blob: 846b69281e4fdef6711dde3adcc6d84a2321d5ee [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/interpreter/interpreter-assembler.h"
#include <limits>
#include <ostream>
#include "src/code-factory.h"
#include "src/frames.h"
#include "src/interface-descriptors.h"
#include "src/interpreter/bytecodes.h"
#include "src/interpreter/interpreter.h"
#include "src/machine-type.h"
#include "src/macro-assembler.h"
#include "src/objects-inl.h"
#include "src/zone/zone.h"
namespace v8 {
namespace internal {
namespace interpreter {
using compiler::CodeAssemblerState;
using compiler::Node;
InterpreterAssembler::InterpreterAssembler(CodeAssemblerState* state,
Bytecode bytecode,
OperandScale operand_scale)
: CodeStubAssembler(state),
bytecode_(bytecode),
operand_scale_(operand_scale),
VARIABLE_CONSTRUCTOR(interpreted_frame_pointer_,
MachineType::PointerRepresentation()),
VARIABLE_CONSTRUCTOR(
bytecode_array_, MachineRepresentation::kTagged,
Parameter(InterpreterDispatchDescriptor::kBytecodeArray)),
VARIABLE_CONSTRUCTOR(
bytecode_offset_, MachineType::PointerRepresentation(),
Parameter(InterpreterDispatchDescriptor::kBytecodeOffset)),
VARIABLE_CONSTRUCTOR(
dispatch_table_, MachineType::PointerRepresentation(),
Parameter(InterpreterDispatchDescriptor::kDispatchTable)),
VARIABLE_CONSTRUCTOR(
accumulator_, MachineRepresentation::kTagged,
Parameter(InterpreterDispatchDescriptor::kAccumulator)),
accumulator_use_(AccumulatorUse::kNone),
made_call_(false),
reloaded_frame_ptr_(false),
bytecode_array_valid_(true),
disable_stack_check_across_call_(false),
stack_pointer_before_call_(nullptr) {
#ifdef V8_TRACE_IGNITION
TraceBytecode(Runtime::kInterpreterTraceBytecodeEntry);
#endif
RegisterCallGenerationCallbacks([this] { CallPrologue(); },
[this] { CallEpilogue(); });
// Save the bytecode offset immediately if bytecode will make a call along the
// critical path, or it is a return bytecode.
if (Bytecodes::MakesCallAlongCriticalPath(bytecode) ||
bytecode_ == Bytecode::kReturn) {
SaveBytecodeOffset();
}
}
InterpreterAssembler::~InterpreterAssembler() {
// If the following check fails the handler does not use the
// accumulator in the way described in the bytecode definitions in
// bytecodes.h.
DCHECK_EQ(accumulator_use_, Bytecodes::GetAccumulatorUse(bytecode_));
UnregisterCallGenerationCallbacks();
}
Node* InterpreterAssembler::GetInterpretedFramePointer() {
if (!interpreted_frame_pointer_.IsBound()) {
interpreted_frame_pointer_.Bind(LoadParentFramePointer());
} else if (Bytecodes::MakesCallAlongCriticalPath(bytecode_) && made_call_ &&
!reloaded_frame_ptr_) {
interpreted_frame_pointer_.Bind(LoadParentFramePointer());
reloaded_frame_ptr_ = true;
}
return interpreted_frame_pointer_.value();
}
Node* InterpreterAssembler::BytecodeOffset() {
if (Bytecodes::MakesCallAlongCriticalPath(bytecode_) && made_call_ &&
(bytecode_offset_.value() ==
Parameter(InterpreterDispatchDescriptor::kBytecodeOffset))) {
bytecode_offset_.Bind(ReloadBytecodeOffset());
}
return bytecode_offset_.value();
}
Node* InterpreterAssembler::ReloadBytecodeOffset() {
Node* offset = LoadAndUntagRegister(Register::bytecode_offset());
if (operand_scale() != OperandScale::kSingle) {
// Add one to the offset such that it points to the actual bytecode rather
// than the Wide / ExtraWide prefix bytecode.
offset = IntPtrAdd(offset, IntPtrConstant(1));
}
return offset;
}
void InterpreterAssembler::SaveBytecodeOffset() {
Node* offset = BytecodeOffset();
if (operand_scale() != OperandScale::kSingle) {
// Subtract one from the offset such that it points to the Wide / ExtraWide
// prefix bytecode.
offset = IntPtrSub(BytecodeOffset(), IntPtrConstant(1));
}
StoreAndTagRegister(offset, Register::bytecode_offset());
}
Node* InterpreterAssembler::BytecodeArrayTaggedPointer() {
// Force a re-load of the bytecode array after every call in case the debugger
// has been activated.
if (!bytecode_array_valid_) {
bytecode_array_.Bind(LoadRegister(Register::bytecode_array()));
bytecode_array_valid_ = true;
}
return bytecode_array_.value();
}
Node* InterpreterAssembler::DispatchTableRawPointer() {
if (Bytecodes::MakesCallAlongCriticalPath(bytecode_) && made_call_ &&
(dispatch_table_.value() ==
Parameter(InterpreterDispatchDescriptor::kDispatchTable))) {
dispatch_table_.Bind(ExternalConstant(
ExternalReference::interpreter_dispatch_table_address(isolate())));
}
return dispatch_table_.value();
}
Node* InterpreterAssembler::GetAccumulatorUnchecked() {
return accumulator_.value();
}
Node* InterpreterAssembler::GetAccumulator() {
DCHECK(Bytecodes::ReadsAccumulator(bytecode_));
accumulator_use_ = accumulator_use_ | AccumulatorUse::kRead;
return GetAccumulatorUnchecked();
}
void InterpreterAssembler::SetAccumulator(Node* value) {
DCHECK(Bytecodes::WritesAccumulator(bytecode_));
accumulator_use_ = accumulator_use_ | AccumulatorUse::kWrite;
accumulator_.Bind(value);
}
Node* InterpreterAssembler::GetContext() {
return LoadRegister(Register::current_context());
}
void InterpreterAssembler::SetContext(Node* value) {
StoreRegister(value, Register::current_context());
}
Node* InterpreterAssembler::GetContextAtDepth(Node* context, Node* depth) {
Variable cur_context(this, MachineRepresentation::kTaggedPointer);
cur_context.Bind(context);
Variable cur_depth(this, MachineRepresentation::kWord32);
cur_depth.Bind(depth);
Label context_found(this);
Variable* context_search_loop_variables[2] = {&cur_depth, &cur_context};
Label context_search(this, 2, context_search_loop_variables);
// Fast path if the depth is 0.
Branch(Word32Equal(depth, Int32Constant(0)), &context_found, &context_search);
// Loop until the depth is 0.
BIND(&context_search);
{
cur_depth.Bind(Int32Sub(cur_depth.value(), Int32Constant(1)));
cur_context.Bind(
LoadContextElement(cur_context.value(), Context::PREVIOUS_INDEX));
Branch(Word32Equal(cur_depth.value(), Int32Constant(0)), &context_found,
&context_search);
}
BIND(&context_found);
return cur_context.value();
}
void InterpreterAssembler::GotoIfHasContextExtensionUpToDepth(Node* context,
Node* depth,
Label* target) {
Variable cur_context(this, MachineRepresentation::kTaggedPointer);
cur_context.Bind(context);
Variable cur_depth(this, MachineRepresentation::kWord32);
cur_depth.Bind(depth);
Variable* context_search_loop_variables[2] = {&cur_depth, &cur_context};
Label context_search(this, 2, context_search_loop_variables);
// Loop until the depth is 0.
