blob: 59872b2535b4a009151aa1344da5f9c404eca1f0 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler-dispatcher/optimizing-compile-dispatcher.h"
#include "src/base/atomicops.h"
#include "src/cancelable-task.h"
#include "src/compilation-info.h"
#include "src/compiler.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/tracing/trace-event.h"
#include "src/v8.h"
namespace v8 {
namespace internal {
namespace {
void DisposeCompilationJob(CompilationJob* job, bool restore_function_code) {
if (restore_function_code) {
Handle<JSFunction> function = job->compilation_info()->closure();
function->set_code(function->shared()->code());
if (function->IsInOptimizationQueue()) {
function->ClearOptimizationMarker();
}
// TODO(mvstanton): We can't call EnsureLiterals here due to allocation,
// but we probably shouldn't call set_code either, as this
// sometimes runs on the worker thread!
// JSFunction::EnsureLiterals(function);
}
delete job;
}
} // namespace
class OptimizingCompileDispatcher::CompileTask : public CancelableTask {
public:
explicit CompileTask(Isolate* isolate,
OptimizingCompileDispatcher* dispatcher)
: CancelableTask(isolate), isolate_(isolate), dispatcher_(dispatcher) {
base::LockGuard<base::Mutex> lock_guard(&dispatcher_->ref_count_mutex_);
++dispatcher_->ref_count_;
}
virtual ~CompileTask() {}
private:
// v8::Task overrides.
void RunInternal() override {
DisallowHeapAllocation no_allocation;
DisallowHandleAllocation no_handles;
DisallowHandleDereference no_deref;
{
TimerEventScope<TimerEventRecompileConcurrent> timer(isolate_);
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"),
"V8.RecompileConcurrent");
if (dispatcher_->recompilation_delay_ != 0) {
base::OS::Sleep(base::TimeDelta::FromMilliseconds(
dispatcher_->recompilation_delay_));
}
dispatcher_->CompileNext(dispatcher_->NextInput(true));
}
{
base::LockGuard<base::Mutex> lock_guard(&dispatcher_->ref_count_mutex_);
if (--dispatcher_->ref_count_ == 0) {
dispatcher_->ref_count_zero_.NotifyOne();
}
}
}
Isolate* isolate_;
OptimizingCompileDispatcher* dispatcher_;
DISALLOW_COPY_AND_ASSIGN(CompileTask);
};
OptimizingCompileDispatcher::~OptimizingCompileDispatcher() {
#ifdef DEBUG
{
base::LockGuard<base::Mutex> lock_guard(&ref_count_mutex_);
DCHECK_EQ(0, ref_count_);
}
#endif
DCHECK_EQ(0, input_queue_length_);
DeleteArray(input_queue_);
}
CompilationJob* OptimizingCompileDispatcher::NextInput(bool check_if_flushing) {
base::LockGuard<base::Mutex> access_input_queue_(&input_queue_mutex_);
if (input_queue_length_ == 0) return nullptr;
CompilationJob* job = input_queue_[InputQueueIndex(0)];
DCHECK_NOT_NULL(job);
input_queue_shift_ = InputQueueIndex(1);
input_queue_length_--;
if (check_if_flushing) {
if (static_cast<ModeFlag>(base::Acquire_Load(&mode_)) == FLUSH) {
AllowHandleDereference allow_handle_dereference;
DisposeCompilationJob(job, true);
return nullptr;
}
}
return job;
}
void OptimizingCompileDispatcher::CompileNext(CompilationJob* job) {
if (!job) return;
// The function may have already been optimized by OSR. Simply continue.
CompilationJob::Status status = job->ExecuteJob();
USE(status); // Prevent an unused-variable error.
// The function may have already been optimized by OSR. Simply continue.
