| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_X64 |
| |
| #include "src/code-factory.h" |
| #include "src/counters.h" |
| #include "src/deoptimizer.h" |
| #include "src/frame-constants.h" |
| #include "src/frames.h" |
| #include "src/objects-inl.h" |
| #include "src/objects/debug-objects.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address, |
| ExitFrameType exit_frame_type) { |
| __ LoadAddress(rbx, ExternalReference(address, masm->isolate())); |
| if (exit_frame_type == BUILTIN_EXIT) { |
| __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), |
| RelocInfo::CODE_TARGET); |
| } else { |
| DCHECK(exit_frame_type == EXIT); |
| __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame), |
| RelocInfo::CODE_TARGET); |
| } |
| } |
| |
| namespace { |
| |
| void AdaptorWithExitFrameType(MacroAssembler* masm, |
| Builtins::ExitFrameType exit_frame_type) { |
| // ----------- S t a t e ------------- |
| // -- rax : number of arguments excluding receiver |
| // -- rbx : entry point |
| // -- rdi : target |
| // -- rdx : new.target |
| // -- rsp[0] : return address |
| // -- rsp[8] : last argument |
| // -- ... |
| // -- rsp[8 * argc] : first argument |
| // -- rsp[8 * (argc + 1)] : receiver |
| // ----------------------------------- |
| __ AssertFunction(rdi); |
| |
| // The logic contained here is mirrored for TurboFan inlining in |
| // JSTypedLowering::ReduceJSCall{Function,Construct}. Keep these in sync. |
| |
| // Make sure we operate in the context of the called function (for example |
| // ConstructStubs implemented in C++ will be run in the context of the caller |
| // instead of the callee, due to the way that [[Construct]] is defined for |
| // ordinary functions). |
| __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); |
| |
| // CEntryStub expects rax to contain the number of arguments including the |
| // receiver and the extra arguments. |
| __ addp(rax, Immediate(BuiltinExitFrameConstants::kNumExtraArgsWithReceiver)); |
| |
| // Unconditionally insert argc, target and new target as extra arguments. They |
| // will be used by stack frame iterators when constructing the stack trace. |
| __ PopReturnAddressTo(kScratchRegister); |
| __ Integer32ToSmi(rax, rax); |
| __ PushRoot(Heap::kTheHoleValueRootIndex); // Padding. |
| __ Push(rax); |
| __ SmiToInteger32(rax, rax); |
| __ Push(rdi); |
| __ Push(rdx); |
| __ PushReturnAddressFrom(kScratchRegister); |
| |
| // Jump to the C entry runtime stub directly here instead of using |
| // JumpToExternalReference because rbx is loaded by Generate_adaptor. |
| CEntryStub ces(masm->isolate(), 1, kDontSaveFPRegs, kArgvOnStack, |
| exit_frame_type == Builtins::BUILTIN_EXIT); |
| __ jmp(ces.GetCode(), RelocInfo::CODE_TARGET); |
| } |
| } // namespace |
| |
| void Builtins::Generate_AdaptorWithExitFrame(MacroAssembler* masm) { |
| AdaptorWithExitFrameType(masm, EXIT); |
| } |
| |
| void Builtins::Generate_AdaptorWithBuiltinExitFrame(MacroAssembler* masm) { |
| AdaptorWithExitFrameType(masm, BUILTIN_EXIT); |
| } |
| |
| static void GenerateTailCallToSharedCode(MacroAssembler* masm) { |
| __ movp(kScratchRegister, |
| FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movp(kScratchRegister, |
| FieldOperand(kScratchRegister, SharedFunctionInfo::kCodeOffset)); |
| __ leap(kScratchRegister, FieldOperand(kScratchRegister, Code::kHeaderSize)); |
| __ jmp(kScratchRegister); |
| } |
| |
| static void GenerateTailCallToReturnedCode(MacroAssembler* masm, |
| Runtime::FunctionId function_id) { |
| // ----------- S t a t e ------------- |
| // -- rax : argument count (preserved for callee) |
| // -- rdx : new target (preserved for callee) |
| // -- rdi : target function (preserved for callee) |
| // ----------------------------------- |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Push the number of arguments to the callee. |
| __ Integer32ToSmi(rax, rax); |
| __ Push(rax); |
| // Push a copy of the target function and the new target. |
| __ Push(rdi); |
| __ Push(rdx); |
| // Function is also the parameter to the runtime call. |
| __ Push(rdi); |
| |
| __ CallRuntime(function_id, 1); |
| __ movp(rbx, rax); |
| |
| // Restore target function and new target. |
| __ Pop(rdx); |
| __ Pop(rdi); |
| __ Pop(rax); |
| __ SmiToInteger32(rax, rax); |
| } |
| __ leap(rbx, FieldOperand(rbx, Code::kHeaderSize)); |
| __ jmp(rbx); |
| } |
| |
| namespace { |
| |
| void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax: number of arguments |
| // -- rdi: constructor function |
| // -- rdx: new target |
| // -- rsi: context |
| // ----------------------------------- |
| |
| // Enter a construct frame. |
| { |
| FrameScope scope(masm, StackFrame::CONSTRUCT); |
| |
| // Preserve the incoming parameters on the stack. |
| __ Integer32ToSmi(rcx, rax); |
| __ Push(rsi); |
| __ Push(rcx); |
| |
| // The receiver for the builtin/api call. |
| __ PushRoot(Heap::kTheHoleValueRootIndex); |
| |
| // Set up pointer to last argument. |
| __ leap(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset)); |
| |
| // Copy arguments and receiver to the expression stack. |
| Label loop, entry; |
| __ movp(rcx, rax); |
| // ----------- S t a t e ------------- |
| // -- rax: number of arguments (untagged) |
| // -- rdi: constructor function |
| // -- rdx: new target |
| // -- rbx: pointer to last argument |
| // -- rcx: counter |
| // -- sp[0*kPointerSize]: the hole (receiver) |
| // -- sp[1*kPointerSize]: number of arguments (tagged) |
| // -- sp[2*kPointerSize]: context |
| // ----------------------------------- |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ Push(Operand(rbx, rcx, times_pointer_size, 0)); |
| __ bind(&entry); |
| __ decp(rcx); |
| __ j(greater_equal, &loop, Label::kNear); |
| |
| // Call the function. |
| // rax: number of arguments (untagged) |
| // rdi: constructor function |
| // rdx: new target |
| ParameterCount actual(rax); |
| __ InvokeFunction(rdi, rdx, actual, CALL_FUNCTION); |
| |
| // Restore context from the frame. |
| __ movp(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset)); |
| // Restore smi-tagged arguments count from the frame. |
| __ movp(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset)); |
| |
| // Leave construct frame. |
| } |
| |
| // Remove caller arguments from the stack and return. |
| __ PopReturnAddressTo(rcx); |
| SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); |
| __ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); |
| __ PushReturnAddressFrom(rcx); |
| |
| __ ret(0); |
| } |
| |
| // The construct stub for ES5 constructor functions and ES6 class constructors. |
| void Generate_JSConstructStubGeneric(MacroAssembler* masm, |
| bool restrict_constructor_return) { |
| // ----------- S t a t e ------------- |
| // -- rax: number of arguments (untagged) |
| // -- rdi: constructor function |
| // -- rdx: new target |
| // -- rsi: context |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| // Enter a construct frame. |
| { |
| FrameScope scope(masm, StackFrame::CONSTRUCT); |
| Label post_instantiation_deopt_entry, not_create_implicit_receiver; |
| |
| // Preserve the incoming parameters on the stack. |
| __ Integer32ToSmi(rcx, rax); |
| __ Push(rsi); |
| __ Push(rcx); |
| __ Push(rdi); |
| __ PushRoot(Heap::kTheHoleValueRootIndex); |
| __ Push(rdx); |
| |
| // ----------- S t a t e ------------- |
| // -- sp[0*kPointerSize]: new target |
| // -- sp[1*kPointerSize]: padding |
| // -- rdi and sp[2*kPointerSize]: constructor function |
| // -- sp[3*kPointerSize]: argument count |
| // -- sp[4*kPointerSize]: context |
| // ----------------------------------- |
| |
| __ movp(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ testl(FieldOperand(rbx, SharedFunctionInfo::kCompilerHintsOffset), |
| Immediate(SharedFunctionInfo::kDerivedConstructorMask)); |
| __ j(not_zero, ¬_create_implicit_receiver, Label::kNear); |
| |
| // If not derived class constructor: Allocate the new receiver object. |
| __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1); |
| __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), |
| RelocInfo::CODE_TARGET); |
| __ jmp(&post_instantiation_deopt_entry, Label::kNear); |
| |
| // Else: use TheHoleValue as receiver for constructor call |
| __ bind(¬_create_implicit_receiver); |
| __ LoadRoot(rax, Heap::kTheHoleValueRootIndex); |
| |
| // ----------- S t a t e ------------- |
| // -- rax implicit receiver |
| // -- Slot 4 / sp[0*kPointerSize] new target |
| // -- Slot 3 / sp[1*kPointerSize] padding |
| // -- Slot 2 / sp[2*kPointerSize] constructor function |
| // -- Slot 1 / sp[3*kPointerSize] number of arguments (tagged) |
| // -- Slot 0 / sp[4*kPointerSize] context |
| // ----------------------------------- |
| // Deoptimizer enters here. |
| masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( |
| masm->pc_offset()); |
| __ bind(&post_instantiation_deopt_entry); |
| |
| // Restore new target. |
| __ Pop(rdx); |
| |
| // Push the allocated receiver to the stack. We need two copies |
| // because we may have to return the original one and the calling |
| // conventions dictate that the called function pops the receiver. |
| __ Push(rax); |
| __ Push(rax); |
| |
| // ----------- S t a t e ------------- |
| // -- sp[0*kPointerSize] implicit receiver |
| // -- sp[1*kPointerSize] implicit receiver |
| // -- sp[2*kPointerSize] padding |
| // -- sp[3*kPointerSize] constructor function |
| // -- sp[4*kPointerSize] number of arguments (tagged) |
| // -- sp[5*kPointerSize] context |
| // ----------------------------------- |
| |
| // Restore constructor function and argument count. |
| __ movp(rdi, Operand(rbp, ConstructFrameConstants::kConstructorOffset)); |
| __ SmiToInteger32(rax, |
| Operand(rbp, ConstructFrameConstants::kLengthOffset)); |
| |
| // Set up pointer to last argument. |
| __ leap(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset)); |
| |
| // Copy arguments and receiver to the expression stack. |
| Label loop, entry; |
| __ movp(rcx, rax); |
| // ----------- S t a t e ------------- |
| // -- rax: number of arguments (untagged) |
| // -- rdx: new target |
| // -- rbx: pointer to last argument |
| // -- rcx: counter (tagged) |
| // -- sp[0*kPointerSize]: implicit receiver |
| // -- sp[1*kPointerSize]: implicit receiver |
| // -- sp[2*kPointerSize]: padding |
| // -- rdi and sp[3*kPointerSize]: constructor function |
| // -- sp[4*kPointerSize]: number of arguments (tagged) |
| // -- sp[5*kPointerSize]: context |
| // ----------------------------------- |
| __ jmp(&entry, Label::kNear); |
| __ bind(&loop); |
| __ Push(Operand(rbx, rcx, times_pointer_size, 0)); |
| __ bind(&entry); |
| __ decp(rcx); |
| __ j(greater_equal, &loop, Label::kNear); |
| |
| // Call the function. |
| ParameterCount actual(rax); |
| __ InvokeFunction(rdi, rdx, actual, CALL_FUNCTION); |
| |
| // ----------- S t a t e ------------- |
| // -- rax constructor result |
| // -- sp[0*kPointerSize] implicit receiver |
| // -- sp[1*kPointerSize] padding |
| // -- sp[2*kPointerSize] constructor function |
| // -- sp[3*kPointerSize] number of arguments |
| // -- sp[4*kPointerSize] context |
| // ----------------------------------- |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( |
| masm->pc_offset()); |
| |
| // Restore context from the frame. |
| __ movp(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset)); |
| |