Goto(&context_search);
BIND(&context_search);
{
// TODO(leszeks): We only need to do this check if the context had a sloppy
// eval, we could pass in a context chain bitmask to figure out which
// contexts actually need to be checked.
Node* extension_slot =
LoadContextElement(cur_context.value(), Context::EXTENSION_INDEX);
// Jump to the target if the extension slot is not a hole.
GotoIf(WordNotEqual(extension_slot, TheHoleConstant()), target);
cur_depth.Bind(Int32Sub(cur_depth.value(), Int32Constant(1)));
cur_context.Bind(
LoadContextElement(cur_context.value(), Context::PREVIOUS_INDEX));
GotoIf(Word32NotEqual(cur_depth.value(), Int32Constant(0)),
&context_search);
}
}
Node* InterpreterAssembler::RegisterLocation(Node* reg_index) {
return IntPtrAdd(GetInterpretedFramePointer(),
RegisterFrameOffset(reg_index));
}
Node* InterpreterAssembler::RegisterFrameOffset(Node* index) {
return TimesPointerSize(index);
}
Node* InterpreterAssembler::LoadRegister(Register reg) {
return Load(MachineType::AnyTagged(), GetInterpretedFramePointer(),
IntPtrConstant(reg.ToOperand() << kPointerSizeLog2));
}
Node* InterpreterAssembler::LoadRegister(Node* reg_index) {
return Load(MachineType::AnyTagged(), GetInterpretedFramePointer(),
RegisterFrameOffset(reg_index));
}
Node* InterpreterAssembler::LoadAndUntagRegister(Register reg) {
return LoadAndUntagSmi(GetInterpretedFramePointer(), reg.ToOperand()
<< kPointerSizeLog2);
}
Node* InterpreterAssembler::StoreRegister(Node* value, Register reg) {
return StoreNoWriteBarrier(
MachineRepresentation::kTagged, GetInterpretedFramePointer(),
IntPtrConstant(reg.ToOperand() << kPointerSizeLog2), value);
}
Node* InterpreterAssembler::StoreRegister(Node* value, Node* reg_index) {
return StoreNoWriteBarrier(MachineRepresentation::kTagged,
GetInterpretedFramePointer(),
RegisterFrameOffset(reg_index), value);
}
Node* InterpreterAssembler::StoreAndTagRegister(compiler::Node* value,
Register reg) {
int offset = reg.ToOperand() << kPointerSizeLog2;
return StoreAndTagSmi(GetInterpretedFramePointer(), offset, value);
}
Node* InterpreterAssembler::NextRegister(Node* reg_index) {
// Register indexes are negative, so the next index is minus one.
return IntPtrAdd(reg_index, IntPtrConstant(-1));
}
Node* InterpreterAssembler::OperandOffset(int operand_index) {
return IntPtrConstant(
Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale()));
}
Node* InterpreterAssembler::BytecodeOperandUnsignedByte(int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(OperandSize::kByte, Bytecodes::GetOperandSize(
bytecode_, operand_index, operand_scale()));
Node* operand_offset = OperandOffset(operand_index);
return Load(MachineType::Uint8(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), operand_offset));
}
Node* InterpreterAssembler::BytecodeOperandSignedByte(int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(OperandSize::kByte, Bytecodes::GetOperandSize(
bytecode_, operand_index, operand_scale()));
Node* operand_offset = OperandOffset(operand_index);
return Load(MachineType::Int8(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), operand_offset));
}
compiler::Node* InterpreterAssembler::BytecodeOperandReadUnaligned(
int relative_offset, MachineType result_type) {
static const int kMaxCount = 4;
DCHECK(!TargetSupportsUnalignedAccess());
int count;
switch (result_type.representation()) {
case MachineRepresentation::kWord16:
count = 2;
break;
case MachineRepresentation::kWord32:
count = 4;
break;
default:
UNREACHABLE();
break;
}
MachineType msb_type =
result_type.IsSigned() ? MachineType::Int8() : MachineType::Uint8();
#if V8_TARGET_LITTLE_ENDIAN
const int kStep = -1;
int msb_offset = count - 1;
#elif V8_TARGET_BIG_ENDIAN
const int kStep = 1;
int msb_offset = 0;
#else
#error "Unknown Architecture"
#endif
// Read the most signicant bytecode into bytes[0] and then in order
// down to least significant in bytes[count - 1].
DCHECK_LE(count, kMaxCount);
compiler::Node* bytes[kMaxCount];
for (int i = 0; i < count; i++) {
MachineType machine_type = (i == 0) ? msb_type : MachineType::Uint8();
Node* offset = IntPtrConstant(relative_offset + msb_offset + i * kStep);
Node* array_offset = IntPtrAdd(BytecodeOffset(), offset);
bytes[i] = Load(machine_type, BytecodeArrayTaggedPointer(), array_offset);
}
// Pack LSB to MSB.
Node* result = bytes[--count];
for (int i = 1; --count >= 0; i++) {
Node* shift = Int32Constant(i * kBitsPerByte);
Node* value = Word32Shl(bytes[count], shift);
result = Word32Or(value, result);
}
return result;
}
Node* InterpreterAssembler::BytecodeOperandUnsignedShort(int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(
OperandSize::kShort,
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()));
int operand_offset =
Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale());
if (TargetSupportsUnalignedAccess()) {
return Load(MachineType::Uint16(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)));
} else {
return BytecodeOperandReadUnaligned(operand_offset, MachineType::Uint16());
}
}
Node* InterpreterAssembler::BytecodeOperandSignedShort(int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(
OperandSize::kShort,
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()));
int operand_offset =
Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale());
if (TargetSupportsUnalignedAccess()) {
return Load(MachineType::Int16(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)));
} else {
return BytecodeOperandReadUnaligned(operand_offset, MachineType::Int16());
}
}
Node* InterpreterAssembler::BytecodeOperandUnsignedQuad(int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(OperandSize::kQuad, Bytecodes::GetOperandSize(
bytecode_, operand_index, operand_scale()));
int operand_offset =
Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale());
if (TargetSupportsUnalignedAccess()) {
return Load(MachineType::Uint32(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)));
} else {
return BytecodeOperandReadUnaligned(operand_offset, MachineType::Uint32());
}
}
Node* InterpreterAssembler::BytecodeOperandSignedQuad(int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(OperandSize::kQuad, Bytecodes::GetOperandSize(
bytecode_, operand_index, operand_scale()));
int operand_offset =
Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale());
if (TargetSupportsUnalignedAccess()) {
return Load(MachineType::Int32(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)));
} else {
return BytecodeOperandReadUnaligned(operand_offset, MachineType::Int32());
}
}
Node* InterpreterAssembler::BytecodeSignedOperand(int operand_index,
OperandSize operand_size) {
DCHECK(!Bytecodes::IsUnsignedOperandType(
Bytecodes::GetOperandType(bytecode_, operand_index)));