// Use a mutex to make sure that functions marked for install
// are always also queued.
base::LockGuard<base::Mutex> access_output_queue_(&output_queue_mutex_);
output_queue_.push(job);
isolate_->stack_guard()->RequestInstallCode();
}
void OptimizingCompileDispatcher::FlushOutputQueue(bool restore_function_code) {
for (;;) {
CompilationJob* job = nullptr;
{
base::LockGuard<base::Mutex> access_output_queue_(&output_queue_mutex_);
if (output_queue_.empty()) return;
job = output_queue_.front();
output_queue_.pop();
}
DisposeCompilationJob(job, restore_function_code);
}
}
void OptimizingCompileDispatcher::Flush(BlockingBehavior blocking_behavior) {
if (blocking_behavior == BlockingBehavior::kDontBlock) {
if (FLAG_block_concurrent_recompilation) Unblock();
base::LockGuard<base::Mutex> access_input_queue_(&input_queue_mutex_);
while (input_queue_length_ > 0) {
CompilationJob* job = input_queue_[InputQueueIndex(0)];
DCHECK_NOT_NULL(job);
input_queue_shift_ = InputQueueIndex(1);
input_queue_length_--;
DisposeCompilationJob(job, true);
}
FlushOutputQueue(true);
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** Flushed concurrent recompilation queues (not blocking).\n");
}
return;
}
base::Release_Store(&mode_, static_cast<base::AtomicWord>(FLUSH));
if (FLAG_block_concurrent_recompilation) Unblock();
{
base::LockGuard<base::Mutex> lock_guard(&ref_count_mutex_);
while (ref_count_ > 0) ref_count_zero_.Wait(&ref_count_mutex_);
base::Release_Store(&mode_, static_cast<base::AtomicWord>(COMPILE));
}
FlushOutputQueue(true);
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** Flushed concurrent recompilation queues.\n");
}
}
void OptimizingCompileDispatcher::Stop() {
base::Release_Store(&mode_, static_cast<base::AtomicWord>(FLUSH));
if (FLAG_block_concurrent_recompilation) Unblock();
{
base::LockGuard<base::Mutex> lock_guard(&ref_count_mutex_);
while (ref_count_ > 0) ref_count_zero_.Wait(&ref_count_mutex_);
base::Release_Store(&mode_, static_cast<base::AtomicWord>(COMPILE));
}
if (recompilation_delay_ != 0) {
// At this point the optimizing compiler thread's event loop has stopped.
// There is no need for a mutex when reading input_queue_length_.
while (input_queue_length_ > 0) CompileNext(NextInput());
InstallOptimizedFunctions();
} else {
FlushOutputQueue(false);
}
}
void OptimizingCompileDispatcher::InstallOptimizedFunctions() {
HandleScope handle_scope(isolate_);
for (;;) {
CompilationJob* job = nullptr;
{
base::LockGuard<base::Mutex> access_output_queue_(&output_queue_mutex_);
if (output_queue_.empty()) return;
job = output_queue_.front();
output_queue_.pop();
}
CompilationInfo* info = job->compilation_info();
Handle<JSFunction> function(*info->closure());
if (function->HasOptimizedCode()) {
if (FLAG_trace_concurrent_recompilation) {
PrintF(" ** Aborting compilation for ");
function->ShortPrint();
PrintF(" as it has already been optimized.\n");
}
DisposeCompilationJob(job, false);
} else {
Compiler::FinalizeCompilationJob(job, isolate_);
}
}
}
void OptimizingCompileDispatcher::QueueForOptimization(CompilationJob* job) {
DCHECK(IsQueueAvailable());
{
// Add job to the back of the input queue.
base::LockGuard<base::Mutex> access_input_queue(&input_queue_mutex_);
DCHECK_LT(input_queue_length_, input_queue_capacity_);
input_queue_[InputQueueIndex(input_queue_length_)] = job;
input_queue_length_++;
}
if (FLAG_block_concurrent_recompilation) {
blocked_jobs_++;
} else {
V8::GetCurrentPlatform()->CallOnBackgroundThread(
new CompileTask(isolate_, this), v8::Platform::kShortRunningTask);
}
}
void OptimizingCompileDispatcher::Unblock() {
while (blocked_jobs_ > 0) {
V8::GetCurrentPlatform()->CallOnBackgroundThread(
new CompileTask(isolate_, this), v8::Platform::kShortRunningTask);
blocked_jobs_--;
}
}
} // namespace internal
} // namespace v8