| // If the result is an object (in the ECMA sense), we should get rid |
| // of the receiver and use the result; see ECMA-262 section 13.2.2-7 |
| // on page 74. |
| Label use_receiver, do_throw, other_result, leave_frame; |
| |
| // If the result is undefined, we jump out to using the implicit receiver. |
| __ JumpIfRoot(rax, Heap::kUndefinedValueRootIndex, &use_receiver, |
| Label::kNear); |
| |
| // Otherwise we do a smi check and fall through to check if the return value |
| // is a valid receiver. |
| |
| // If the result is a smi, it is *not* an object in the ECMA sense. |
| __ JumpIfSmi(rax, &other_result, Label::kNear); |
| |
| // If the type of the result (stored in its map) is less than |
| // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx); |
| __ j(above_equal, &leave_frame, Label::kNear); |
| |
| // The result is now neither undefined nor an object. |
| __ bind(&other_result); |
| __ movp(rbx, Operand(rbp, ConstructFrameConstants::kConstructorOffset)); |
| __ movp(rbx, FieldOperand(rbx, JSFunction::kSharedFunctionInfoOffset)); |
| __ testl(FieldOperand(rbx, SharedFunctionInfo::kCompilerHintsOffset), |
| Immediate(SharedFunctionInfo::kClassConstructorMask)); |
| |
| if (restrict_constructor_return) { |
| // Throw if constructor function is a class constructor |
| __ j(Condition::zero, &use_receiver, Label::kNear); |
| } else { |
| __ j(not_zero, &use_receiver, Label::kNear); |
| __ CallRuntime( |
| Runtime::kIncrementUseCounterConstructorReturnNonUndefinedPrimitive); |
| __ jmp(&use_receiver, Label::kNear); |
| } |
| |
| __ bind(&do_throw); |
| __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); |
| |
| // Throw away the result of the constructor invocation and use the |
| // on-stack receiver as the result. |
| __ bind(&use_receiver); |
| __ movp(rax, Operand(rsp, 0 * kPointerSize)); |
| __ JumpIfRoot(rax, Heap::kTheHoleValueRootIndex, &do_throw, Label::kNear); |
| |
| __ bind(&leave_frame); |
| // Restore the arguments count. |
| __ movp(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset)); |
| // Leave construct frame. |
| } |
| // Remove caller arguments from the stack and return. |
| __ PopReturnAddressTo(rcx); |
| SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); |
| __ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); |
| __ PushReturnAddressFrom(rcx); |
| __ ret(0); |
| } |
| } // namespace |
| |
| void Builtins::Generate_JSConstructStubGenericRestrictedReturn( |
| MacroAssembler* masm) { |
| return Generate_JSConstructStubGeneric(masm, true); |
| } |
| void Builtins::Generate_JSConstructStubGenericUnrestrictedReturn( |
| MacroAssembler* masm) { |
| return Generate_JSConstructStubGeneric(masm, false); |
| } |
| void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { |
| Generate_JSBuiltinsConstructStubHelper(masm); |
| } |
| void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { |
| Generate_JSBuiltinsConstructStubHelper(masm); |
| } |
| |
| void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(rdi); |
| __ CallRuntime(Runtime::kThrowConstructedNonConstructable); |
| } |
| |
| static void Generate_StackOverflowCheck( |
| MacroAssembler* masm, Register num_args, Register scratch, |
| Label* stack_overflow, |
| Label::Distance stack_overflow_distance = Label::kFar) { |
| // Check the stack for overflow. We are not trying to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex); |
| __ movp(scratch, rsp); |
| // Make scratch the space we have left. The stack might already be overflowed |
| // here which will cause scratch to become negative. |
| __ subp(scratch, kScratchRegister); |
| __ sarp(scratch, Immediate(kPointerSizeLog2)); |
| // Check if the arguments will overflow the stack. |
| __ cmpp(scratch, num_args); |
| // Signed comparison. |
| __ j(less_equal, stack_overflow, stack_overflow_distance); |
| } |
| |
| static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, |
| bool is_construct) { |
| ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| |
| // Expects five C++ function parameters. |
| // - Object* new_target |
| // - JSFunction* function |
| // - Object* receiver |
| // - int argc |
| // - Object*** argv |
| // (see Handle::Invoke in execution.cc). |
| |
| // Open a C++ scope for the FrameScope. |
| { |
| // Platform specific argument handling. After this, the stack contains |
| // an internal frame and the pushed function and receiver, and |
| // register rax and rbx holds the argument count and argument array, |
| // while rdi holds the function pointer, rsi the context, and rdx the |
| // new.target. |
| |
| #ifdef _WIN64 |
| // MSVC parameters in: |
| // rcx : new_target |
| // rdx : function |
| // r8 : receiver |
| // r9 : argc |
| // [rsp+0x20] : argv |
| |
| // Enter an internal frame. |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Setup the context (we need to use the caller context from the isolate). |
| ExternalReference context_address(IsolateAddressId::kContextAddress, |
| masm->isolate()); |
| __ movp(rsi, masm->ExternalOperand(context_address)); |
| |
| // Push the function and the receiver onto the stack. |
| __ Push(rdx); |
| __ Push(r8); |
| |
| // Load the number of arguments and setup pointer to the arguments. |
| __ movp(rax, r9); |
| // Load the previous frame pointer to access C argument on stack |
| __ movp(kScratchRegister, Operand(rbp, 0)); |
| __ movp(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset)); |
| // Load the function pointer into rdi. |
| __ movp(rdi, rdx); |
| // Load the new.target into rdx. |
| __ movp(rdx, rcx); |
| #else // _WIN64 |
| // GCC parameters in: |
| // rdi : new_target |
| // rsi : function |
| // rdx : receiver |
| // rcx : argc |
| // r8 : argv |
| |
| __ movp(r11, rdi); |
| __ movp(rdi, rsi); |
| // rdi : function |
| // r11 : new_target |
| |
| // Clear the context before we push it when entering the internal frame. |
| __ Set(rsi, 0); |
| |
| // Enter an internal frame. |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Setup the context (we need to use the caller context from the isolate). |
| ExternalReference context_address(IsolateAddressId::kContextAddress, |
| masm->isolate()); |
| __ movp(rsi, masm->ExternalOperand(context_address)); |
| |
| // Push the function and receiver onto the stack. |
| __ Push(rdi); |
| __ Push(rdx); |
| |
| // Load the number of arguments and setup pointer to the arguments. |
| __ movp(rax, rcx); |
| __ movp(rbx, r8); |
| |
| // Load the new.target into rdx. |
| __ movp(rdx, r11); |
| #endif // _WIN64 |
| |
| // Current stack contents: |
| // [rsp + 2 * kPointerSize ... ] : Internal frame |
| // [rsp + kPointerSize] : function |
| // [rsp] : receiver |
| // Current register contents: |
| // rax : argc |
| // rbx : argv |
| // rsi : context |
| // rdi : function |
| // rdx : new.target |
| |
| // Check if we have enough stack space to push all arguments. |
| // Argument count in rax. Clobbers rcx. |
| Label enough_stack_space, stack_overflow; |
| Generate_StackOverflowCheck(masm, rax, rcx, &stack_overflow, Label::kNear); |
| __ jmp(&enough_stack_space, Label::kNear); |
| |
| __ bind(&stack_overflow); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| // This should be unreachable. |
| __ int3(); |
| |
| __ bind(&enough_stack_space); |
| |
| // Copy arguments to the stack in a loop. |
| // Register rbx points to array of pointers to handle locations. |
| // Push the values of these handles. |
| Label loop, entry; |
| __ Set(rcx, 0); // Set loop variable to 0. |
| __ jmp(&entry, Label::kNear); |
| __ bind(&loop); |
| __ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0)); |
| __ Push(Operand(kScratchRegister, 0)); // dereference handle |
| __ addp(rcx, Immediate(1)); |
| __ bind(&entry); |
| __ cmpp(rcx, rax); |
| __ j(not_equal, &loop, Label::kNear); |
| |
| // Invoke the builtin code. |
| Handle<Code> builtin = is_construct |
| ? BUILTIN_CODE(masm->isolate(), Construct) |
| : masm->isolate()->builtins()->Call(); |
| __ Call(builtin, RelocInfo::CODE_TARGET); |
| |
| // Exit the internal frame. Notice that this also removes the empty |
| // context and the function left on the stack by the code |
| // invocation. |
| } |
| |
| __ ret(0); |
| } |
| |
| void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, false); |
| } |
| |
| void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, true); |
| } |
| |
| // static |
| void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the value to pass to the generator |
| // -- rdx : the JSGeneratorObject to resume |
| // -- rsp[0] : return address |
| // ----------------------------------- |
| __ AssertGeneratorObject(rdx); |
| |
| // Store input value into generator object. |
| __ movp(FieldOperand(rdx, JSGeneratorObject::kInputOrDebugPosOffset), rax); |
| __ RecordWriteField(rdx, JSGeneratorObject::kInputOrDebugPosOffset, rax, rcx, |
| kDontSaveFPRegs); |
| |
| // Load suspended function and context. |
| __ movp(rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset)); |
| __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); |
| |
| // Flood function if we are stepping. |
| Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; |
| Label stepping_prepared; |
| ExternalReference debug_hook = |
| ExternalReference::debug_hook_on_function_call_address(masm->isolate()); |
| Operand debug_hook_operand = masm->ExternalOperand(debug_hook); |
| __ cmpb(debug_hook_operand, Immediate(0)); |
| __ j(not_equal, &prepare_step_in_if_stepping); |
| |
| // Flood function if we need to continue stepping in the suspended generator. |
| ExternalReference debug_suspended_generator = |
| ExternalReference::debug_suspended_generator_address(masm->isolate()); |
| Operand debug_suspended_generator_operand = |
| masm->ExternalOperand(debug_suspended_generator); |
| __ cmpp(rdx, debug_suspended_generator_operand); |
| __ j(equal, &prepare_step_in_suspended_generator); |
| __ bind(&stepping_prepared); |
| |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| Label stack_overflow; |
| __ CompareRoot(rsp, Heap::kRealStackLimitRootIndex); |
| __ j(below, &stack_overflow); |
| |
| // Pop return address. |
| __ PopReturnAddressTo(rax); |
| |
| // Push receiver. |
| __ Push(FieldOperand(rdx, JSGeneratorObject::kReceiverOffset)); |
| |
| // ----------- S t a t e ------------- |
| // -- rax : return address |
| // -- rdx : the JSGeneratorObject to resume |
| // -- rdi : generator function |
| // -- rsi : generator context |
| // -- rsp[0] : generator receiver |
| // ----------------------------------- |
| |
| // Push holes for arguments to generator function. Since the parser forced |
| // context allocation for any variables in generators, the actual argument |
| // values have already been copied into the context and these dummy values |
| // will never be used. |
| __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movl(rcx, |
| FieldOperand(rcx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| { |
| Label done_loop, loop; |
| __ bind(&loop); |
| __ subl(rcx, Immediate(1)); |
| __ j(carry, &done_loop, Label::kNear); |
| __ PushRoot(Heap::kTheHoleValueRootIndex); |
| __ jmp(&loop); |
| __ bind(&done_loop); |
| } |
| |
| // Underlying function needs to have bytecode available. |
| if (FLAG_debug_code) { |
| __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kFunctionDataOffset)); |
| __ CmpObjectType(rcx, BYTECODE_ARRAY_TYPE, rcx); |