switch (operand_size) {
case OperandSize::kByte:
return BytecodeOperandSignedByte(operand_index);
case OperandSize::kShort:
return BytecodeOperandSignedShort(operand_index);
case OperandSize::kQuad:
return BytecodeOperandSignedQuad(operand_index);
case OperandSize::kNone:
UNREACHABLE();
}
return nullptr;
}
Node* InterpreterAssembler::BytecodeUnsignedOperand(int operand_index,
OperandSize operand_size) {
DCHECK(Bytecodes::IsUnsignedOperandType(
Bytecodes::GetOperandType(bytecode_, operand_index)));
switch (operand_size) {
case OperandSize::kByte:
return BytecodeOperandUnsignedByte(operand_index);
case OperandSize::kShort:
return BytecodeOperandUnsignedShort(operand_index);
case OperandSize::kQuad:
return BytecodeOperandUnsignedQuad(operand_index);
case OperandSize::kNone:
UNREACHABLE();
}
return nullptr;
}
Node* InterpreterAssembler::BytecodeOperandCount(int operand_index) {
DCHECK_EQ(OperandType::kRegCount,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return BytecodeUnsignedOperand(operand_index, operand_size);
}
Node* InterpreterAssembler::BytecodeOperandFlag(int operand_index) {
DCHECK_EQ(OperandType::kFlag8,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
DCHECK_EQ(operand_size, OperandSize::kByte);
return BytecodeUnsignedOperand(operand_index, operand_size);
}
Node* InterpreterAssembler::BytecodeOperandUImm(int operand_index) {
DCHECK_EQ(OperandType::kUImm,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return BytecodeUnsignedOperand(operand_index, operand_size);
}
Node* InterpreterAssembler::BytecodeOperandUImmWord(int operand_index) {
return ChangeUint32ToWord(BytecodeOperandUImm(operand_index));
}
Node* InterpreterAssembler::BytecodeOperandUImmSmi(int operand_index) {
return SmiFromWord32(BytecodeOperandUImm(operand_index));
}
Node* InterpreterAssembler::BytecodeOperandImm(int operand_index) {
DCHECK_EQ(OperandType::kImm,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return BytecodeSignedOperand(operand_index, operand_size);
}
Node* InterpreterAssembler::BytecodeOperandImmIntPtr(int operand_index) {
return ChangeInt32ToIntPtr(BytecodeOperandImm(operand_index));
}
Node* InterpreterAssembler::BytecodeOperandImmSmi(int operand_index) {
return SmiFromWord32(BytecodeOperandImm(operand_index));
}
Node* InterpreterAssembler::BytecodeOperandIdxInt32(int operand_index) {
DCHECK_EQ(OperandType::kIdx,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return BytecodeUnsignedOperand(operand_index, operand_size);
}
Node* InterpreterAssembler::BytecodeOperandIdx(int operand_index) {
return ChangeUint32ToWord(BytecodeOperandIdxInt32(operand_index));
}
Node* InterpreterAssembler::BytecodeOperandIdxSmi(int operand_index) {
return SmiTag(BytecodeOperandIdx(operand_index));
}
Node* InterpreterAssembler::BytecodeOperandReg(int operand_index) {
DCHECK(Bytecodes::IsRegisterOperandType(
Bytecodes::GetOperandType(bytecode_, operand_index)));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return ChangeInt32ToIntPtr(
BytecodeSignedOperand(operand_index, operand_size));
}
Node* InterpreterAssembler::BytecodeOperandRuntimeId(int operand_index) {
DCHECK_EQ(OperandType::kRuntimeId,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
DCHECK_EQ(operand_size, OperandSize::kShort);
return BytecodeUnsignedOperand(operand_index, operand_size);
}
Node* InterpreterAssembler::BytecodeOperandNativeContextIndex(
int operand_index) {
DCHECK_EQ(OperandType::kNativeContextIndex,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return ChangeUint32ToWord(
BytecodeUnsignedOperand(operand_index, operand_size));
}
Node* InterpreterAssembler::BytecodeOperandIntrinsicId(int operand_index) {
DCHECK_EQ(OperandType::kIntrinsicId,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
DCHECK_EQ(operand_size, OperandSize::kByte);
return BytecodeUnsignedOperand(operand_index, operand_size);
}
Node* InterpreterAssembler::LoadConstantPoolEntry(Node* index) {
Node* constant_pool = LoadObjectField(BytecodeArrayTaggedPointer(),
BytecodeArray::kConstantPoolOffset);
return LoadFixedArrayElement(constant_pool, index);
}
Node* InterpreterAssembler::LoadAndUntagConstantPoolEntry(Node* index) {
return SmiUntag(LoadConstantPoolEntry(index));
}
Node* InterpreterAssembler::LoadFeedbackVector() {
Node* function = LoadRegister(Register::function_closure());
Node* cell = LoadObjectField(function, JSFunction::kFeedbackVectorOffset);
Node* vector = LoadObjectField(cell, Cell::kValueOffset);
return vector;
}
void InterpreterAssembler::CallPrologue() {
if (!Bytecodes::MakesCallAlongCriticalPath(bytecode_)) {
// Bytecodes that make a call along the critical path save the bytecode
// offset in the bytecode handler's prologue. For other bytecodes, if
// there are multiple calls in the bytecode handler, you need to spill
// before each of them, unless SaveBytecodeOffset has explicitly been called
// in a path that dominates _all_ of those calls (which we don't track).
SaveBytecodeOffset();
}
if (FLAG_debug_code && !disable_stack_check_across_call_) {
DCHECK_NULL(stack_pointer_before_call_);
stack_pointer_before_call_ = LoadStackPointer();
}
bytecode_array_valid_ = false;
made_call_ = true;
}
void InterpreterAssembler::CallEpilogue() {
if (FLAG_debug_code && !disable_stack_check_across_call_) {
Node* stack_pointer_after_call = LoadStackPointer();
Node* stack_pointer_before_call = stack_pointer_before_call_;
stack_pointer_before_call_ = nullptr;
AbortIfWordNotEqual(stack_pointer_before_call, stack_pointer_after_call,
AbortReason::kUnexpectedStackPointer);
}
}
void InterpreterAssembler::IncrementCallCount(Node* feedback_vector,
Node* slot_id) {
Comment("increment call count");
Node* call_count =
LoadFeedbackVectorSlot(feedback_vector, slot_id, kPointerSize);
// The lowest {CallICNexus::CallCountField::kShift} bits of the call
// count are used as flags. To increment the call count by 1 we hence
// have to increment by 1 << {CallICNexus::CallCountField::kShift}.
Node* new_count =
SmiAdd(call_count, SmiConstant(1 << CallICNexus::CallCountField::kShift));
// Count is Smi, so we don't need a write barrier.
StoreFeedbackVectorSlot(feedback_vector, slot_id, new_count,
SKIP_WRITE_BARRIER, kPointerSize);
}
void InterpreterAssembler::CollectCallableFeedback(Node* target, Node* context,
Node* feedback_vector,
Node* slot_id) {
Label extra_checks(this, Label::kDeferred), done(this);
// Check if we have monomorphic {target} feedback already.
Node* feedback_element = LoadFeedbackVectorSlot(feedback_vector, slot_id);
Node* feedback_value = LoadWeakCellValueUnchecked(feedback_element);
Comment("check if monomorphic");
Node* is_monomorphic = WordEqual(target, feedback_value);
GotoIf(is_monomorphic, &done);
// Check if it is a megamorphic {target}.
