)
// -- sp[8] : argumentsList
// -- sp[16] : target
// -- sp[24] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_ReflectConstruct");
Register argc = x0;
Register arguments_list = x2;
Register target = x1;
Register new_target = x3;
Register undefined_value = x4;
__ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex);
// 1. Load target into x1 (if present), argumentsList into x2 (if present),
// new.target into x3 (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
// Push four undefined values on the stack, to put it in a consistent state
// so that we can always read the three arguments we need from it. The
// fourth value is used for stack alignment.
__ Push(undefined_value, undefined_value, undefined_value, undefined_value);
// The state of the stack (with arrows pointing to the slots we will read)
// is as follows:
//
// argc = 0 argc = 1 argc = 2
// sp[32]: receiver sp[40]: receiver sp[48]: receiver
// -> sp[24]: undefined -> sp[32]: target -> sp[40]: target
// -> sp[16]: undefined -> sp[24]: undefined -> sp[32]: arguments_list
// -> sp[8]: undefined -> sp[16]: undefined -> sp[24]: undefined
// sp[0]: undefined sp[8]: undefined sp[16]: undefined
// sp[0]: undefined sp[8]: undefined
// sp[0]: undefined
// argc = 3
// sp[56]: receiver
// -> sp[48]: target
// -> sp[40]: arguments_list
// -> sp[32]: new_target
// sp[24]: undefined
// sp[16]: undefined
// sp[8]: undefined
// sp[0]: undefined
//
// There are now always three arguments to read, in the slots starting from
// slot (argc + 1).
Register scratch = x10;
__ SlotAddress(scratch, argc);
__ Ldp(new_target, arguments_list, MemOperand(scratch, 1 * kPointerSize));
__ Ldr(target, MemOperand(scratch, 3 * kPointerSize));
__ Cmp(argc, 2);
__ CmovX(new_target, target, ls); // target if argc <= 2.
__ Drop(4); // Drop the undefined values we pushed above.
__ DropArguments(argc, TurboAssembler::kCountExcludesReceiver);
// Push receiver (undefined).
__ PushArgument(undefined_value);
}
// ----------- S t a t e -------------
// -- x2 : argumentsList
// -- x1 : target
// -- x3 : new.target
// -- sp[0] : receiver (undefined)
// -----------------------------------
// 2. We don't need to check explicitly for constructor target here,
// since that's the first thing the Construct/ConstructWithArrayLike
// builtins will do.
// 3. We don't need to check explicitly for constructor new.target here,
// since that's the second thing the Construct/ConstructWithArrayLike
// builtins will do.
// 4. Construct the target with the given new.target and argumentsList.
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
RelocInfo::CODE_TARGET);
}
namespace {
void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ Push(lr, fp);
__ Mov(x11, StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR));
__ Push(x11, x1); // x1: function
__ SmiTag(x11, x0); // x0: number of arguments.
__ Push(x11, padreg);
__ Add(fp, __ StackPointer(),
ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp);
}
void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then drop the parameters and the receiver.
__ Ldr(x10, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ Mov(__ StackPointer(), fp);
__ Pop(fp, lr);
// Drop actual parameters and receiver.
__ SmiUntag(x10);
__ DropArguments(x10, TurboAssembler::kCountExcludesReceiver);
}
// Prepares the stack for copying the varargs. First we claim the necessary
// slots, taking care of potential padding. Then we copy the existing arguments
// one slot up or one slot down, as needed.
void Generate_PrepareForCopyingVarargs(MacroAssembler* masm, Register argc,
Register len) {
Label len_odd, exit;
Register slots_to_copy = x10; // If needed.
__ Add(slots_to_copy, argc, 1);
__ Add(argc, argc, len);
__ Tbnz(len, 0, &len_odd);
__ Claim(len);
__ B(&exit);
__ Bind(&len_odd);
// Claim space we need. If argc is even, slots_to_claim = len + 1, as we need
// one extra padding slot. If argc is odd, we know that the original arguments
// will have a padding slot we can reuse (since len is odd), so
// slots_to_claim = len - 1.