| __ Assert(equal, AbortReason::kMissingBytecodeArray); |
| } |
| |
| // Resume (Ignition/TurboFan) generator object. |
| { |
| __ PushReturnAddressFrom(rax); |
| __ movp(rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movsxlq(rax, FieldOperand( |
| rax, SharedFunctionInfo::kFormalParameterCountOffset)); |
| // We abuse new.target both to indicate that this is a resume call and to |
| // pass in the generator object. In ordinary calls, new.target is always |
| // undefined because generator functions are non-constructable. |
| __ movp(rcx, FieldOperand(rdi, JSFunction::kCodeOffset)); |
| __ addp(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| __ jmp(rcx); |
| } |
| |
| __ bind(&prepare_step_in_if_stepping); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(rdx); |
| __ Push(rdi); |
| __ CallRuntime(Runtime::kDebugOnFunctionCall); |
| __ Pop(rdx); |
| __ movp(rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ jmp(&stepping_prepared); |
| |
| __ bind(&prepare_step_in_suspended_generator); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(rdx); |
| __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); |
| __ Pop(rdx); |
| __ movp(rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ jmp(&stepping_prepared); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ int3(); // This should be unreachable. |
| } |
| } |
| |
| // TODO(juliana): if we remove the code below then we don't need all |
| // the parameters. |
| static void ReplaceClosureCodeWithOptimizedCode( |
| MacroAssembler* masm, Register optimized_code, Register closure, |
| Register scratch1, Register scratch2, Register scratch3) { |
| |
| // Store the optimized code in the closure. |
| __ movp(FieldOperand(closure, JSFunction::kCodeOffset), optimized_code); |
| __ movp(scratch1, optimized_code); // Write barrier clobbers scratch1 below. |
| __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, |
| kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| } |
| |
| static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1, |
| Register scratch2) { |
| Register args_count = scratch1; |
| Register return_pc = scratch2; |
| |
| // Get the arguments + receiver count. |
| __ movp(args_count, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ movl(args_count, |
| FieldOperand(args_count, BytecodeArray::kParameterSizeOffset)); |
| |
| // Leave the frame (also dropping the register file). |
| __ leave(); |
| |
| // Drop receiver + arguments. |
| __ PopReturnAddressTo(return_pc); |
| __ addp(rsp, args_count); |
| __ PushReturnAddressFrom(return_pc); |
| } |
| |
| // Tail-call |function_id| if |smi_entry| == |marker| |
| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, |
| Register smi_entry, |
| OptimizationMarker marker, |
| Runtime::FunctionId function_id) { |
| Label no_match; |
| __ SmiCompare(smi_entry, Smi::FromEnum(marker)); |
| __ j(not_equal, &no_match, Label::kNear); |
| GenerateTailCallToReturnedCode(masm, function_id); |
| __ bind(&no_match); |
| } |
| |
| static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, |
| Register feedback_vector, |
| Register scratch1, Register scratch2, |
| Register scratch3) { |
| // ----------- S t a t e ------------- |
| // -- rax : argument count (preserved for callee if needed, and caller) |
| // -- rdx : new target (preserved for callee if needed, and caller) |
| // -- rdi : target function (preserved for callee if needed, and caller) |
| // -- feedback vector (preserved for caller if needed) |
| // ----------------------------------- |
| DCHECK(!AreAliased(feedback_vector, rax, rdx, rdi, scratch1, scratch2, |
| scratch3)); |
| |
| Label optimized_code_slot_is_cell, fallthrough; |
| |
| Register closure = rdi; |
| Register optimized_code_entry = scratch1; |
| |
| __ movp(optimized_code_entry, |
| FieldOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset)); |
| |
| // Check if the code entry is a Smi. If yes, we interpret it as an |
| // optimisation marker. Otherwise, interpret is as a weak cell to a code |
| // object. |
| __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_cell); |
| |
| { |
| // Optimized code slot is a Smi optimization marker. |
| |
| // Fall through if no optimization trigger. |
| __ SmiCompare(optimized_code_entry, |
| Smi::FromEnum(OptimizationMarker::kNone)); |
| __ j(equal, &fallthrough); |
| |
| TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, |
| OptimizationMarker::kLogFirstExecution, |
| Runtime::kFunctionFirstExecution); |
| TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, |
| OptimizationMarker::kCompileOptimized, |
| Runtime::kCompileOptimized_NotConcurrent); |
| TailCallRuntimeIfMarkerEquals( |
| masm, optimized_code_entry, |
| OptimizationMarker::kCompileOptimizedConcurrent, |
| Runtime::kCompileOptimized_Concurrent); |
| |
| { |
| // Otherwise, the marker is InOptimizationQueue, so fall through hoping |
| // that an interrupt will eventually update the slot with optimized code. |
| if (FLAG_debug_code) { |
| __ SmiCompare(optimized_code_entry, |
| Smi::FromEnum(OptimizationMarker::kInOptimizationQueue)); |
| __ Assert(equal, AbortReason::kExpectedOptimizationSentinel); |
| } |
| __ jmp(&fallthrough); |
| } |
| } |
| |
| { |
| // Optimized code slot is a WeakCell. |
| __ bind(&optimized_code_slot_is_cell); |
| |
| __ movp(optimized_code_entry, |
| FieldOperand(optimized_code_entry, WeakCell::kValueOffset)); |
| __ JumpIfSmi(optimized_code_entry, &fallthrough); |
| |
| // Check if the optimized code is marked for deopt. If it is, call the |
| // runtime to clear it. |
| Label found_deoptimized_code; |
| __ movp(scratch2, |
| FieldOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); |
| __ testl( |
| FieldOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset), |
| Immediate(1 << Code::kMarkedForDeoptimizationBit)); |
| __ j(not_zero, &found_deoptimized_code); |
| |
| // Optimized code is good, get it into the closure and link the closure into |
| // the optimized functions list, then tail call the optimized code. |
| // The feedback vector is no longer used, so re-use it as a scratch |
| // register. |
| ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, |
| scratch2, scratch3, feedback_vector); |
| __ addp(optimized_code_entry, |
| Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| __ jmp(optimized_code_entry); |
| |
| // Optimized code slot contains deoptimized code, evict it and re-enter the |
| // closure's code. |
| __ bind(&found_deoptimized_code); |
| GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); |
| } |
| |
| // Fall-through if the optimized code cell is clear and there is no |
| // optimization marker. |
| __ bind(&fallthrough); |
| } |
| |
| // Advance the current bytecode offset. This simulates what all bytecode |
| // handlers do upon completion of the underlying operation. |
| static void AdvanceBytecodeOffset(MacroAssembler* masm, Register bytecode_array, |
| Register bytecode_offset, Register bytecode, |
| Register scratch1) { |
| Register bytecode_size_table = scratch1; |
| DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, |
| bytecode)); |
| |
| __ Move(bytecode_size_table, |
| ExternalReference::bytecode_size_table_address(masm->isolate())); |
| |
| // Check if the bytecode is a Wide or ExtraWide prefix bytecode. |
| Label load_size, extra_wide; |
| STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide)); |
| STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); |
| __ cmpb(bytecode, Immediate(0x1)); |
| __ j(above, &load_size, Label::kNear); |
| __ j(equal, &extra_wide, Label::kNear); |
| |
| // Load the next bytecode and update table to the wide scaled table. |
| __ incl(bytecode_offset); |
| __ movzxbp(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0)); |
| __ addp(bytecode_size_table, |
| Immediate(kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| __ jmp(&load_size, Label::kNear); |
| |
| __ bind(&extra_wide); |
| // Load the next bytecode and update table to the extra wide scaled table. |
| __ incl(bytecode_offset); |
| __ movzxbp(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0)); |
| __ addp(bytecode_size_table, |
| Immediate(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| |
| // Load the size of the current bytecode. |
| __ bind(&load_size); |
| __ addl(bytecode_offset, Operand(bytecode_size_table, bytecode, times_4, 0)); |
| } |
| |
| // Generate code for entering a JS function with the interpreter. |
| // On entry to the function the receiver and arguments have been pushed on the |
| // stack left to right. The actual argument count matches the formal parameter |
| // count expected by the function. |
| // |
| // The live registers are: |
| // o rdi: the JS function object being called |
| // o rdx: the incoming new target or generator object |
| // o rsi: our context |
| // o rbp: the caller's frame pointer |
| // o rsp: stack pointer (pointing to return address) |
| // |
| // The function builds an interpreter frame. See InterpreterFrameConstants in |
| // frames.h for its layout. |
| void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { |
| ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| |
| Register closure = rdi; |
| Register feedback_vector = rbx; |
| |
| // Load the feedback vector from the closure. |
| __ movp(feedback_vector, |
| FieldOperand(closure, JSFunction::kFeedbackVectorOffset)); |
| __ movp(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset)); |
| // Read off the optimized code slot in the feedback vector, and if there |
| // is optimized code or an optimization marker, call that instead. |
| MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, rcx, r14, r15); |
| |
| // Open a frame scope to indicate that there is a frame on the stack. The |
| // MANUAL indicates that the scope shouldn't actually generate code to set up |
| // the frame (that is done below). |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ pushq(rbp); // Caller's frame pointer. |
| __ movp(rbp, rsp); |
| __ Push(rsi); // Callee's context. |
| __ Push(rdi); // Callee's JS function. |
| |
| // Get the bytecode array from the function object (or from the DebugInfo if |
| // it is present) and load it into kInterpreterBytecodeArrayRegister. |
| Label maybe_load_debug_bytecode_array, bytecode_array_loaded; |
| __ movp(rax, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset)); |
| __ movp(kInterpreterBytecodeArrayRegister, |
| FieldOperand(rax, SharedFunctionInfo::kFunctionDataOffset)); |
| __ JumpIfNotSmi(FieldOperand(rax, SharedFunctionInfo::kDebugInfoOffset), |
| &maybe_load_debug_bytecode_array); |
| __ bind(&bytecode_array_loaded); |
| |
| // Increment invocation count for the function. |
| __ incl( |
| FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset)); |
| |
| // Check function data field is actually a BytecodeArray object. |
| if (FLAG_debug_code) { |
| __ AssertNotSmi(kInterpreterBytecodeArrayRegister); |
| __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, |
| rax); |
| __ Assert( |
| equal, |
| AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| } |
| |
| // Reset code age. |
| __ movb(FieldOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kBytecodeAgeOffset), |
| Immediate(BytecodeArray::kNoAgeBytecodeAge)); |
| |
| // Load initial bytecode offset. |
| __ movp(kInterpreterBytecodeOffsetRegister, |
| Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| |