Comment("check if megamorphic");
Node* is_megamorphic =
WordEqual(feedback_element,
HeapConstant(FeedbackVector::MegamorphicSentinel(isolate())));
Branch(is_megamorphic, &done, &extra_checks);
BIND(&extra_checks);
{
Label initialize(this), mark_megamorphic(this);
Comment("check if weak cell");
Node* is_uninitialized = WordEqual(
feedback_element,
HeapConstant(FeedbackVector::UninitializedSentinel(isolate())));
GotoIf(is_uninitialized, &initialize);
CSA_ASSERT(this, IsWeakCell(feedback_element));
// If the weak cell is cleared, we have a new chance to become monomorphic.
Comment("check if weak cell is cleared");
Node* is_smi = TaggedIsSmi(feedback_value);
Branch(is_smi, &initialize, &mark_megamorphic);
BIND(&initialize);
{
// Check if {target} is a JSFunction in the current native context.
Comment("check if function in same native context");
GotoIf(TaggedIsSmi(target), &mark_megamorphic);
// Check if the {target} is a JSFunction or JSBoundFunction
// in the current native context.
VARIABLE(var_current, MachineRepresentation::kTagged, target);
Label loop(this, &var_current), done_loop(this);
Goto(&loop);
BIND(&loop);
{
Label if_boundfunction(this), if_function(this);
Node* current = var_current.value();
CSA_ASSERT(this, TaggedIsNotSmi(current));
Node* current_instance_type = LoadInstanceType(current);
GotoIf(InstanceTypeEqual(current_instance_type, JS_BOUND_FUNCTION_TYPE),
&if_boundfunction);
Branch(InstanceTypeEqual(current_instance_type, JS_FUNCTION_TYPE),
&if_function, &mark_megamorphic);
BIND(&if_function);
{
// Check that the JSFunction {current} is in the current native
// context.
Node* current_context =
LoadObjectField(current, JSFunction::kContextOffset);
Node* current_native_context = LoadNativeContext(current_context);
Branch(WordEqual(LoadNativeContext(context), current_native_context),
&done_loop, &mark_megamorphic);
}
BIND(&if_boundfunction);
{
// Continue with the [[BoundTargetFunction]] of {target}.
var_current.Bind(LoadObjectField(
current, JSBoundFunction::kBoundTargetFunctionOffset));
Goto(&loop);
}
}
BIND(&done_loop);
CreateWeakCellInFeedbackVector(feedback_vector, slot_id, target);
ReportFeedbackUpdate(feedback_vector, slot_id, "Call:Initialize");
Goto(&done);
}
BIND(&mark_megamorphic);
{
// MegamorphicSentinel is an immortal immovable object so
// write-barrier is not needed.
Comment("transition to megamorphic");
DCHECK(Heap::RootIsImmortalImmovable(Heap::kmegamorphic_symbolRootIndex));
StoreFeedbackVectorSlot(
feedback_vector, slot_id,
HeapConstant(FeedbackVector::MegamorphicSentinel(isolate())),
SKIP_WRITE_BARRIER);
ReportFeedbackUpdate(feedback_vector, slot_id,
"Call:TransitionMegamorphic");
Goto(&done);
}
}
BIND(&done);
}
void InterpreterAssembler::CollectCallFeedback(Node* target, Node* context,
Node* feedback_vector,
Node* slot_id) {
// Increment the call count.
IncrementCallCount(feedback_vector, slot_id);
// Collect the callable {target} feedback.
CollectCallableFeedback(target, context, feedback_vector, slot_id);
}
void InterpreterAssembler::CallJSAndDispatch(
Node* function, Node* context, Node* first_arg, Node* arg_count,
ConvertReceiverMode receiver_mode) {
DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_));
DCHECK(Bytecodes::IsCallOrConstruct(bytecode_) ||
bytecode_ == Bytecode::kInvokeIntrinsic);
DCHECK_EQ(Bytecodes::GetReceiverMode(bytecode_), receiver_mode);
Callable callable = CodeFactory::InterpreterPushArgsThenCall(
isolate(), receiver_mode, InterpreterPushArgsMode::kOther);
Node* code_target = HeapConstant(callable.code());
TailCallStubThenBytecodeDispatch(callable.descriptor(), code_target, context,
arg_count, first_arg, function);
// TailCallStubThenDispatch updates accumulator with result.
accumulator_use_ = accumulator_use_ | AccumulatorUse::kWrite;
}
template <class... TArgs>
void InterpreterAssembler::CallJSAndDispatch(Node* function, Node* context,
Node* arg_count,
ConvertReceiverMode receiver_mode,
TArgs... args) {
DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_));
DCHECK(Bytecodes::IsCallOrConstruct(bytecode_) ||
bytecode_ == Bytecode::kInvokeIntrinsic);
DCHECK_EQ(Bytecodes::GetReceiverMode(bytecode_), receiver_mode);
Callable callable = CodeFactory::Call(isolate());
Node* code_target = HeapConstant(callable.code());
if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
// The first argument parameter (the receiver) is implied to be undefined.
TailCallStubThenBytecodeDispatch(
callable.descriptor(), code_target, context, function, arg_count,
static_cast<Node*>(UndefinedConstant()), args...);
} else {
TailCallStubThenBytecodeDispatch(callable.descriptor(), code_target,
context, function, arg_count, args...);
}
// TailCallStubThenDispatch updates accumulator with result.
accumulator_use_ = accumulator_use_ | AccumulatorUse::kWrite;
}
// Instantiate CallJSAndDispatch() for argument counts used by interpreter
// generator.
template V8_EXPORT_PRIVATE void InterpreterAssembler::CallJSAndDispatch(
Node* function, Node* context, Node* arg_count,
ConvertReceiverMode receiver_mode);
template V8_EXPORT_PRIVATE void InterpreterAssembler::CallJSAndDispatch(
Node* function, Node* context, Node* arg_count,
ConvertReceiverMode receiver_mode, Node*);
template V8_EXPORT_PRIVATE void InterpreterAssembler::CallJSAndDispatch(
Node* function, Node* context, Node* arg_count,
ConvertReceiverMode receiver_mode, Node*, Node*);
template V8_EXPORT_PRIVATE void InterpreterAssembler::CallJSAndDispatch(
Node* function, Node* context, Node* arg_count,
ConvertReceiverMode receiver_mode, Node*, Node*, Node*);
void InterpreterAssembler::CallJSWithSpreadAndDispatch(
Node* function, Node* context, Node* first_arg, Node* arg_count,
Node* slot_id, Node* feedback_vector) {
DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_));
DCHECK_EQ(Bytecodes::GetReceiverMode(bytecode_), ConvertReceiverMode::kAny);
CollectCallFeedback(function, context, feedback_vector, slot_id);
Comment("call using CallWithSpread builtin");
Callable callable = CodeFactory::InterpreterPushArgsThenCall(
isolate(), ConvertReceiverMode::kAny,
InterpreterPushArgsMode::kWithFinalSpread);
Node* code_target = HeapConstant(callable.code());
TailCallStubThenBytecodeDispatch(callable.descriptor(), code_target, context,
arg_count, first_arg, function);
// TailCallStubThenDispatch updates accumulator with result.
accumulator_use_ = accumulator_use_ | AccumulatorUse::kWrite;
}
Node* InterpreterAssembler::Construct(Node* target, Node* context,
Node* new_target, Node* first_arg,
Node* arg_count, Node* slot_id,
Node* feedback_vector) {
DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_));
VARIABLE(var_result, MachineRepresentation::kTagged);
VARIABLE(var_site, MachineRepresentation::kTagged);
Label extra_checks(this, Label::kDeferred), return_result(this, &var_result),
construct(this), construct_array(this, &var_site);
// Increment the call count.