{
Register scratch = x11;
Register slots_to_claim = x12;
__ Add(slots_to_claim, len, 1);
__ And(scratch, argc, 1);
__ Sub(slots_to_claim, slots_to_claim, Operand(scratch, LSL, 1));
__ Claim(slots_to_claim);
}
Label copy_down;
__ Tbz(slots_to_copy, 0, &copy_down);
// Copy existing arguments one slot up.
{
Register src = x11;
Register dst = x12;
Register scratch = x13;
__ Sub(scratch, argc, 1);
__ SlotAddress(src, scratch);
__ SlotAddress(dst, argc);
__ CopyDoubleWords(dst, src, slots_to_copy,
TurboAssembler::kSrcLessThanDst);
}
__ B(&exit);
// Copy existing arguments one slot down and add padding.
__ Bind(&copy_down);
{
Register src = x11;
Register dst = x12;
Register scratch = x13;
__ Add(src, len, 1);
__ Mov(dst, len); // CopySlots will corrupt dst.
__ CopySlots(dst, src, slots_to_copy);
__ Add(scratch, argc, 1);
__ Poke(padreg, Operand(scratch, LSL, kPointerSizeLog2)); // Store padding.
}
__ Bind(&exit);
}
} // namespace
// static
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- x1 : target
// -- x0 : number of parameters on the stack (not including the receiver)
// -- x2 : arguments list (a FixedArray)
// -- x4 : len (number of elements to push from args)
// -- x3 : new.target (for [[Construct]])
// -----------------------------------
__ AssertFixedArray(x2);
Register arguments_list = x2;
Register argc = x0;
Register len = x4;
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
__ LoadRoot(x10, Heap::kRealStackLimitRootIndex);
// Make x10 the space we have left. The stack might already be overflowed
// here which will cause x10 to become negative.
__ Sub(x10, masm->StackPointer(), x10);
// Check if the arguments will overflow the stack.
__ Cmp(x10, Operand(len, LSL, kPointerSizeLog2));
__ B(gt, &done); // Signed comparison.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ Bind(&done);
}
// Skip argument setup if we don't need to push any varargs.
Label done;
__ Cbz(len, &done);
Generate_PrepareForCopyingVarargs(masm, argc, len);
// Push varargs.
{
Label loop;
Register src = x10;
Register the_hole_value = x11;
Register undefined_value = x12;
Register scratch = x13;
__ Add(src, arguments_list, FixedArray::kHeaderSize - kHeapObjectTag);
__ LoadRoot(the_hole_value, Heap::kTheHoleValueRootIndex);
__ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex);
// We do not use the CompareRoot macro as it would do a LoadRoot behind the
// scenes and we want to avoid that in a loop.
// TODO(all): Consider using Ldp and Stp.
__ Bind(&loop);
__ Sub(len, len, 1);
__ Ldr(scratch, MemOperand(src, kPointerSize, PostIndex));
__ Cmp(scratch, the_hole_value);
__ Csel(scratch, scratch, undefined_value, ne);
__ Poke(scratch, Operand(len, LSL, kPointerSizeLog2));
__ Cbnz(len, &loop);
}
__ Bind(&done);
// Tail-call to the actual Call or Construct builtin.
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
CallOrConstructMode mode,
Handle<Code> code) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x3 : the new.target (for [[Construct]] calls)
// -- x1 : the target to call (can be any Object)
// -- x2 : start index (to support rest parameters)
// -----------------------------------
Register argc = x0;
Register start_index = x2;
// Check if new.target has a [[Construct]] internal method.
if (mode == CallOrConstructMode::kConstruct) {
Label new_target_constructor, new_target_not_constructor;
__ JumpIfSmi(x3, &new_target_not_constructor);
__ Ldr(x5, FieldMemOperand(x3, HeapObject::kMapOffset));
__ Ldrb(x5, FieldMemOperand(x5, Map::kBitFieldOffset));
__ TestAndBranchIfAnySet(x5, Map::IsConstructorBit::kMask,
&new_target_constructor);
__ Bind(&new_target_not_constructor);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ PushArgument(x3);
__ CallRuntime(Runtime::kThrowNotConstructor);
}
__ Bind(&new_target_constructor);
}
// Check if we have an arguments adaptor frame below the function frame.