| // Push bytecode array and Smi tagged bytecode offset. |
| __ Push(kInterpreterBytecodeArrayRegister); |
| __ Integer32ToSmi(rcx, kInterpreterBytecodeOffsetRegister); |
| __ Push(rcx); |
| |
| // Allocate the local and temporary register file on the stack. |
| { |
| // Load frame size from the BytecodeArray object. |
| __ movl(rcx, FieldOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kFrameSizeOffset)); |
| |
| // Do a stack check to ensure we don't go over the limit. |
| Label ok; |
| __ movp(rax, rsp); |
| __ subp(rax, rcx); |
| __ CompareRoot(rax, Heap::kRealStackLimitRootIndex); |
| __ j(above_equal, &ok, Label::kNear); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&ok); |
| |
| // If ok, push undefined as the initial value for all register file entries. |
| Label loop_header; |
| Label loop_check; |
| __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); |
| __ j(always, &loop_check, Label::kNear); |
| __ bind(&loop_header); |
| // TODO(rmcilroy): Consider doing more than one push per loop iteration. |
| __ Push(rax); |
| // Continue loop if not done. |
| __ bind(&loop_check); |
| __ subp(rcx, Immediate(kPointerSize)); |
| __ j(greater_equal, &loop_header, Label::kNear); |
| } |
| |
| // If the bytecode array has a valid incoming new target or generator object |
| // register, initialize it with incoming value which was passed in rdx. |
| Label no_incoming_new_target_or_generator_register; |
| __ movsxlq( |
| rax, |
| FieldOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); |
| __ testl(rax, rax); |
| __ j(zero, &no_incoming_new_target_or_generator_register, Label::kNear); |
| __ movp(Operand(rbp, rax, times_pointer_size, 0), rdx); |
| __ bind(&no_incoming_new_target_or_generator_register); |
| |
| // Load accumulator with undefined. |
| __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); |
| |
| // Load the dispatch table into a register and dispatch to the bytecode |
| // handler at the current bytecode offset. |
| Label do_dispatch; |
| __ bind(&do_dispatch); |
| __ Move( |
| kInterpreterDispatchTableRegister, |
| ExternalReference::interpreter_dispatch_table_address(masm->isolate())); |
| __ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, times_1, 0)); |
| __ movp(rbx, Operand(kInterpreterDispatchTableRegister, rbx, |
| times_pointer_size, 0)); |
| __ call(rbx); |
| masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); |
| |
| // Any returns to the entry trampoline are either due to the return bytecode |
| // or the interpreter tail calling a builtin and then a dispatch. |
| |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ movp(kInterpreterBytecodeArrayRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ movp(kInterpreterBytecodeOffsetRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiToInteger32(kInterpreterBytecodeOffsetRegister, |
| kInterpreterBytecodeOffsetRegister); |
| |
| // Check if we should return. |
| Label do_return; |
| __ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, times_1, 0)); |
| __ cmpb(rbx, Immediate(static_cast<int>(interpreter::Bytecode::kReturn))); |
| __ j(equal, &do_return, Label::kNear); |
| |
| // Advance to the next bytecode and dispatch. |
| AdvanceBytecodeOffset(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, rbx, rcx); |
| __ jmp(&do_dispatch); |
| |
| __ bind(&do_return); |
| // The return value is in rax. |
| LeaveInterpreterFrame(masm, rbx, rcx); |
| __ ret(0); |
| |
| // Load debug copy of the bytecode array if it exists. |
| // kInterpreterBytecodeArrayRegister is already loaded with |
| // SharedFunctionInfo::kFunctionDataOffset. |
| __ bind(&maybe_load_debug_bytecode_array); |
| __ movp(rcx, FieldOperand(rax, SharedFunctionInfo::kDebugInfoOffset)); |
| __ SmiToInteger32(kScratchRegister, |
| FieldOperand(rcx, DebugInfo::kFlagsOffset)); |
| __ testl(kScratchRegister, Immediate(DebugInfo::kHasBreakInfo)); |
| __ j(zero, &bytecode_array_loaded); |
| __ movp(kInterpreterBytecodeArrayRegister, |
| FieldOperand(rcx, DebugInfo::kDebugBytecodeArrayOffset)); |
| __ jmp(&bytecode_array_loaded); |
| } |
| |
| static void Generate_InterpreterPushArgs(MacroAssembler* masm, |
| Register num_args, |
| Register start_address, |
| Register scratch) { |
| // Find the address of the last argument. |
| __ Move(scratch, num_args); |
| __ shlp(scratch, Immediate(kPointerSizeLog2)); |
| __ negp(scratch); |
| __ addp(scratch, start_address); |
| |
| // Push the arguments. |
| Label loop_header, loop_check; |
| __ j(always, &loop_check, Label::kNear); |
| __ bind(&loop_header); |
| __ Push(Operand(start_address, 0)); |
| __ subp(start_address, Immediate(kPointerSize)); |
| __ bind(&loop_check); |
| __ cmpp(start_address, scratch); |
| __ j(greater, &loop_header, Label::kNear); |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenCallImpl( |
| MacroAssembler* masm, ConvertReceiverMode receiver_mode, |
| InterpreterPushArgsMode mode) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rbx : the address of the first argument to be pushed. Subsequent |
| // arguments should be consecutive above this, in the same order as |
| // they are to be pushed onto the stack. |
| // -- rdi : the target to call (can be any Object). |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| // Number of values to be pushed. |
| __ Move(rcx, rax); |
| __ addp(rcx, Immediate(1)); // Add one for receiver. |
| |
| // Add a stack check before pushing arguments. |
| Generate_StackOverflowCheck(masm, rcx, rdx, &stack_overflow); |
| |
| // Pop return address to allow tail-call after pushing arguments. |
| __ PopReturnAddressTo(kScratchRegister); |
| |
| // Push "undefined" as the receiver arg if we need to. |
| if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| __ subp(rcx, Immediate(1)); // Subtract one for receiver. |
| } |
| |
| // rbx and rdx will be modified. |
| Generate_InterpreterPushArgs(masm, rcx, rbx, rdx); |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Pop(rbx); // Pass the spread in a register |
| __ subp(rax, Immediate(1)); // Subtract one for spread |
| } |
| |
| // Call the target. |
| __ PushReturnAddressFrom(kScratchRegister); // Re-push return address. |
| |
| if (mode == InterpreterPushArgsMode::kJSFunction) { |
| __ Jump(masm->isolate()->builtins()->CallFunction(receiver_mode), |
| RelocInfo::CODE_TARGET); |
| } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| __ Jump(masm->isolate()->builtins()->Call(receiver_mode), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // Throw stack overflow exception. |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // This should be unreachable. |
| __ int3(); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenConstructImpl( |
| MacroAssembler* masm, InterpreterPushArgsMode mode) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the new target (either the same as the constructor or |
| // the JSFunction on which new was invoked initially) |
| // -- rdi : the constructor to call (can be any Object) |
| // -- rbx : the allocation site feedback if available, undefined otherwise |
| // -- rcx : the address of the first argument to be pushed. Subsequent |
| // arguments should be consecutive above this, in the same order as |
| // they are to be pushed onto the stack. |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| // Add a stack check before pushing arguments. |
| Generate_StackOverflowCheck(masm, rax, r8, &stack_overflow); |
| |
| // Pop return address to allow tail-call after pushing arguments. |
| __ PopReturnAddressTo(kScratchRegister); |
| |
| // Push slot for the receiver to be constructed. |
| __ Push(Immediate(0)); |
| |
| // rcx and r8 will be modified. |
| Generate_InterpreterPushArgs(masm, rax, rcx, r8); |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Pop(rbx); // Pass the spread in a register |
| __ subp(rax, Immediate(1)); // Subtract one for spread |
| |
| // Push return address in preparation for the tail-call. |
| __ PushReturnAddressFrom(kScratchRegister); |
| } else { |
| __ PushReturnAddressFrom(kScratchRegister); |
| __ AssertUndefinedOrAllocationSite(rbx); |
| } |
| |
| if (mode == InterpreterPushArgsMode::kJSFunction) { |
| // Tail call to the function-specific construct stub (still in the caller |
| // context at this point). |
| __ AssertFunction(rdi); |
| |
| __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset)); |
| __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize)); |
| // Jump to the constructor function (rax, rbx, rdx passed on). |
| __ jmp(rcx); |
| } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Call the constructor (rax, rdx, rdi passed on). |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); |
| // Call the constructor (rax, rdx, rdi passed on). |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| // Throw stack overflow exception. |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // This should be unreachable. |
| __ int3(); |
| } |
| } |
| |
| static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { |
| // Set the return address to the correct point in the interpreter entry |
| // trampoline. |
| Smi* interpreter_entry_return_pc_offset( |
| masm->isolate()->heap()->interpreter_entry_return_pc_offset()); |
| DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); |
| __ Move(rbx, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline)); |
| __ addp(rbx, Immediate(interpreter_entry_return_pc_offset->value() + |
| Code::kHeaderSize - kHeapObjectTag)); |
| __ Push(rbx); |
| |
| // Initialize dispatch table register. |
| __ Move( |
| kInterpreterDispatchTableRegister, |
| ExternalReference::interpreter_dispatch_table_address(masm->isolate())); |
| |
| // Get the bytecode array pointer from the frame. |
| __ movp(kInterpreterBytecodeArrayRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| |
| if (FLAG_debug_code) { |
| // Check function data field is actually a BytecodeArray object. |
| __ AssertNotSmi(kInterpreterBytecodeArrayRegister); |
| __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, |
| rbx); |
| __ Assert( |
| equal, |
| AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| } |
| |
| // Get the target bytecode offset from the frame. |
| __ movp(kInterpreterBytecodeOffsetRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiToInteger32(kInterpreterBytecodeOffsetRegister, |
| kInterpreterBytecodeOffsetRegister); |
| |
| // Dispatch to the target bytecode. |
| __ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, times_1, 0)); |
| __ movp(rbx, Operand(kInterpreterDispatchTableRegister, rbx, |
| times_pointer_size, 0)); |
| __ jmp(rbx); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ movp(kInterpreterBytecodeArrayRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ movp(kInterpreterBytecodeOffsetRegister, |
| Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiToInteger32(kInterpreterBytecodeOffsetRegister, |
| kInterpreterBytecodeOffsetRegister); |
| |
| // Load the current bytecode. |
| __ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, times_1, 0)); |
| |
| // Advance to the next bytecode. |
| AdvanceBytecodeOffset(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, rbx, rcx); |
| |
| // Convert new bytecode offset to a Smi and save in the stackframe. |
| __ Integer32ToSmi(rbx, kInterpreterBytecodeOffsetRegister); |
| __ movp(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp), rbx); |
| |