IncrementCallCount(feedback_vector, slot_id);
// Check if we have monomorphic {new_target} feedback already.
Node* feedback_element = LoadFeedbackVectorSlot(feedback_vector, slot_id);
Node* feedback_value = LoadWeakCellValueUnchecked(feedback_element);
Branch(WordEqual(new_target, feedback_value), &construct, &extra_checks);
BIND(&extra_checks);
{
Label check_allocation_site(this), check_initialized(this),
initialize(this), mark_megamorphic(this);
// Check if it is a megamorphic {new_target}..
Comment("check if megamorphic");
Node* is_megamorphic =
WordEqual(feedback_element,
HeapConstant(FeedbackVector::MegamorphicSentinel(isolate())));
GotoIf(is_megamorphic, &construct);
Comment("check if weak cell");
Node* feedback_element_map = LoadMap(feedback_element);
GotoIfNot(IsWeakCellMap(feedback_element_map), &check_allocation_site);
// If the weak cell is cleared, we have a new chance to become monomorphic.
Comment("check if weak cell is cleared");
Node* is_smi = TaggedIsSmi(feedback_value);
Branch(is_smi, &initialize, &mark_megamorphic);
BIND(&check_allocation_site);
{
// Check if it is an AllocationSite.
Comment("check if allocation site");
GotoIfNot(IsAllocationSiteMap(feedback_element_map), &check_initialized);
// Make sure that {target} and {new_target} are the Array constructor.
Node* array_function = LoadContextElement(LoadNativeContext(context),
Context::ARRAY_FUNCTION_INDEX);
GotoIfNot(WordEqual(target, array_function), &mark_megamorphic);
GotoIfNot(WordEqual(new_target, array_function), &mark_megamorphic);
var_site.Bind(feedback_element);
Goto(&construct_array);
}
BIND(&check_initialized);
{
// Check if it is uninitialized.
Comment("check if uninitialized");
Node* is_uninitialized = WordEqual(
feedback_element, LoadRoot(Heap::kuninitialized_symbolRootIndex));
Branch(is_uninitialized, &initialize, &mark_megamorphic);
}
BIND(&initialize);
{
Comment("check if function in same native context");
GotoIf(TaggedIsSmi(new_target), &mark_megamorphic);
// Check if the {new_target} is a JSFunction or JSBoundFunction
// in the current native context.
VARIABLE(var_current, MachineRepresentation::kTagged, new_target);
Label loop(this, &var_current), done_loop(this);
Goto(&loop);
BIND(&loop);
{
Label if_boundfunction(this), if_function(this);
Node* current = var_current.value();
CSA_ASSERT(this, TaggedIsNotSmi(current));
Node* current_instance_type = LoadInstanceType(current);
GotoIf(InstanceTypeEqual(current_instance_type, JS_BOUND_FUNCTION_TYPE),
&if_boundfunction);
Branch(InstanceTypeEqual(current_instance_type, JS_FUNCTION_TYPE),
&if_function, &mark_megamorphic);
BIND(&if_function);
{
// Check that the JSFunction {current} is in the current native
// context.
Node* current_context =
LoadObjectField(current, JSFunction::kContextOffset);
Node* current_native_context = LoadNativeContext(current_context);
Branch(WordEqual(LoadNativeContext(context), current_native_context),
&done_loop, &mark_megamorphic);
}
BIND(&if_boundfunction);
{
// Continue with the [[BoundTargetFunction]] of {current}.
var_current.Bind(LoadObjectField(
current, JSBoundFunction::kBoundTargetFunctionOffset));
Goto(&loop);
}
}
BIND(&done_loop);
// Create an AllocationSite if {target} and {new_target} refer
// to the current native context's Array constructor.
Label create_allocation_site(this), create_weak_cell(this);
GotoIfNot(WordEqual(target, new_target), &create_weak_cell);
Node* array_function = LoadContextElement(LoadNativeContext(context),
Context::ARRAY_FUNCTION_INDEX);
Branch(WordEqual(target, array_function), &create_allocation_site,
&create_weak_cell);
BIND(&create_allocation_site);
{
var_site.Bind(CreateAllocationSiteInFeedbackVector(feedback_vector,
SmiTag(slot_id)));
ReportFeedbackUpdate(feedback_vector, slot_id,
"Construct:CreateAllocationSite");
Goto(&construct_array);
}
BIND(&create_weak_cell);
{
CreateWeakCellInFeedbackVector(feedback_vector, slot_id, new_target);
ReportFeedbackUpdate(feedback_vector, slot_id,
"Construct:CreateWeakCell");
Goto(&construct);
}
}
BIND(&mark_megamorphic);
{
// MegamorphicSentinel is an immortal immovable object so
// write-barrier is not needed.
Comment("transition to megamorphic");
DCHECK(Heap::RootIsImmortalImmovable(Heap::kmegamorphic_symbolRootIndex));
StoreFeedbackVectorSlot(
feedback_vector, slot_id,
HeapConstant(FeedbackVector::MegamorphicSentinel(isolate())),
SKIP_WRITE_BARRIER);
ReportFeedbackUpdate(feedback_vector, slot_id,
"Construct:TransitionMegamorphic");
Goto(&construct);
}
}
BIND(&construct_array);
{
// TODO(bmeurer): Introduce a dedicated builtin to deal with the Array
// constructor feedback collection inside of Ignition.
Comment("call using ConstructArray builtin");
Callable callable = CodeFactory::InterpreterPushArgsThenConstruct(
isolate(), InterpreterPushArgsMode::kJSFunction);
Node* code_target = HeapConstant(callable.code());
var_result.Bind(CallStub(callable.descriptor(), code_target, context,
arg_count, new_target, target, var_site.value(),
first_arg));
Goto(&return_result);
}
BIND(&construct);
{
// TODO(bmeurer): Remove the generic type_info parameter from the Construct.
Comment("call using Construct builtin");
Callable callable = CodeFactory::InterpreterPushArgsThenConstruct(
isolate(), InterpreterPushArgsMode::kOther);
Node* code_target = HeapConstant(callable.code());
var_result.Bind(CallStub(callable.descriptor(), code_target, context,
arg_count, new_target, target, UndefinedConstant(),
first_arg));
Goto(&return_result);
}
BIND(&return_result);
return var_result.value();
}
Node* InterpreterAssembler::ConstructWithSpread(Node* target, Node* context,
Node* new_target,
Node* first_arg,
Node* arg_count, Node* slot_id,
Node* feedback_vector) {
// TODO(bmeurer): Unify this with the Construct bytecode feedback
// above once we have a way to pass the AllocationSite to the Array
// constructor _and_ spread the last argument at the same time.
DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_));
Label extra_checks(this, Label::kDeferred), construct(this);
// Increment the call count.
IncrementCallCount(feedback_vector, slot_id);
// Check if we have monomorphic {new_target} feedback already.
Node* feedback_element = LoadFeedbackVectorSlot(feedback_vector, slot_id);
Node* feedback_value = LoadWeakCellValueUnchecked(feedback_element);
Branch(WordEqual(new_target, feedback_value), &construct, &extra_checks);
BIND(&extra_checks);
{
Label check_initialized(this), initialize(this), mark_megamorphic(this);
// Check if it is a megamorphic {new_target}.