// args_fp will point to the frame that contains the actual arguments, which
// will be the current frame unless we have an arguments adaptor frame, in
// which case args_fp points to the arguments adaptor frame.
Register args_fp = x5;
Register len = x6;
{
Label arguments_adaptor, arguments_done;
Register scratch = x10;
__ Ldr(args_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ldr(x4, MemOperand(args_fp,
CommonFrameConstants::kContextOrFrameTypeOffset));
__ Cmp(x4, StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR));
__ B(eq, &arguments_adaptor);
{
__ Ldr(scratch,
MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ Ldr(scratch,
FieldMemOperand(scratch, JSFunction::kSharedFunctionInfoOffset));
__ Ldrsw(len,
FieldMemOperand(
scratch, SharedFunctionInfo::kFormalParameterCountOffset));
__ Mov(args_fp, fp);
}
__ B(&arguments_done);
__ Bind(&arguments_adaptor);
{
// Just load the length from ArgumentsAdaptorFrame.
__ Ldrsw(len,
UntagSmiMemOperand(
args_fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
}
__ Bind(&arguments_done);
}
Label stack_done, stack_overflow;
__ Subs(len, len, start_index);
__ B(le, &stack_done);
// Check for stack overflow.
Generate_StackOverflowCheck(masm, x6, &stack_overflow);
Generate_PrepareForCopyingVarargs(masm, argc, len);
// Push varargs.
{
Register dst = x13;
__ Add(args_fp, args_fp, 2 * kPointerSize);
__ SlotAddress(dst, 0);
__ CopyDoubleWords(dst, args_fp, len);
}
__ B(&stack_done);
__ Bind(&stack_overflow);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ Bind(&stack_done);
__ Jump(code, RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode) {
ASM_LOCATION("Builtins::Generate_CallFunction");
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(x1);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that function is not a "classConstructor".
Label class_constructor;
__ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w3, FieldMemOperand(x2, SharedFunctionInfo::kCompilerHintsOffset));
__ TestAndBranchIfAnySet(w3, SharedFunctionInfo::kClassConstructorMask,
&class_constructor);
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ TestAndBranchIfAnySet(w3,
SharedFunctionInfo::IsNativeBit::kMask |
SharedFunctionInfo::IsStrictBit::kMask,
&done_convert);
{
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSFunction)
// -- x2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(x3);
} else {
Label convert_to_object, convert_receiver;
__ Peek(x3, Operand(x0, LSL, kXRegSizeLog2));
__ JumpIfSmi(x3, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CompareObjectType(x3, x4, x4, FIRST_JS_RECEIVER_TYPE);
__ B(hs, &done_convert);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(x3, Heap::kUndefinedValueRootIndex,
&convert_global_proxy);
__ JumpIfNotRoot(x3, Heap::kNullValueRootIndex, &convert_to_object);
__ Bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(x3);
}
__ B(&convert_receiver);
}
__ Bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(x0);
__ Push(padreg, x0, x1, cp);
__ Mov(x0, x3);
__ Call(BUILTIN_CODE(masm->isolate(), ToObject),
RelocInfo::CODE_TARGET);
__ Mov(x3, x0);
__ Pop(cp, x1, x0, padreg);
__ SmiUntag(x0);
}
__ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Bind(&convert_receiver);
}
__ Poke(x3, Operand(x0, LSL, kXRegSizeLog2));
}
__ Bind(&done_convert);
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSFunction)
// -- x2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
__ Ldrsw(
x2, FieldMemOperand(x2, SharedFunctionInfo::kFormalParameterCountOffset));
ParameterCount actual(x0);
ParameterCount expected(x2);
__ InvokeFunctionCode(x1, no_reg, expected, actual, JUMP_FUNCTION);
// The function is a "classConstructor", need to raise an exception.
__ Bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ PushArgument(x1);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : target (checked to be a JSBoundFunction)
// -- x3 : new.target (only in case of [[Construct]])
// -----------------------------------
Register bound_argc = x4;
Register bound_argv = x2;
// Load [[BoundArguments]] into x2 and length of that into x4.