| Generate_InterpreterEnterBytecode(masm); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { |
| Generate_InterpreterEnterBytecode(masm); |
| } |
| |
| void Builtins::Generate_CheckOptimizationMarker(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argument count (preserved for callee) |
| // -- rdx : new target (preserved for callee) |
| // -- rdi : target function (preserved for callee) |
| // ----------------------------------- |
| Register closure = rdi; |
| |
| // Get the feedback vector. |
| Register feedback_vector = rbx; |
| __ movp(feedback_vector, |
| FieldOperand(closure, JSFunction::kFeedbackVectorOffset)); |
| __ movp(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset)); |
| |
| // The feedback vector must be defined. |
| if (FLAG_debug_code) { |
| __ CompareRoot(feedback_vector, Heap::kUndefinedValueRootIndex); |
| __ Assert(not_equal, AbortReason::kExpectedFeedbackVector); |
| } |
| |
| // Is there an optimization marker or optimized code in the feedback vector? |
| MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, rcx, r14, r15); |
| |
| // Otherwise, tail call the SFI code. |
| GenerateTailCallToSharedCode(masm); |
| } |
| |
| // TODO(jupvfranco): investigate whether there is any case where the CompileLazy |
| // builtin does not set the code field in the JS function. If there isn't then |
| // we do not need this builtin and can jump directly to CompileLazy. |
| void Builtins::Generate_CompileLazyDeoptimizedCode(MacroAssembler* masm) { |
| // Set the code slot inside the JSFunction to the trampoline to the |
| // interpreter entry. |
| __ movq(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movq(rcx, FieldOperand(rcx, SharedFunctionInfo::kCodeOffset)); |
| __ movq(FieldOperand(rdi, JSFunction::kCodeOffset), rcx); |
| __ RecordWriteField(rdi, JSFunction::kCodeOffset, rcx, r15, kDontSaveFPRegs, |
| OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| // Jump to compile lazy. |
| Generate_CompileLazy(masm); |
| } |
| |
| void Builtins::Generate_CompileLazy(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argument count (preserved for callee) |
| // -- rdx : new target (preserved for callee) |
| // -- rdi : target function (preserved for callee) |
| // ----------------------------------- |
| // First lookup code, maybe we don't need to compile! |
| Label gotta_call_runtime; |
| |
| Register closure = rdi; |
| Register feedback_vector = rbx; |
| |
| // Do we have a valid feedback vector? |
| __ movp(feedback_vector, |
| FieldOperand(closure, JSFunction::kFeedbackVectorOffset)); |
| __ movp(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset)); |
| __ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex, |
| &gotta_call_runtime); |
| |
| // Is there an optimization marker or optimized code in the feedback vector? |
| MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, rcx, r14, r15); |
| |
| // We found no optimized code. |
| Register entry = rcx; |
| __ movp(entry, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset)); |
| |
| // If SFI points to anything other than CompileLazy, install that. |
| __ movp(entry, FieldOperand(entry, SharedFunctionInfo::kCodeOffset)); |
| __ Move(rbx, masm->CodeObject()); |
| __ cmpp(entry, rbx); |
| __ j(equal, &gotta_call_runtime); |
| |
| // Install the SFI's code entry. |
| __ movp(FieldOperand(closure, JSFunction::kCodeOffset), entry); |
| __ movp(r14, entry); // Write barrier clobbers r14 below. |
| __ RecordWriteField(closure, JSFunction::kCodeOffset, r14, r15, |
| kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| __ leap(entry, FieldOperand(entry, Code::kHeaderSize)); |
| __ jmp(entry); |
| |
| __ bind(&gotta_call_runtime); |
| GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); |
| } |
| |
| // Lazy deserialization design doc: http://goo.gl/dxkYDZ. |
| void Builtins::Generate_DeserializeLazy(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argument count (preserved for callee) |
| // -- rdx : new target (preserved for callee) |
| // -- rdi : target function (preserved for callee) |
| // ----------------------------------- |
| |
| Label deserialize_in_runtime; |
| |
| Register target = rdi; // Must be preserved |
| Register scratch0 = rbx; |
| Register scratch1 = r12; |
| |
| CHECK(scratch0 != rax && scratch0 != rdx && scratch0 != rdi); |
| CHECK(scratch1 != rax && scratch1 != rdx && scratch1 != rdi); |
| CHECK(scratch0 != scratch1); |
| |
| // Load the builtin id for lazy deserialization from SharedFunctionInfo. |
| |
| __ AssertFunction(target); |
| __ movp(scratch0, |
| FieldOperand(target, JSFunction::kSharedFunctionInfoOffset)); |
| |
| __ movp(scratch1, |
| FieldOperand(scratch0, SharedFunctionInfo::kFunctionDataOffset)); |
| __ AssertSmi(scratch1); |
| |
| // The builtin may already have been deserialized. If that is the case, it is |
| // stored in the builtins table, and we can copy to correct code object to |
| // both the shared function info and function without calling into runtime. |
| // |
| // Otherwise, we need to call into runtime to deserialize. |
| |
| { |
| // Load the code object at builtins_table[builtin_id] into scratch1. |
| |
| __ SmiToInteger32(scratch1, scratch1); |
| __ Move(scratch0, ExternalReference::builtins_address(masm->isolate())); |
| __ movp(scratch1, Operand(scratch0, scratch1, times_pointer_size, 0)); |
| |
| // Check if the loaded code object has already been deserialized. This is |
| // the case iff it does not equal DeserializeLazy. |
| |
| __ Move(scratch0, masm->CodeObject()); |
| __ cmpp(scratch1, scratch0); |
| __ j(equal, &deserialize_in_runtime); |
| } |
| |
| { |
| // If we've reached this spot, the target builtin has been deserialized and |
| // we simply need to copy it over. First to the shared function info. |
| |
| Register target_builtin = scratch1; |
| Register shared = scratch0; |
| |
| __ movp(shared, |
| FieldOperand(target, JSFunction::kSharedFunctionInfoOffset)); |
| |
| CHECK(r14 != target && r14 != scratch0 && r14 != scratch1); |
| CHECK(r15 != target && r15 != scratch0 && r15 != scratch1); |
| |
| __ movp(FieldOperand(shared, SharedFunctionInfo::kCodeOffset), |
| target_builtin); |
| __ movp(r14, target_builtin); // Write barrier clobbers r14 below. |
| __ RecordWriteField(shared, SharedFunctionInfo::kCodeOffset, r14, r15, |
| kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| |
| // And second to the target function. |
| |
| __ movp(FieldOperand(target, JSFunction::kCodeOffset), target_builtin); |
| __ movp(r14, target_builtin); // Write barrier clobbers r14 below. |
| __ RecordWriteField(target, JSFunction::kCodeOffset, r14, r15, |
| kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| |
| // All copying is done. Jump to the deserialized code object. |
| |
| __ leap(target_builtin, FieldOperand(target_builtin, Code::kHeaderSize)); |
| __ jmp(target_builtin); |
| } |
| |
| __ bind(&deserialize_in_runtime); |
| GenerateTailCallToReturnedCode(masm, Runtime::kDeserializeLazy); |
| } |
| |
| void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argument count (preserved for callee) |
| // -- rdx : new target (preserved for callee) |
| // -- rdi : target function (preserved for callee) |
| // ----------------------------------- |
| Label failed; |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Preserve argument count for later compare. |
| __ movp(rcx, rax); |
| // Push the number of arguments to the callee. |
| __ Integer32ToSmi(rax, rax); |
| __ Push(rax); |
| // Push a copy of the target function and the new target. |
| __ Push(rdi); |
| __ Push(rdx); |
| |
| // The function. |
| __ Push(rdi); |
| // Copy arguments from caller (stdlib, foreign, heap). |
| Label args_done; |
| for (int j = 0; j < 4; ++j) { |
| Label over; |
| if (j < 3) { |
| __ cmpp(rcx, Immediate(j)); |
| __ j(not_equal, &over, Label::kNear); |
| } |
| for (int i = j - 1; i >= 0; --i) { |
| __ Push(Operand( |
| rbp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize)); |
| } |
| for (int i = 0; i < 3 - j; ++i) { |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| } |
| if (j < 3) { |
| __ jmp(&args_done, Label::kNear); |
| __ bind(&over); |
| } |
| } |
| __ bind(&args_done); |
| |
| // Call runtime, on success unwind frame, and parent frame. |
| __ CallRuntime(Runtime::kInstantiateAsmJs, 4); |
| // A smi 0 is returned on failure, an object on success. |
| __ JumpIfSmi(rax, &failed, Label::kNear); |
| |
| __ Drop(2); |
| __ Pop(rcx); |
| __ SmiToInteger32(rcx, rcx); |
| scope.GenerateLeaveFrame(); |
| |
| __ PopReturnAddressTo(rbx); |
| __ incp(rcx); |
| __ leap(rsp, Operand(rsp, rcx, times_pointer_size, 0)); |
| __ PushReturnAddressFrom(rbx); |
| __ ret(0); |
| |
| __ bind(&failed); |
| // Restore target function and new target. |
| __ Pop(rdx); |
| __ Pop(rdi); |
| __ Pop(rax); |
| __ SmiToInteger32(rax, rax); |
| } |
| // On failure, tail call back to regular js by re-calling the function |
| // which has be reset to the compile lazy builtin. |
| __ movp(rcx, FieldOperand(rdi, JSFunction::kCodeOffset)); |
| __ addp(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| __ jmp(rcx); |
| } |
| |
| namespace { |
| void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, |
| bool java_script_builtin, |
| bool with_result) { |
| const RegisterConfiguration* config(RegisterConfiguration::Default()); |
| int allocatable_register_count = config->num_allocatable_general_registers(); |
| if (with_result) { |
| // Overwrite the hole inserted by the deoptimizer with the return value from |
| // the LAZY deopt point. |
| __ movq(Operand(rsp, |
| config->num_allocatable_general_registers() * kPointerSize + |
| BuiltinContinuationFrameConstants::kFixedFrameSize), |
| rax); |
| } |
| for (int i = allocatable_register_count - 1; i >= 0; --i) { |
| int code = config->GetAllocatableGeneralCode(i); |
| __ popq(Register::from_code(code)); |
| if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { |
| __ SmiToInteger32(Register::from_code(code), Register::from_code(code)); |
| } |
| } |
| __ movq( |
| rbp, |
| Operand(rsp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); |
| const int offsetToPC = |
| BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp - kPointerSize; |
| __ popq(Operand(rsp, offsetToPC)); |
| __ Drop(offsetToPC / kPointerSize); |
| __ addq(Operand(rsp, 0), Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| __ Ret(); |
| } |
| } // namespace |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, false); |
| } |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, true); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, false); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, true); |
| } |
| |
| void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { |
| // Enter an internal frame. |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kNotifyDeoptimized); |
| // Tear down internal frame. |
| } |
| |
| DCHECK_EQ(kInterpreterAccumulatorRegister.code(), rax.code()); |
| __ movp(rax, Operand(rsp, kPCOnStackSize)); |
| __ ret(1 * kPointerSize); // Remove rax. |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rsp[0] : return address |
| // -- rsp[8] : argArray |
| // -- rsp[16] : thisArg |
| // -- rsp[24] : receiver |
| // ----------------------------------- |
| |
| // 1. Load receiver into rdi, argArray into rbx (if present), remove all |
| // arguments from the stack (including the receiver), and push thisArg (if |