Comment("check if megamorphic");
Node* is_megamorphic =
WordEqual(feedback_element,
HeapConstant(FeedbackVector::MegamorphicSentinel(isolate())));
GotoIf(is_megamorphic, &construct);
Comment("check if weak cell");
Node* is_weak_cell = WordEqual(LoadMap(feedback_element),
LoadRoot(Heap::kWeakCellMapRootIndex));
GotoIfNot(is_weak_cell, &check_initialized);
// If the weak cell is cleared, we have a new chance to become monomorphic.
Comment("check if weak cell is cleared");
Node* is_smi = TaggedIsSmi(feedback_value);
Branch(is_smi, &initialize, &mark_megamorphic);
BIND(&check_initialized);
{
// Check if it is uninitialized.
Comment("check if uninitialized");
Node* is_uninitialized = WordEqual(
feedback_element, LoadRoot(Heap::kuninitialized_symbolRootIndex));
Branch(is_uninitialized, &initialize, &mark_megamorphic);
}
BIND(&initialize);
{
Comment("check if function in same native context");
GotoIf(TaggedIsSmi(new_target), &mark_megamorphic);
// Check if the {new_target} is a JSFunction or JSBoundFunction
// in the current native context.
VARIABLE(var_current, MachineRepresentation::kTagged, new_target);
Label loop(this, &var_current), done_loop(this);
Goto(&loop);
BIND(&loop);
{
Label if_boundfunction(this), if_function(this);
Node* current = var_current.value();
CSA_ASSERT(this, TaggedIsNotSmi(current));
Node* current_instance_type = LoadInstanceType(current);
GotoIf(InstanceTypeEqual(current_instance_type, JS_BOUND_FUNCTION_TYPE),
&if_boundfunction);
Branch(InstanceTypeEqual(current_instance_type, JS_FUNCTION_TYPE),
&if_function, &mark_megamorphic);
BIND(&if_function);
{
// Check that the JSFunction {current} is in the current native
// context.
Node* current_context =
LoadObjectField(current, JSFunction::kContextOffset);
Node* current_native_context = LoadNativeContext(current_context);
Branch(WordEqual(LoadNativeContext(context), current_native_context),
&done_loop, &mark_megamorphic);
}
BIND(&if_boundfunction);
{
// Continue with the [[BoundTargetFunction]] of {current}.
var_current.Bind(LoadObjectField(
current, JSBoundFunction::kBoundTargetFunctionOffset));
Goto(&loop);
}
}
BIND(&done_loop);
CreateWeakCellInFeedbackVector(feedback_vector, slot_id, new_target);
ReportFeedbackUpdate(feedback_vector, slot_id,
"ConstructWithSpread:Initialize");
Goto(&construct);
}
BIND(&mark_megamorphic);
{
// MegamorphicSentinel is an immortal immovable object so
// write-barrier is not needed.
Comment("transition to megamorphic");
DCHECK(Heap::RootIsImmortalImmovable(Heap::kmegamorphic_symbolRootIndex));
StoreFeedbackVectorSlot(
feedback_vector, slot_id,
HeapConstant(FeedbackVector::MegamorphicSentinel(isolate())),
SKIP_WRITE_BARRIER);
ReportFeedbackUpdate(feedback_vector, slot_id,
"ConstructWithSpread:TransitionMegamorphic");
Goto(&construct);
}
}
BIND(&construct);
Comment("call using ConstructWithSpread builtin");
Callable callable = CodeFactory::InterpreterPushArgsThenConstruct(
isolate(), InterpreterPushArgsMode::kWithFinalSpread);
Node* code_target = HeapConstant(callable.code());
return CallStub(callable.descriptor(), code_target, context, arg_count,
new_target, target, UndefinedConstant(), first_arg);
}
Node* InterpreterAssembler::CallRuntimeN(Node* function_id, Node* context,
Node* first_arg, Node* arg_count,
int result_size) {
DCHECK(Bytecodes::MakesCallAlongCriticalPath(bytecode_));
DCHECK(Bytecodes::IsCallRuntime(bytecode_));
Callable callable = CodeFactory::InterpreterCEntry(isolate(), result_size);
Node* code_target = HeapConstant(callable.code());
// Get the function entry from the function id.
Node* function_table = ExternalConstant(
ExternalReference::runtime_function_table_address(isolate()));
Node* function_offset =
Int32Mul(function_id, Int32Constant(sizeof(Runtime::Function)));
Node* function =
IntPtrAdd(function_table, ChangeUint32ToWord(function_offset));
Node* function_entry =
Load(MachineType::Pointer(), function,
IntPtrConstant(offsetof(Runtime::Function, entry)));
return CallStubR(callable.descriptor(), result_size, code_target, context,
arg_count, first_arg, function_entry);
}
void InterpreterAssembler::UpdateInterruptBudget(Node* weight, bool backward) {
Comment("[ UpdateInterruptBudget");
Node* budget_offset =
IntPtrConstant(BytecodeArray::kInterruptBudgetOffset - kHeapObjectTag);
// Assert that the weight is positive (negative weights should be implemented
// as backward updates).
CSA_ASSERT(this, Int32GreaterThanOrEqual(weight, Int32Constant(0)));
// Update budget by |weight| and check if it reaches zero.
Variable new_budget(this, MachineRepresentation::kWord32);
Node* old_budget =
Load(MachineType::Int32(), BytecodeArrayTaggedPointer(), budget_offset);
// Make sure we include the current bytecode in the budget calculation.
Node* budget_after_bytecode =
Int32Sub(old_budget, Int32Constant(CurrentBytecodeSize()));
if (backward) {
new_budget.Bind(Int32Sub(budget_after_bytecode, weight));
Node* condition =
Int32GreaterThanOrEqual(new_budget.value(), Int32Constant(0));
Label ok(this), interrupt_check(this, Label::kDeferred);
Branch(condition, &ok, &interrupt_check);
// Perform interrupt and reset budget.
BIND(&interrupt_check);
{
CallRuntime(Runtime::kInterrupt, GetContext());
new_budget.Bind(Int32Constant(Interpreter::kInterruptBudget));
Goto(&ok);
}
BIND(&ok);
} else {
// For a forward jump, we know we only increase the interrupt budget, so
// no need to check if it's below zero.
new_budget.Bind(Int32Add(budget_after_bytecode, weight));
}
// Update budget.