Label no_bound_arguments;
__ Ldr(bound_argv,
FieldMemOperand(x1, JSBoundFunction::kBoundArgumentsOffset));
__ Ldrsw(bound_argc,
UntagSmiFieldMemOperand(bound_argv, FixedArray::kLengthOffset));
__ Cbz(bound_argc, &no_bound_arguments);
{
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : target (checked to be a JSBoundFunction)
// -- x2 : the [[BoundArguments]] (implemented as FixedArray)
// -- x3 : new.target (only in case of [[Construct]])
// -- x4 : the number of [[BoundArguments]]
// -----------------------------------
Register argc = x0;
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack
// limit".
Label done;
__ LoadRoot(x10, Heap::kRealStackLimitRootIndex);
// Make x10 the space we have left. The stack might already be overflowed
// here which will cause x10 to become negative.
__ Sub(x10, masm->StackPointer(), x10);
// Check if the arguments will overflow the stack.
__ Cmp(x10, Operand(bound_argc, LSL, kPointerSizeLog2));
__ B(gt, &done); // Signed comparison.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ Bind(&done);
}
// Check if we need padding.
Label copy_args, copy_bound_args;
Register total_argc = x15;
Register slots_to_claim = x12;
__ Add(total_argc, argc, bound_argc);
__ Mov(slots_to_claim, bound_argc);
__ Tbz(bound_argc, 0, &copy_args);
// Load receiver before we start moving the arguments. We will only
// need this in this path because the bound arguments are odd.
Register receiver = x14;
__ Peek(receiver, Operand(argc, LSL, kPointerSizeLog2));
// Claim space we need. If argc is even, slots_to_claim = bound_argc + 1,
// as we need one extra padding slot. If argc is odd, we know that the
// original arguments will have a padding slot we can reuse (since
// bound_argc is odd), so slots_to_claim = bound_argc - 1.
{
Register scratch = x11;
__ Add(slots_to_claim, bound_argc, 1);
__ And(scratch, total_argc, 1);
__ Sub(slots_to_claim, slots_to_claim, Operand(scratch, LSL, 1));
}
// Copy bound arguments.
__ Bind(&copy_args);
// Skip claim and copy of existing arguments in the special case where we
// do not need to claim any slots (this will be the case when
// bound_argc == 1 and the existing arguments have padding we can reuse).
__ Cbz(slots_to_claim, &copy_bound_args);
__ Claim(slots_to_claim);
{
Register count = x10;
// Relocate arguments to a lower address.
__ Mov(count, argc);
__ CopySlots(0, slots_to_claim, count);
__ Bind(&copy_bound_args);
// Copy [[BoundArguments]] to the stack (below the arguments). The first
// element of the array is copied to the highest address.
{
Label loop;
Register counter = x10;
Register scratch = x11;
Register copy_to = x12;
__ Add(bound_argv, bound_argv,
FixedArray::kHeaderSize - kHeapObjectTag);
__ SlotAddress(copy_to, argc);
__ Add(argc, argc,
bound_argc); // Update argc to include bound arguments.
__ Lsl(counter, bound_argc, kPointerSizeLog2);
__ Bind(&loop);
__ Sub(counter, counter, kPointerSize);
__ Ldr(scratch, MemOperand(bound_argv, counter));
// Poke into claimed area of stack.
__ Str(scratch, MemOperand(copy_to, kPointerSize, PostIndex));
__ Cbnz(counter, &loop);
}
{
Label done;
Register scratch = x10;
__ Tbz(bound_argc, 0, &done);
// Store receiver.
__ Add(scratch, __ StackPointer(),
Operand(total_argc, LSL, kPointerSizeLog2));
__ Str(receiver, MemOperand(scratch, kPointerSize, PostIndex));
__ Tbnz(total_argc, 0, &done);
// Store padding.
__ Str(padreg, MemOperand(scratch));
__ Bind(&done);
}
}
}
__ Bind(&no_bound_arguments);
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(x1);
// Patch the receiver to [[BoundThis]].