| // present) instead. |
| { |
| Label no_arg_array, no_this_arg; |
| StackArgumentsAccessor args(rsp, rax); |
| __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); |
| __ movp(rbx, rdx); |
| __ movp(rdi, args.GetReceiverOperand()); |
| __ testp(rax, rax); |
| __ j(zero, &no_this_arg, Label::kNear); |
| { |
| __ movp(rdx, args.GetArgumentOperand(1)); |
| __ cmpp(rax, Immediate(1)); |
| __ j(equal, &no_arg_array, Label::kNear); |
| __ movp(rbx, args.GetArgumentOperand(2)); |
| __ bind(&no_arg_array); |
| } |
| __ bind(&no_this_arg); |
| __ PopReturnAddressTo(rcx); |
| __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); |
| __ Push(rdx); |
| __ PushReturnAddressFrom(rcx); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- rbx : argArray |
| // -- rdi : receiver |
| // -- rsp[0] : return address |
| // -- rsp[8] : thisArg |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable receiver here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Tail call with no arguments if argArray is null or undefined. |
| Label no_arguments; |
| __ JumpIfRoot(rbx, Heap::kNullValueRootIndex, &no_arguments, Label::kNear); |
| __ JumpIfRoot(rbx, Heap::kUndefinedValueRootIndex, &no_arguments, |
| Label::kNear); |
| |
| // 4a. Apply the receiver to the given argArray. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| |
| // 4b. The argArray is either null or undefined, so we tail call without any |
| // arguments to the receiver. Since we did not create a frame for |
| // Function.prototype.apply() yet, we use a normal Call builtin here. |
| __ bind(&no_arguments); |
| { |
| __ Set(rax, 0); |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { |
| // Stack Layout: |
| // rsp[0] : Return address |
| // rsp[8] : Argument n |
| // rsp[16] : Argument n-1 |
| // ... |
| // rsp[8 * n] : Argument 1 |
| // rsp[8 * (n + 1)] : Receiver (callable to call) |
| // |
| // rax contains the number of arguments, n, not counting the receiver. |
| // |
| // 1. Make sure we have at least one argument. |
| { |
| Label done; |
| __ testp(rax, rax); |
| __ j(not_zero, &done, Label::kNear); |
| __ PopReturnAddressTo(rbx); |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| __ PushReturnAddressFrom(rbx); |
| __ incp(rax); |
| __ bind(&done); |
| } |
| |
| // 2. Get the callable to call (passed as receiver) from the stack. |
| { |
| StackArgumentsAccessor args(rsp, rax); |
| __ movp(rdi, args.GetReceiverOperand()); |
| } |
| |
| // 3. Shift arguments and return address one slot down on the stack |
| // (overwriting the original receiver). Adjust argument count to make |
| // the original first argument the new receiver. |
| { |
| Label loop; |
| __ movp(rcx, rax); |
| StackArgumentsAccessor args(rsp, rcx); |
| __ bind(&loop); |
| __ movp(rbx, args.GetArgumentOperand(1)); |
| __ movp(args.GetArgumentOperand(0), rbx); |
| __ decp(rcx); |
| __ j(not_zero, &loop); // While non-zero. |
| __ DropUnderReturnAddress(1, rbx); // Drop one slot under return address. |
| __ decp(rax); // One fewer argument (first argument is new receiver). |
| } |
| |
| // 4. Call the callable. |
| // Since we did not create a frame for Function.prototype.call() yet, |
| // we use a normal Call builtin here. |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rsp[0] : return address |
| // -- rsp[8] : argumentsList |
| // -- rsp[16] : thisArgument |
| // -- rsp[24] : target |
| // -- rsp[32] : receiver |
| // ----------------------------------- |
| |
| // 1. Load target into rdi (if present), argumentsList into rbx (if present), |
| // remove all arguments from the stack (including the receiver), and push |
| // thisArgument (if present) instead. |
| { |
| Label done; |
| StackArgumentsAccessor args(rsp, rax); |
| __ LoadRoot(rdi, Heap::kUndefinedValueRootIndex); |
| __ movp(rdx, rdi); |
| __ movp(rbx, rdi); |
| __ cmpp(rax, Immediate(1)); |
| __ j(below, &done, Label::kNear); |
| __ movp(rdi, args.GetArgumentOperand(1)); // target |
| __ j(equal, &done, Label::kNear); |
| __ movp(rdx, args.GetArgumentOperand(2)); // thisArgument |
| __ cmpp(rax, Immediate(3)); |
| __ j(below, &done, Label::kNear); |
| __ movp(rbx, args.GetArgumentOperand(3)); // argumentsList |
| __ bind(&done); |
| __ PopReturnAddressTo(rcx); |
| __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); |
| __ Push(rdx); |
| __ PushReturnAddressFrom(rcx); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- rbx : argumentsList |
| // -- rdi : target |
| // -- rsp[0] : return address |
| // -- rsp[8] : thisArgument |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable target here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Apply the target to the given argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rsp[0] : return address |
| // -- rsp[8] : new.target (optional) |
| // -- rsp[16] : argumentsList |
| // -- rsp[24] : target |
| // -- rsp[32] : receiver |
| // ----------------------------------- |
| |
| // 1. Load target into rdi (if present), argumentsList into rbx (if present), |
| // new.target into rdx (if present, otherwise use target), remove all |
| // arguments from the stack (including the receiver), and push thisArgument |
| // (if present) instead. |
| { |
| Label done; |
| StackArgumentsAccessor args(rsp, rax); |
| __ LoadRoot(rdi, Heap::kUndefinedValueRootIndex); |
| __ movp(rdx, rdi); |
| __ movp(rbx, rdi); |
| __ cmpp(rax, Immediate(1)); |
| __ j(below, &done, Label::kNear); |
| __ movp(rdi, args.GetArgumentOperand(1)); // target |
| __ movp(rdx, rdi); // new.target defaults to target |
| __ j(equal, &done, Label::kNear); |
| __ movp(rbx, args.GetArgumentOperand(2)); // argumentsList |
| __ cmpp(rax, Immediate(3)); |
| __ j(below, &done, Label::kNear); |
| __ movp(rdx, args.GetArgumentOperand(3)); // new.target |
| __ bind(&done); |
| __ PopReturnAddressTo(rcx); |
| __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| __ PushReturnAddressFrom(rcx); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- rbx : argumentsList |
| // -- rdx : new.target |
| // -- rdi : target |
| // -- rsp[0] : return address |
| // -- rsp[8] : receiver (undefined) |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for constructor target here, |
| // since that's the first thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 3. We don't need to check explicitly for constructor new.target here, |
| // since that's the second thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 4. Construct the target with the given new.target and argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rsp[0] : return address |
| // -- rsp[8] : last argument |
| // ----------------------------------- |
| Label generic_array_code; |
| |
| // Get the InternalArray function. |
| __ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, rdi); |
| |
| if (FLAG_debug_code) { |
| // Initial map for the builtin InternalArray functions should be maps. |
| __ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a nullptr and a Smi. |
| STATIC_ASSERT(kSmiTag == 0); |
| Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); |
| __ Check(not_smi, |
| AbortReason::kUnexpectedInitialMapForInternalArrayFunction); |
| __ CmpObjectType(rbx, MAP_TYPE, rcx); |
| __ Check(equal, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); |
| } |
| |
| // Run the native code for the InternalArray function called as a normal |
| // function. |
| // tail call a stub |
| InternalArrayConstructorStub stub(masm->isolate()); |
| __ TailCallStub(&stub); |
| } |
| |
| void Builtins::Generate_ArrayConstructor(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rsp[0] : return address |
| // -- rsp[8] : last argument |
| // ----------------------------------- |
| Label generic_array_code; |
| |
| // Get the Array function. |
| __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, rdi); |
| |
| if (FLAG_debug_code) { |
| // Initial map for the builtin Array functions should be maps. |
| __ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a nullptr and a Smi. |
| STATIC_ASSERT(kSmiTag == 0); |
| Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); |
| __ Check(not_smi, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| __ CmpObjectType(rbx, MAP_TYPE, rcx); |
| __ Check(equal, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| } |
| |
| __ movp(rdx, rdi); |
| // Run the native code for the Array function called as a normal function. |
| // tail call a stub |
| __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); |
| ArrayConstructorStub stub(masm->isolate()); |
| __ TailCallStub(&stub); |
| } |
| |
| static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { |
| __ pushq(rbp); |
| __ movp(rbp, rsp); |
| |
| // Store the arguments adaptor context sentinel. |
| __ Push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| |
| // Push the function on the stack. |
| __ Push(rdi); |
| |
| // Preserve the number of arguments on the stack. Must preserve rax, |
| // rbx and rcx because these registers are used when copying the |
| // arguments and the receiver. |
| __ Integer32ToSmi(r8, rax); |
| __ Push(r8); |
| |
| __ Push(Immediate(0)); // Padding. |
| } |
| |
| static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { |
| // Retrieve the number of arguments from the stack. Number is a Smi. |
| __ movp(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| |
| // Leave the frame. |
| __ movp(rsp, rbp); |
| __ popq(rbp); |
| |
| // Remove caller arguments from the stack. |
| __ PopReturnAddressTo(rcx); |
| SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); |
| __ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); |
| __ PushReturnAddressFrom(rcx); |
| } |
| |
| // static |
| void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rdx : requested object size (untagged) |
| // -- rsp[0] : return address |
| // ----------------------------------- |
| __ Integer32ToSmi(rdx, rdx); |
| __ PopReturnAddressTo(rcx); |
| __ Push(rdx); |
| __ PushReturnAddressFrom(rcx); |
| __ Move(rsi, Smi::kZero); |
| __ TailCallRuntime(Runtime::kAllocateInNewSpace); |
| } |
| |
| // static |
| void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rdx : requested object size (untagged) |
| // -- rsp[0] : return address |
| // ----------------------------------- |
| __ Integer32ToSmi(rdx, rdx); |
| __ PopReturnAddressTo(rcx); |
| __ Push(rdx); |
| __ Push(Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE))); |
| __ PushReturnAddressFrom(rcx); |
| __ Move(rsi, Smi::kZero); |
| __ TailCallRuntime(Runtime::kAllocateInTargetSpace); |
| } |
| |
| // static |
| void Builtins::Generate_Abort(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rdx : message_id as Smi |
| // -- rsp[0] : return address |
| // ----------------------------------- |
| __ PopReturnAddressTo(rcx); |
| __ Push(rdx); |
| __ PushReturnAddressFrom(rcx); |
| __ Move(rsi, Smi::kZero); |
| __ TailCallRuntime(Runtime::kAbort); |
| } |
| |
| void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : actual number of arguments |
| // -- rbx : expected number of arguments |
| // -- rdx : new target (passed through to callee) |
| // -- rdi : function (passed through to callee) |
| // ----------------------------------- |
| |
| Label invoke, dont_adapt_arguments, stack_overflow; |
| Counters* counters = masm->isolate()->counters(); |
| __ IncrementCounter(counters->arguments_adaptors(), 1); |
| |