StoreNoWriteBarrier(MachineRepresentation::kWord32,
BytecodeArrayTaggedPointer(), budget_offset,
new_budget.value());
Comment("] UpdateInterruptBudget");
}
Node* InterpreterAssembler::Advance() { return Advance(CurrentBytecodeSize()); }
Node* InterpreterAssembler::Advance(int delta) {
return Advance(IntPtrConstant(delta));
}
Node* InterpreterAssembler::Advance(Node* delta, bool backward) {
#ifdef V8_TRACE_IGNITION
TraceBytecode(Runtime::kInterpreterTraceBytecodeExit);
#endif
Node* next_offset = backward ? IntPtrSub(BytecodeOffset(), delta)
: IntPtrAdd(BytecodeOffset(), delta);
bytecode_offset_.Bind(next_offset);
return next_offset;
}
Node* InterpreterAssembler::Jump(Node* delta, bool backward) {
DCHECK(!Bytecodes::IsStarLookahead(bytecode_, operand_scale_));
UpdateInterruptBudget(TruncateWordToWord32(delta), backward);
Node* new_bytecode_offset = Advance(delta, backward);
Node* target_bytecode = LoadBytecode(new_bytecode_offset);
return DispatchToBytecode(target_bytecode, new_bytecode_offset);
}
Node* InterpreterAssembler::Jump(Node* delta) { return Jump(delta, false); }
Node* InterpreterAssembler::JumpBackward(Node* delta) {
return Jump(delta, true);
}
void InterpreterAssembler::JumpConditional(Node* condition, Node* delta) {
Label match(this), no_match(this);
Branch(condition, &match, &no_match);
BIND(&match);
Jump(delta);
BIND(&no_match);
Dispatch();
}
void InterpreterAssembler::JumpIfWordEqual(Node* lhs, Node* rhs, Node* delta) {
JumpConditional(WordEqual(lhs, rhs), delta);
}
void InterpreterAssembler::JumpIfWordNotEqual(Node* lhs, Node* rhs,
Node* delta) {
JumpConditional(WordNotEqual(lhs, rhs), delta);
}
Node* InterpreterAssembler::LoadBytecode(compiler::Node* bytecode_offset) {
Node* bytecode =
Load(MachineType::Uint8(), BytecodeArrayTaggedPointer(), bytecode_offset);
return ChangeUint32ToWord(bytecode);
}
Node* InterpreterAssembler::StarDispatchLookahead(Node* target_bytecode) {
Label do_inline_star(this), done(this);
Variable var_bytecode(this, MachineType::PointerRepresentation());
var_bytecode.Bind(target_bytecode);
Node* star_bytecode = IntPtrConstant(static_cast<int>(Bytecode::kStar));
Node* is_star = WordEqual(target_bytecode, star_bytecode);
Branch(is_star, &do_inline_star, &done);
BIND(&do_inline_star);
{
InlineStar();
var_bytecode.Bind(LoadBytecode(BytecodeOffset()));
Goto(&done);
}
BIND(&done);
return var_bytecode.value();
}
void InterpreterAssembler::InlineStar() {
Bytecode previous_bytecode = bytecode_;
AccumulatorUse previous_acc_use = accumulator_use_;
bytecode_ = Bytecode::kStar;
accumulator_use_ = AccumulatorUse::kNone;
#ifdef V8_TRACE_IGNITION
TraceBytecode(Runtime::kInterpreterTraceBytecodeEntry);
#endif
StoreRegister(GetAccumulator(), BytecodeOperandReg(0));
DCHECK_EQ(accumulator_use_, Bytecodes::GetAccumulatorUse(bytecode_));
Advance();
bytecode_ = previous_bytecode;
accumulator_use_ = previous_acc_use;
}
Node* InterpreterAssembler::Dispatch() {
Comment("========= Dispatch");
DCHECK_IMPLIES(Bytecodes::MakesCallAlongCriticalPath(bytecode_), made_call_);
Node* target_offset = Advance();
Node* target_bytecode = LoadBytecode(target_offset);
if (Bytecodes::IsStarLookahead(bytecode_, operand_scale_)) {
target_bytecode = StarDispatchLookahead(target_bytecode);
}
return DispatchToBytecode(target_bytecode, BytecodeOffset());
}
Node* InterpreterAssembler::DispatchToBytecode(Node* target_bytecode,
Node* new_bytecode_offset) {
if (FLAG_trace_ignition_dispatches) {
TraceBytecodeDispatch(target_bytecode);
}
Node* target_code_entry =
Load(MachineType::Pointer(), DispatchTableRawPointer(),
TimesPointerSize(target_bytecode));
return DispatchToBytecodeHandlerEntry(target_code_entry, new_bytecode_offset);
}
Node* InterpreterAssembler::DispatchToBytecodeHandler(Node* handler,
Node* bytecode_offset) {
// TODO(ishell): Add CSA::CodeEntryPoint(code).
Node* handler_entry =
IntPtrAdd(BitcastTaggedToWord(handler),
IntPtrConstant(Code::kHeaderSize - kHeapObjectTag));
return DispatchToBytecodeHandlerEntry(handler_entry, bytecode_offset);
}
Node* InterpreterAssembler::DispatchToBytecodeHandlerEntry(
Node* handler_entry, Node* bytecode_offset) {
InterpreterDispatchDescriptor descriptor(isolate());
return TailCallBytecodeDispatch(
descriptor, handler_entry, GetAccumulatorUnchecked(), bytecode_offset,
BytecodeArrayTaggedPointer(), DispatchTableRawPointer());
}
void InterpreterAssembler::DispatchWide(OperandScale operand_scale) {
// Dispatching a wide bytecode requires treating the prefix
// bytecode a base pointer into the dispatch table and dispatching
// the bytecode that follows relative to this base.
//
// Indices 0-255 correspond to bytecodes with operand_scale == 0
// Indices 256-511 correspond to bytecodes with operand_scale == 1
// Indices 512-767 correspond to bytecodes with operand_scale == 2
DCHECK_IMPLIES(Bytecodes::MakesCallAlongCriticalPath(bytecode_), made_call_);
Node* next_bytecode_offset = Advance(1);
Node* next_bytecode = LoadBytecode(next_bytecode_offset);
if (FLAG_trace_ignition_dispatches) {
TraceBytecodeDispatch(next_bytecode);
}
Node* base_index;
switch (operand_scale) {
case OperandScale::kDouble:
base_index = IntPtrConstant(1 << kBitsPerByte);
break;
case OperandScale::kQuadruple:
base_index = IntPtrConstant(2 << kBitsPerByte);
break;
default:
UNREACHABLE();
}
Node* target_index = IntPtrAdd(base_index, next_bytecode);
Node* target_code_entry =
Load(MachineType::Pointer(), DispatchTableRawPointer(),
TimesPointerSize(target_index));
DispatchToBytecodeHandlerEntry(target_code_entry, next_bytecode_offset);
}
void InterpreterAssembler::UpdateInterruptBudgetOnReturn() {
// TODO(rmcilroy): Investigate whether it is worth supporting self
// optimization of primitive functions like FullCodegen.
// Update profiling count by the number of bytes between the end of the
// current bytecode and the start of the first one, to simulate backedge to
// start of function.
//
// With headers and current offset, the bytecode array layout looks like:
//
// <---------- simulated backedge ----------
// | header | first bytecode | .... | return bytecode |
// |<------ current offset ------->
// ^ tagged bytecode array pointer
//
// UpdateInterruptBudget already handles adding the bytecode size to the
// length of the back-edge, so we just have to correct for the non-zero offset
// of the first bytecode.
const int kFirstBytecodeOffset = BytecodeArray::kHeaderSize - kHeapObjectTag;
Node* profiling_weight = Int32Sub(TruncateWordToWord32(BytecodeOffset()),
Int32Constant(kFirstBytecodeOffset));
UpdateInterruptBudget(profiling_weight, true);
}
Node* InterpreterAssembler::LoadOSRNestingLevel() {
return LoadObjectField(BytecodeArrayTaggedPointer(),
BytecodeArray::kOSRNestingLevelOffset,
MachineType::Int8());
}
void InterpreterAssembler::Abort(AbortReason abort_reason) {
disable_stack_check_across_call_ = true;
Node* abort_id = SmiConstant(abort_reason);
CallRuntime(Runtime::kAbort, GetContext(), abort_id);
disable_stack_check_across_call_ = false;
}
void InterpreterAssembler::AbortIfWordNotEqual(Node* lhs, Node* rhs,
AbortReason abort_reason) {
Label ok(this), abort(this, Label::kDeferred);
Branch(WordEqual(lhs, rhs), &ok, &abort);
BIND(&abort);
Abort(abort_reason);
Goto(&ok);
BIND(&ok);
}
void InterpreterAssembler::MaybeDropFrames(Node* context) {
Node* restart_fp_address =
ExternalConstant(ExternalReference::debug_restart_fp_address(isolate()));
Node* restart_fp = Load(MachineType::Pointer(), restart_fp_address);
Node* null = IntPtrConstant(0);
Label ok(this), drop_frames(this);
Branch(IntPtrEqual(restart_fp, null), &ok, &drop_frames);
BIND(&drop_frames);
// We don't expect this call to return since the frame dropper tears down
// the stack and jumps into the function on the target frame to restart it.