__ Ldr(x10, FieldMemOperand(x1, JSBoundFunction::kBoundThisOffset));
__ Poke(x10, Operand(x0, LSL, kPointerSizeLog2));
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ Ldr(x1, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_function, non_smi;
__ JumpIfSmi(x1, &non_callable);
__ Bind(&non_smi);
__ CompareObjectType(x1, x4, x5, JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->CallFunction(mode),
RelocInfo::CODE_TARGET, eq);
__ Cmp(x5, JS_BOUND_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
RelocInfo::CODE_TARGET, eq);
// Check if target has a [[Call]] internal method.
__ Ldrb(x4, FieldMemOperand(x4, Map::kBitFieldOffset));
__ TestAndBranchIfAllClear(x4, Map::IsCallableBit::kMask, &non_callable);
// Check if target is a proxy and call CallProxy external builtin
__ Cmp(x5, JS_PROXY_TYPE);
__ B(ne, &non_function);
__ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET);
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ Bind(&non_function);
// Overwrite the original receiver with the (original) target.
__ Poke(x1, Operand(x0, LSL, kXRegSizeLog2));
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, x1);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ PushArgument(x1);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the constructor to call (checked to be a JSFunction)
// -- x3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertFunction(x1);
// Calling convention for function specific ConstructStubs require
// x2 to contain either an AllocationSite or undefined.
__ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ Ldr(x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(x4, FieldMemOperand(x4, SharedFunctionInfo::kConstructStubOffset));
__ Add(x4, x4, Code::kHeaderSize - kHeapObjectTag);
__ Br(x4);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSBoundFunction)
// -- x3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertBoundFunction(x1);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
{
Label done;
__ Cmp(x1, x3);
__ B(ne, &done);
__ Ldr(x3,
FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Bind(&done);
}
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ Ldr(x1, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the constructor to call (can be any Object)
// -- x3 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Check if target is a Smi.
Label non_constructor, non_proxy;
__ JumpIfSmi(x1, &non_constructor);
// Dispatch based on instance type.
__ CompareObjectType(x1, x4, x5, JS_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
RelocInfo::CODE_TARGET, eq);
// Check if target has a [[Construct]] internal method.
__ Ldrb(x2, FieldMemOperand(x4, Map::kBitFieldOffset));
__ TestAndBranchIfAllClear(x2, Map::IsConstructorBit::kMask,
&non_constructor);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ Cmp(x5, JS_BOUND_FUNCTION_TYPE);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
RelocInfo::CODE_TARGET, eq);
// Only dispatch to proxies after checking whether they are constructors.
__ Cmp(x5, JS_PROXY_TYPE);
__ B(ne, &non_proxy);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
RelocInfo::CODE_TARGET);
// Called Construct on an exotic Object with a [[Construct]] internal method.
__ bind(&non_proxy);
{
// Overwrite the original receiver with the (original) target.
__ Poke(x1, Operand(x0, LSL, kXRegSizeLog2));
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, x1);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) {
ASM_LOCATION("Builtins::Generate_AllocateInNewSpace");
// ----------- S t a t e -------------
// -- x1 : requested object size (untagged)
// -- lr : return address
// -----------------------------------
__ SmiTag(x1);
__ PushArgument(x1);
__ Move(cp, Smi::kZero);
__ TailCallRuntime(Runtime::kAllocateInNewSpace);
}
// static
void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) {
ASM_LOCATION("Builtins::Generate_AllocateInOldSpace");
// ----------- S t a t e -------------
// -- x1 : requested object size (untagged)
// -- lr : return address
// -----------------------------------
__ SmiTag(x1);
__ Move(x2, Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE)));
__ Push(x1, x2);
__ Move(cp, Smi::kZero);
__ TailCallRuntime(Runtime::kAllocateInTargetSpace);
}