| Label enough, too_few; |
| __ cmpp(rax, rbx); |
| __ j(less, &too_few); |
| __ cmpp(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); |
| __ j(equal, &dont_adapt_arguments); |
| |
| { // Enough parameters: Actual >= expected. |
| __ bind(&enough); |
| EnterArgumentsAdaptorFrame(masm); |
| // The registers rcx and r8 will be modified. The register rbx is only read. |
| Generate_StackOverflowCheck(masm, rbx, rcx, &stack_overflow); |
| |
| // Copy receiver and all expected arguments. |
| const int offset = StandardFrameConstants::kCallerSPOffset; |
| __ leap(rax, Operand(rbp, rax, times_pointer_size, offset)); |
| __ Set(r8, -1); // account for receiver |
| |
| Label copy; |
| __ bind(©); |
| __ incp(r8); |
| __ Push(Operand(rax, 0)); |
| __ subp(rax, Immediate(kPointerSize)); |
| __ cmpp(r8, rbx); |
| __ j(less, ©); |
| __ jmp(&invoke); |
| } |
| |
| { // Too few parameters: Actual < expected. |
| __ bind(&too_few); |
| |
| EnterArgumentsAdaptorFrame(masm); |
| // The registers rcx and r8 will be modified. The register rbx is only read. |
| Generate_StackOverflowCheck(masm, rbx, rcx, &stack_overflow); |
| |
| // Copy receiver and all actual arguments. |
| const int offset = StandardFrameConstants::kCallerSPOffset; |
| __ leap(rdi, Operand(rbp, rax, times_pointer_size, offset)); |
| __ Set(r8, -1); // account for receiver |
| |
| Label copy; |
| __ bind(©); |
| __ incp(r8); |
| __ Push(Operand(rdi, 0)); |
| __ subp(rdi, Immediate(kPointerSize)); |
| __ cmpp(r8, rax); |
| __ j(less, ©); |
| |
| // Fill remaining expected arguments with undefined values. |
| Label fill; |
| __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); |
| __ bind(&fill); |
| __ incp(r8); |
| __ Push(kScratchRegister); |
| __ cmpp(r8, rbx); |
| __ j(less, &fill); |
| |
| // Restore function pointer. |
| __ movp(rdi, Operand(rbp, ArgumentsAdaptorFrameConstants::kFunctionOffset)); |
| } |
| |
| // Call the entry point. |
| __ bind(&invoke); |
| __ movp(rax, rbx); |
| // rax : expected number of arguments |
| // rdx : new target (passed through to callee) |
| // rdi : function (passed through to callee) |
| __ movp(rcx, FieldOperand(rdi, JSFunction::kCodeOffset)); |
| __ addp(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| __ call(rcx); |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); |
| |
| // Leave frame and return. |
| LeaveArgumentsAdaptorFrame(masm); |
| __ ret(0); |
| |
| // ------------------------------------------- |
| // Dont adapt arguments. |
| // ------------------------------------------- |
| __ bind(&dont_adapt_arguments); |
| __ movp(rcx, FieldOperand(rdi, JSFunction::kCodeOffset)); |
| __ addp(rcx, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| __ jmp(rcx); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ int3(); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- rdi : target |
| // -- rax : number of parameters on the stack (not including the receiver) |
| // -- rbx : arguments list (a FixedArray) |
| // -- rcx : len (number of elements to push from args) |
| // -- rdx : new.target (for [[Construct]]) |
| // -- rsp[0] : return address |
| // ----------------------------------- |
| __ AssertFixedArray(rbx); |
| |
| // Check for stack overflow. |
| { |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| Label done; |
| __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex); |
| __ movp(r8, rsp); |
| // Make r8 the space we have left. The stack might already be overflowed |
| // here which will cause r8 to become negative. |
| __ subp(r8, kScratchRegister); |
| __ sarp(r8, Immediate(kPointerSizeLog2)); |
| // Check if the arguments will overflow the stack. |
| __ cmpp(r8, rcx); |
| __ j(greater, &done, Label::kNear); // Signed comparison. |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&done); |
| } |
| |
| // Push additional arguments onto the stack. |
| { |
| __ PopReturnAddressTo(r8); |
| __ Set(r9, 0); |
| Label done, push, loop; |
| __ bind(&loop); |
| __ cmpl(r9, rcx); |
| __ j(equal, &done, Label::kNear); |
| // Turn the hole into undefined as we go. |
| __ movp(r11, |
| FieldOperand(rbx, r9, times_pointer_size, FixedArray::kHeaderSize)); |
| __ CompareRoot(r11, Heap::kTheHoleValueRootIndex); |
| __ j(not_equal, &push, Label::kNear); |
| __ LoadRoot(r11, Heap::kUndefinedValueRootIndex); |
| __ bind(&push); |
| __ Push(r11); |
| __ incl(r9); |
| __ jmp(&loop); |
| __ bind(&done); |
| __ PushReturnAddressFrom(r8); |
| __ addq(rax, r9); |
| } |
| |
| // Tail-call to the actual Call or Construct builtin. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, |
| CallOrConstructMode mode, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the new target (for [[Construct]] calls) |
| // -- rdi : the target to call (can be any Object) |
| // -- rcx : start index (to support rest parameters) |
| // ----------------------------------- |
| |
| // Check if new.target has a [[Construct]] internal method. |
| if (mode == CallOrConstructMode::kConstruct) { |
| Label new_target_constructor, new_target_not_constructor; |
| __ JumpIfSmi(rdx, &new_target_not_constructor, Label::kNear); |
| __ movp(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); |
| __ testb(FieldOperand(rbx, Map::kBitFieldOffset), |
| Immediate(Map::IsConstructorBit::kMask)); |
| __ j(not_zero, &new_target_constructor, Label::kNear); |
| __ bind(&new_target_not_constructor); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ Push(rdx); |
| __ CallRuntime(Runtime::kThrowNotConstructor); |
| } |
| __ bind(&new_target_constructor); |
| } |
| |
| // Check if we have an arguments adaptor frame below the function frame. |
| Label arguments_adaptor, arguments_done; |
| __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
| __ cmpp(Operand(rbx, CommonFrameConstants::kContextOrFrameTypeOffset), |
| Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ j(equal, &arguments_adaptor, Label::kNear); |
| { |
| __ movp(r8, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ movp(r8, FieldOperand(r8, JSFunction::kSharedFunctionInfoOffset)); |
| __ movl(r8, |
| FieldOperand(r8, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ movp(rbx, rbp); |
| } |
| __ jmp(&arguments_done, Label::kNear); |
| __ bind(&arguments_adaptor); |
| { |
| __ SmiToInteger32( |
| r8, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| } |
| __ bind(&arguments_done); |
| |
| Label stack_done, stack_overflow; |
| __ subl(r8, rcx); |
| __ j(less_equal, &stack_done); |
| { |
| // Check for stack overflow. |
| Generate_StackOverflowCheck(masm, r8, rcx, &stack_overflow, Label::kNear); |
| |
| // Forward the arguments from the caller frame. |
| { |
| Label loop; |
| __ addl(rax, r8); |
| __ PopReturnAddressTo(rcx); |
| __ bind(&loop); |
| { |
| StackArgumentsAccessor args(rbx, r8, ARGUMENTS_DONT_CONTAIN_RECEIVER); |
| __ Push(args.GetArgumentOperand(0)); |
| __ decl(r8); |
| __ j(not_zero, &loop); |
| } |
| __ PushReturnAddressFrom(rcx); |
| } |
| } |
| __ jmp(&stack_done, Label::kNear); |
| __ bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&stack_done); |
| |
| // Tail-call to the {code} handler. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_CallFunction(MacroAssembler* masm, |
| ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdi : the function to call (checked to be a JSFunction) |
| // ----------------------------------- |
| StackArgumentsAccessor args(rsp, rax); |
| __ AssertFunction(rdi); |
| |
| // ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) |
| // Check that the function is not a "classConstructor". |
| Label class_constructor; |
| __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ testl(FieldOperand(rdx, SharedFunctionInfo::kCompilerHintsOffset), |
| Immediate(SharedFunctionInfo::kClassConstructorMask)); |
| __ j(not_zero, &class_constructor); |
| |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the shared function info. |
| // -- rdi : the function to call (checked to be a JSFunction) |
| // ----------------------------------- |
| |
| // Enter the context of the function; ToObject has to run in the function |
| // context, and we also need to take the global proxy from the function |
| // context in case of conversion. |
| __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); |
| // We need to convert the receiver for non-native sloppy mode functions. |
| Label done_convert; |
| __ testl(FieldOperand(rdx, SharedFunctionInfo::kCompilerHintsOffset), |
| Immediate(SharedFunctionInfo::IsNativeBit::kMask | |
| SharedFunctionInfo::IsStrictBit::kMask)); |
| __ j(not_zero, &done_convert); |
| { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the shared function info. |
| // -- rdi : the function to call (checked to be a JSFunction) |
| // -- rsi : the function context. |
| // ----------------------------------- |
| |
| if (mode == ConvertReceiverMode::kNullOrUndefined) { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(rcx); |
| } else { |
| Label convert_to_object, convert_receiver; |
| __ movp(rcx, args.GetReceiverOperand()); |
| __ JumpIfSmi(rcx, &convert_to_object, Label::kNear); |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rbx); |
| __ j(above_equal, &done_convert); |
| if (mode != ConvertReceiverMode::kNotNullOrUndefined) { |
| Label convert_global_proxy; |
| __ JumpIfRoot(rcx, Heap::kUndefinedValueRootIndex, |
| &convert_global_proxy, Label::kNear); |
| __ JumpIfNotRoot(rcx, Heap::kNullValueRootIndex, &convert_to_object, |
| Label::kNear); |
| __ bind(&convert_global_proxy); |
| { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(rcx); |
| } |
| __ jmp(&convert_receiver, Label::kNear); |
| } |
| __ bind(&convert_to_object); |
| { |
| // Convert receiver using ToObject. |
| // TODO(bmeurer): Inline the allocation here to avoid building the frame |
| // in the fast case? (fall back to AllocateInNewSpace?) |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Integer32ToSmi(rax, rax); |
| __ Push(rax); |
| __ Push(rdi); |
| __ movp(rax, rcx); |
| __ Push(rsi); |
| __ Call(BUILTIN_CODE(masm->isolate(), ToObject), |
| RelocInfo::CODE_TARGET); |
| __ Pop(rsi); |
| __ movp(rcx, rax); |
| __ Pop(rdi); |
| __ Pop(rax); |
| __ SmiToInteger32(rax, rax); |
| } |
| __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ bind(&convert_receiver); |
| } |
| __ movp(args.GetReceiverOperand(), rcx); |
| } |
| __ bind(&done_convert); |
| |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the shared function info. |
| // -- rdi : the function to call (checked to be a JSFunction) |
| // -- rsi : the function context. |
| // ----------------------------------- |
| |
| __ movsxlq( |
| rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| ParameterCount actual(rax); |
| ParameterCount expected(rbx); |
| |
| __ InvokeFunctionCode(rdi, no_reg, expected, actual, JUMP_FUNCTION); |
| |
| // The function is a "classConstructor", need to raise an exception. |
| __ bind(&class_constructor); |
| { |
| FrameScope frame(masm, StackFrame::INTERNAL); |
| __ Push(rdi); |
| __ CallRuntime(Runtime::kThrowConstructorNonCallableError); |
| } |
| } |
| |
| namespace { |
| |
| void Generate_PushBoundArguments(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : new.target (only in case of [[Construct]]) |
| // -- rdi : target (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| |
| // Load [[BoundArguments]] into rcx and length of that into rbx. |
| Label no_bound_arguments; |