CallStub(CodeFactory::FrameDropperTrampoline(isolate()), context, restart_fp);
Abort(AbortReason::kUnexpectedReturnFromFrameDropper);
Goto(&ok);
BIND(&ok);
}
void InterpreterAssembler::TraceBytecode(Runtime::FunctionId function_id) {
CallRuntime(function_id, GetContext(), BytecodeArrayTaggedPointer(),
SmiTag(BytecodeOffset()), GetAccumulatorUnchecked());
}
void InterpreterAssembler::TraceBytecodeDispatch(Node* target_bytecode) {
Node* counters_table = ExternalConstant(
ExternalReference::interpreter_dispatch_counters(isolate()));
Node* source_bytecode_table_index = IntPtrConstant(
static_cast<int>(bytecode_) * (static_cast<int>(Bytecode::kLast) + 1));
Node* counter_offset =
TimesPointerSize(IntPtrAdd(source_bytecode_table_index, target_bytecode));
Node* old_counter =
Load(MachineType::IntPtr(), counters_table, counter_offset);
Label counter_ok(this), counter_saturated(this, Label::kDeferred);
Node* counter_reached_max = WordEqual(
old_counter, IntPtrConstant(std::numeric_limits<uintptr_t>::max()));
Branch(counter_reached_max, &counter_saturated, &counter_ok);
BIND(&counter_ok);
{
Node* new_counter = IntPtrAdd(old_counter, IntPtrConstant(1));
StoreNoWriteBarrier(MachineType::PointerRepresentation(), counters_table,
counter_offset, new_counter);
Goto(&counter_saturated);
}
BIND(&counter_saturated);
}
// static
bool InterpreterAssembler::TargetSupportsUnalignedAccess() {
#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
return false;
#elif V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_S390 || \
V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_PPC
return true;
#else
#error "Unknown Architecture"
#endif
}
void InterpreterAssembler::AbortIfRegisterCountInvalid(Node* register_file,
Node* register_count) {
Node* array_size = LoadAndUntagFixedArrayBaseLength(register_file);
Label ok(this), abort(this, Label::kDeferred);
Branch(UintPtrLessThanOrEqual(register_count, array_size), &ok, &abort);
BIND(&abort);
Abort(AbortReason::kInvalidRegisterFileInGenerator);
Goto(&ok);
BIND(&ok);
}
Node* InterpreterAssembler::ExportRegisterFile(Node* array,
Node* register_count) {
if (FLAG_debug_code) {
AbortIfRegisterCountInvalid(array, register_count);
}
Variable var_index(this, MachineType::PointerRepresentation());
var_index.Bind(IntPtrConstant(0));
// Iterate over register file and write values into array.
// The mapping of register to array index must match that used in
// BytecodeGraphBuilder::VisitResumeGenerator.
Label loop(this, &var_index), done_loop(this);
Goto(&loop);
BIND(&loop);
{
Node* index = var_index.value();
GotoIfNot(UintPtrLessThan(index, register_count), &done_loop);
Node* reg_index = IntPtrSub(IntPtrConstant(Register(0).ToOperand()), index);
Node* value = LoadRegister(reg_index);
StoreFixedArrayElement(array, index, value);
var_index.Bind(IntPtrAdd(index, IntPtrConstant(1)));
Goto(&loop);
}
BIND(&done_loop);
return array;
}
Node* InterpreterAssembler::ImportRegisterFile(Node* array,
Node* register_count) {
if (FLAG_debug_code) {
AbortIfRegisterCountInvalid(array, register_count);
}
Variable var_index(this, MachineType::PointerRepresentation());
var_index.Bind(IntPtrConstant(0));
// Iterate over array and write values into register file. Also erase the
// array contents to not keep them alive artificially.
Label loop(this, &var_index), done_loop(this);
Goto(&loop);
BIND(&loop);
{
Node* index = var_index.value();
GotoIfNot(UintPtrLessThan(index, register_count), &done_loop);
Node* value = LoadFixedArrayElement(array, index);
Node* reg_index = IntPtrSub(IntPtrConstant(Register(0).ToOperand()), index);
StoreRegister(value, reg_index);
StoreFixedArrayElement(array, index, StaleRegisterConstant());
var_index.Bind(IntPtrAdd(index, IntPtrConstant(1)));
Goto(&loop);
}
BIND(&done_loop);
return array;
}
int InterpreterAssembler::CurrentBytecodeSize() const {
return Bytecodes::Size(bytecode_, operand_scale_);
}
void InterpreterAssembler::ToNumberOrNumeric(Object::Conversion mode) {
Node* object = GetAccumulator();
Node* context = GetContext();
Variable var_type_feedback(this, MachineRepresentation::kTaggedSigned);
Variable var_result(this, MachineRepresentation::kTagged);
Label if_done(this), if_objectissmi(this), if_objectisheapnumber(this),
if_objectisother(this, Label::kDeferred);
GotoIf(TaggedIsSmi(object), &if_objectissmi);
Branch(IsHeapNumber(object), &if_objectisheapnumber, &if_objectisother);
BIND(&if_objectissmi);
{
var_result.Bind(object);
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kSignedSmall));
Goto(&if_done);
}
BIND(&if_objectisheapnumber);
{
var_result.Bind(object);
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kNumber));
Goto(&if_done);
}
BIND(&if_objectisother);
{
auto builtin = Builtins::kNonNumberToNumber;
if (mode == Object::Conversion::kToNumeric) {
builtin = Builtins::kNonNumberToNumeric;
// Special case for collecting BigInt feedback.
Label not_bigint(this);
GotoIfNot(IsBigInt(object), &not_bigint);
{
var_result.Bind(object);
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kBigInt));
Goto(&if_done);
}
BIND(&not_bigint);
}
// Convert {object} by calling out to the appropriate builtin.
var_result.Bind(CallBuiltin(builtin, context, object));
var_type_feedback.Bind(SmiConstant(BinaryOperationFeedback::kAny));
Goto(&if_done);
}
BIND(&if_done);
// Record the type feedback collected for {object}.
Node* slot_index = BytecodeOperandIdx(0);
Node* feedback_vector = LoadFeedbackVector();
UpdateFeedback(var_type_feedback.value(), feedback_vector, slot_index);
SetAccumulator(var_result.value());
Dispatch();
}
void InterpreterAssembler::DeserializeLazyAndDispatch() {
Node* context = GetContext();
Node* bytecode_offset = BytecodeOffset();
Node* bytecode = LoadBytecode(bytecode_offset);
Node* target_handler =
CallRuntime(Runtime::kInterpreterDeserializeLazy, context,
SmiTag(bytecode), SmiConstant(operand_scale()));
DispatchToBytecodeHandler(target_handler, bytecode_offset);
}
} // namespace interpreter
} // namespace internal
} // namespace v8