// static
void Builtins::Generate_Abort(MacroAssembler* masm) {
ASM_LOCATION("Builtins::Generate_Abort");
// ----------- S t a t e -------------
// -- x1 : message_id as Smi
// -- lr : return address
// -----------------------------------
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
__ PushArgument(x1);
__ Move(cp, Smi::kZero);
__ TailCallRuntime(Runtime::kAbort);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
ASM_LOCATION("Builtins::Generate_ArgumentsAdaptorTrampoline");
// ----------- S t a t e -------------
// -- x0 : actual number of arguments
// -- x1 : function (passed through to callee)
// -- x2 : expected number of arguments
// -- x3 : new target (passed through to callee)
// -----------------------------------
// The frame we are about to construct will look like:
//
// slot Adaptor frame
// +-----------------+--------------------------------
// -n-1 | receiver | ^
// | (parameter 0) | |
// |- - - - - - - - -| |
// -n | | Caller
// ... | ... | frame slots --> actual args
// -2 | parameter n-1 | |
// |- - - - - - - - -| |
// -1 | parameter n | v
// -----+-----------------+--------------------------------
// 0 | return addr | ^
// |- - - - - - - - -| |
// 1 | saved frame ptr | <-- frame ptr |
// |- - - - - - - - -| |
// 2 |Frame Type Marker| |
// |- - - - - - - - -| |
// 3 | function | Callee
// |- - - - - - - - -| frame slots
// 4 | num of | |
// | actual args | |
// |- - - - - - - - -| |
// 5 | padding | |
// |-----------------+---- |
// [6] | [padding] | ^ |
// |- - - - - - - - -| | |
// 6+pad | receiver | | |
// | (parameter 0) | | |
// |- - - - - - - - -| | |
// 7+pad | parameter 1 | | |
// |- - - - - - - - -| Frame slots ----> expected args
// 8+pad | parameter 2 | | |
// |- - - - - - - - -| | |
// | | | |
// ... | ... | | |
// | parameter m | | |
// |- - - - - - - - -| | |
// | [undefined] | | |
// |- - - - - - - - -| | |
// | | | |
// | ... | | |
// | [undefined] | v <-- stack ptr v
// -----+-----------------+---------------------------------
//
// There is an optional slot of padding above the receiver to ensure stack
// alignment of the arguments.
// If the number of expected arguments is larger than the number of actual
// arguments, the remaining expected slots will be filled with undefined.
Register argc_actual = x0; // Excluding the receiver.
Register argc_expected = x2; // Excluding the receiver.
Register function = x1;
Register code_entry = x10;
Label dont_adapt_arguments, stack_overflow;
Label enough_arguments;
__ Cmp(argc_expected, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
__ B(eq, &dont_adapt_arguments);
EnterArgumentsAdaptorFrame(masm);
Register copy_from = x10;
Register copy_end = x11;
Register copy_to = x12;
Register argc_to_copy = x13;
Register argc_unused_actual = x14;
Register scratch1 = x15, scratch2 = x16;
// We need slots for the expected arguments, with one extra slot for the
// receiver.
__ RecordComment("-- Stack check --");
__ Add(scratch1, argc_expected, 1);
Generate_StackOverflowCheck(masm, scratch1, &stack_overflow);
// Round up number of slots to be even, to maintain stack alignment.
__ RecordComment("-- Allocate callee frame slots --");
__ Add(scratch1, scratch1, 1);
__ Bic(scratch1, scratch1, 1);
__ Claim(scratch1, kPointerSize);
__ Mov(copy_to, __ StackPointer());
// Preparing the expected arguments is done in four steps, the order of
// which is chosen so we can use LDP/STP and avoid conditional branches as
// much as possible.
// (1) If we don't have enough arguments, fill the remaining expected
// arguments with undefined, otherwise skip this step.
__ Subs(scratch1, argc_actual, argc_expected);
__ Csel(argc_unused_actual, xzr, scratch1, lt);
__ Csel(argc_to_copy, argc_expected, argc_actual, ge);
__ B(ge, &enough_arguments);
// Fill the remaining expected arguments with undefined.
__ RecordComment("-- Fill slots with undefined --");
__ Sub(copy_end, copy_to, Operand(scratch1, LSL, kPointerSizeLog2));
__ LoadRoot(scratch1, Heap::kUndefinedValueRootIndex);
Label fill;
__ Bind(&fill);
__ Stp(scratch1, scratch1, MemOperand(copy_to, 2 * kPointerSize, PostIndex));
// We might write one slot extra, but that is ok because we'll overwrite it
// below.