| __ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset)); |
| __ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); |
| __ testl(rbx, rbx); |
| __ j(zero, &no_bound_arguments); |
| { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : new.target (only in case of [[Construct]]) |
| // -- rdi : target (checked to be a JSBoundFunction) |
| // -- rcx : the [[BoundArguments]] (implemented as FixedArray) |
| // -- rbx : the number of [[BoundArguments]] (checked to be non-zero) |
| // ----------------------------------- |
| |
| // Reserve stack space for the [[BoundArguments]]. |
| { |
| Label done; |
| __ leap(kScratchRegister, Operand(rbx, times_pointer_size, 0)); |
| __ subp(rsp, kScratchRegister); |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack |
| // limit". |
| __ CompareRoot(rsp, Heap::kRealStackLimitRootIndex); |
| __ j(greater, &done, Label::kNear); // Signed comparison. |
| // Restore the stack pointer. |
| __ leap(rsp, Operand(rsp, rbx, times_pointer_size, 0)); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| } |
| __ bind(&done); |
| } |
| |
| // Adjust effective number of arguments to include return address. |
| __ incl(rax); |
| |
| // Relocate arguments and return address down the stack. |
| { |
| Label loop; |
| __ Set(rcx, 0); |
| __ leap(rbx, Operand(rsp, rbx, times_pointer_size, 0)); |
| __ bind(&loop); |
| __ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0)); |
| __ movp(Operand(rsp, rcx, times_pointer_size, 0), kScratchRegister); |
| __ incl(rcx); |
| __ cmpl(rcx, rax); |
| __ j(less, &loop); |
| } |
| |
| // Copy [[BoundArguments]] to the stack (below the arguments). |
| { |
| Label loop; |
| __ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset)); |
| __ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); |
| __ bind(&loop); |
| __ decl(rbx); |
| __ movp(kScratchRegister, FieldOperand(rcx, rbx, times_pointer_size, |
| FixedArray::kHeaderSize)); |
| __ movp(Operand(rsp, rax, times_pointer_size, 0), kScratchRegister); |
| __ leal(rax, Operand(rax, 1)); |
| __ j(greater, &loop); |
| } |
| |
| // Adjust effective number of arguments (rax contains the number of |
| // arguments from the call plus return address plus the number of |
| // [[BoundArguments]]), so we need to subtract one for the return address. |
| __ decl(rax); |
| } |
| __ bind(&no_bound_arguments); |
| } |
| |
| } // namespace |
| |
| // static |
| void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdi : the function to call (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| __ AssertBoundFunction(rdi); |
| |
| // Patch the receiver to [[BoundThis]]. |
| StackArgumentsAccessor args(rsp, rax); |
| __ movp(rbx, FieldOperand(rdi, JSBoundFunction::kBoundThisOffset)); |
| __ movp(args.GetReceiverOperand(), rbx); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Call the [[BoundTargetFunction]] via the Call builtin. |
| __ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdi : the target to call (can be any Object) |
| // ----------------------------------- |
| StackArgumentsAccessor args(rsp, rax); |
| |
| Label non_callable, non_function, non_smi; |
| __ JumpIfSmi(rdi, &non_callable); |
| __ bind(&non_smi); |
| __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); |
| __ j(equal, masm->isolate()->builtins()->CallFunction(mode), |
| RelocInfo::CODE_TARGET); |
| __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE); |
| __ j(equal, BUILTIN_CODE(masm->isolate(), CallBoundFunction), |
| RelocInfo::CODE_TARGET); |
| |
| // Check if target has a [[Call]] internal method. |
| __ testb(FieldOperand(rcx, Map::kBitFieldOffset), |
| Immediate(Map::IsCallableBit::kMask)); |
| __ j(zero, &non_callable, Label::kNear); |
| |
| // Check if target is a proxy and call CallProxy external builtin |
| __ CmpInstanceType(rcx, JS_PROXY_TYPE); |
| __ j(not_equal, &non_function, Label::kNear); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET); |
| |
| // 2. Call to something else, which might have a [[Call]] internal method (if |
| // not we raise an exception). |
| __ bind(&non_function); |
| // Overwrite the original receiver with the (original) target. |
| __ movp(args.GetReceiverOperand(), rdi); |
| // Let the "call_as_function_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, rdi); |
| __ Jump(masm->isolate()->builtins()->CallFunction( |
| ConvertReceiverMode::kNotNullOrUndefined), |
| RelocInfo::CODE_TARGET); |
| |
| // 3. Call to something that is not callable. |
| __ bind(&non_callable); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(rdi); |
| __ CallRuntime(Runtime::kThrowCalledNonCallable); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the new target (checked to be a constructor) |
| // -- rdi : the constructor to call (checked to be a JSFunction) |
| // ----------------------------------- |
| __ AssertFunction(rdi); |
| |
| // Calling convention for function specific ConstructStubs require |
| // rbx to contain either an AllocationSite or undefined. |
| __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); |
| |
| // Tail call to the function-specific construct stub (still in the caller |
| // context at this point). |
| __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset)); |
| __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize)); |
| __ jmp(rcx); |
| } |
| |
| // static |
| void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the new target (checked to be a constructor) |
| // -- rdi : the constructor to call (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| __ AssertBoundFunction(rdi); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Patch new.target to [[BoundTargetFunction]] if new.target equals target. |
| { |
| Label done; |
| __ cmpp(rdi, rdx); |
| __ j(not_equal, &done, Label::kNear); |
| __ movp(rdx, |
| FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ bind(&done); |
| } |
| |
| // Construct the [[BoundTargetFunction]] via the Construct builtin. |
| __ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Construct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : the number of arguments (not including the receiver) |
| // -- rdx : the new target (either the same as the constructor or |
| // the JSFunction on which new was invoked initially) |
| // -- rdi : the constructor to call (can be any Object) |
| // ----------------------------------- |
| StackArgumentsAccessor args(rsp, rax); |
| |
| // Check if target is a Smi. |
| Label non_constructor, non_proxy; |
| __ JumpIfSmi(rdi, &non_constructor, Label::kNear); |
| |
| // Dispatch based on instance type. |
| __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); |
| __ j(equal, BUILTIN_CODE(masm->isolate(), ConstructFunction), |
| RelocInfo::CODE_TARGET); |
| |
| // Check if target has a [[Construct]] internal method. |
| __ testb(FieldOperand(rcx, Map::kBitFieldOffset), |
| Immediate(Map::IsConstructorBit::kMask)); |
| __ j(zero, &non_constructor, Label::kNear); |
| |
| // Only dispatch to bound functions after checking whether they are |
| // constructors. |
| __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE); |
| __ j(equal, BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), |
| RelocInfo::CODE_TARGET); |
| |
| // Only dispatch to proxies after checking whether they are constructors. |
| __ CmpInstanceType(rcx, JS_PROXY_TYPE); |
| __ j(not_equal, &non_proxy, Label::kNear); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), |
| RelocInfo::CODE_TARGET); |
| |
| // Called Construct on an exotic Object with a [[Construct]] internal method. |
| __ bind(&non_proxy); |
| { |
| // Overwrite the original receiver with the (original) target. |
| __ movp(args.GetReceiverOperand(), rdi); |
| // Let the "call_as_constructor_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, rdi); |
| __ Jump(masm->isolate()->builtins()->CallFunction(), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // Called Construct on an Object that doesn't have a [[Construct]] internal |
| // method. |
| __ bind(&non_constructor); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| static void Generate_OnStackReplacementHelper(MacroAssembler* masm, |
| bool has_handler_frame) { |
| // Lookup the function in the JavaScript frame. |
| if (has_handler_frame) { |
| __ movp(rax, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
| __ movp(rax, Operand(rax, JavaScriptFrameConstants::kFunctionOffset)); |
| } else { |
| __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); |
| } |
| |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Pass function as argument. |
| __ Push(rax); |
| __ CallRuntime(Runtime::kCompileForOnStackReplacement); |
| } |
| |
| Label skip; |
| // If the code object is null, just return to the caller. |
| __ testp(rax, rax); |
| __ j(not_equal, &skip, Label::kNear); |
| __ ret(0); |
| |
| __ bind(&skip); |
| |
| // Drop any potential handler frame that is be sitting on top of the actual |
| // JavaScript frame. This is the case then OSR is triggered from bytecode. |
| if (has_handler_frame) { |
| __ leave(); |
| } |
| |
| // Load deoptimization data from the code object. |
| __ movp(rbx, Operand(rax, Code::kDeoptimizationDataOffset - kHeapObjectTag)); |
| |
| // Load the OSR entrypoint offset from the deoptimization data. |
| __ SmiToInteger32(rbx, |
| Operand(rbx, FixedArray::OffsetOfElementAt( |
| DeoptimizationData::kOsrPcOffsetIndex) - |
| kHeapObjectTag)); |
| |
| // Compute the target address = code_obj + header_size + osr_offset |
| __ leap(rax, Operand(rax, rbx, times_1, Code::kHeaderSize - kHeapObjectTag)); |
| |
| // Overwrite the return address on the stack. |
| __ movq(StackOperandForReturnAddress(0), rax); |
| |
| // And "return" to the OSR entry point of the function. |
| __ ret(0); |
| } |
| |
| void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { |
| Generate_OnStackReplacementHelper(masm, false); |
| } |
| |
| void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { |
| Generate_OnStackReplacementHelper(masm, true); |
| } |
| |
| void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Save all parameter registers (see wasm-linkage.cc). They might be |
| // overwritten in the runtime call below. We don't have any callee-saved |
| // registers in wasm, so no need to store anything else. |
| constexpr Register gp_regs[]{rax, rbx, rcx, rdx, rsi, rdi}; |
| constexpr XMMRegister xmm_regs[]{xmm1, xmm2, xmm3, xmm4, xmm5, xmm6}; |
| |
| for (auto reg : gp_regs) { |
| __ Push(reg); |
| } |
| __ subp(rsp, Immediate(16 * arraysize(xmm_regs))); |
| for (int i = 0, e = arraysize(xmm_regs); i < e; ++i) { |
| __ movdqu(Operand(rsp, 16 * i), xmm_regs[i]); |
| } |
| |
| // Initialize rsi register with kZero, CEntryStub will use it to set the |
| // current context on the isolate. |
| __ Move(rsi, Smi::kZero); |
| __ CallRuntime(Runtime::kWasmCompileLazy); |
| // Store returned instruction start in r11. |
| __ leap(r11, FieldOperand(rax, Code::kHeaderSize)); |
| |
| // Restore registers. |
| for (int i = arraysize(xmm_regs) - 1; i >= 0; --i) { |
| __ movdqu(xmm_regs[i], Operand(rsp, 16 * i)); |
| } |
| __ addp(rsp, Immediate(16 * arraysize(xmm_regs))); |
| for (int i = arraysize(gp_regs) - 1; i >= 0; --i) { |
| __ Pop(gp_regs[i]); |
| } |
| } |
| // Now jump to the instructions of the returned code object. |
| __ jmp(r11); |
| } |
| |
| #undef __ |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_X64 |