__ Cmp(copy_end, copy_to);
__ B(hi, &fill);
// Correct copy_to, for the case where we wrote one additional slot.
__ Mov(copy_to, copy_end);
__ Bind(&enough_arguments);
// (2) Copy all of the actual arguments, or as many as we need.
Label skip_copy;
__ RecordComment("-- Copy actual arguments --");
__ Cbz(argc_to_copy, &skip_copy);
__ Add(copy_end, copy_to, Operand(argc_to_copy, LSL, kPointerSizeLog2));
__ Add(copy_from, fp, 2 * kPointerSize);
// Adjust for difference between actual and expected arguments.
__ Add(copy_from, copy_from,
Operand(argc_unused_actual, LSL, kPointerSizeLog2));
// Copy arguments. We use load/store pair instructions, so we might overshoot
// by one slot, but since we copy the arguments starting from the last one, if
// we do overshoot, the extra slot will be overwritten later by the receiver.
Label copy_2_by_2;
__ Bind(&copy_2_by_2);
__ Ldp(scratch1, scratch2,
MemOperand(copy_from, 2 * kPointerSize, PostIndex));
__ Stp(scratch1, scratch2, MemOperand(copy_to, 2 * kPointerSize, PostIndex));
__ Cmp(copy_end, copy_to);
__ B(hi, &copy_2_by_2);
__ Bind(&skip_copy);
// (3) Store padding, which might be overwritten by the receiver, if it is not
// necessary.
__ RecordComment("-- Store padding --");
__ Str(padreg, MemOperand(fp, -5 * kPointerSize));
// (4) Store receiver. Calculate target address from the sp to avoid checking
// for padding. Storing the receiver will overwrite either the extra slot
// we copied with the actual arguments, if we did copy one, or the padding we
// stored above.
__ RecordComment("-- Store receiver --");
__ Add(copy_from, fp, 2 * kPointerSize);
__ Ldr(scratch1, MemOperand(copy_from, argc_actual, LSL, kPointerSizeLog2));
__ Str(scratch1,
MemOperand(__ StackPointer(), argc_expected, LSL, kPointerSizeLog2));
// Arguments have been adapted. Now call the entry point.
__ RecordComment("-- Call entry point --");
__ Mov(argc_actual, argc_expected);
// x0 : expected number of arguments
// x1 : function (passed through to callee)
// x3 : new target (passed through to callee)
__ Ldr(code_entry, FieldMemOperand(function, JSFunction::kCodeOffset));
__ Add(code_entry, code_entry, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Call(code_entry);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Ret();
// Call the entry point without adapting the arguments.
__ RecordComment("-- Call without adapting args --");
__ Bind(&dont_adapt_arguments);
__ Ldr(code_entry, FieldMemOperand(function, JSFunction::kCodeOffset));
__ Add(code_entry, code_entry, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(code_entry);
__ Bind(&stack_overflow);
__ RecordComment("-- Stack overflow --");
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable();
}
}
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Save all parameter registers (see wasm-linkage.cc). They might be
// overwritten in the runtime call below. We don't have any callee-saved
// registers in wasm, so no need to store anything else.
constexpr RegList gp_regs =
Register::ListOf<x0, x1, x2, x3, x4, x5, x6, x7>();
constexpr RegList fp_regs =
Register::ListOf<d0, d1, d2, d3, d4, d5, d6, d7>();
__ PushXRegList(gp_regs);
__ PushDRegList(fp_regs);
// Initialize cp register with kZero, CEntryStub will use it to set the
// current context on the isolate.
__ Move(cp, Smi::kZero);
__ CallRuntime(Runtime::kWasmCompileLazy);
// Store returned instruction start in x8.
__ Add(x8, x0, Code::kHeaderSize - kHeapObjectTag);
// Restore registers.
__ PopDRegList(fp_regs);
__ PopXRegList(gp_regs);
}
// Now jump to the instructions of the returned code object.
__ Jump(x8);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_ARM