| // Copyright 2017 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Parts of the implementation below: |
| |
| // Copyright (c) 2014 the Dart project authors. Please see the AUTHORS file [1] |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file [2]. |
| // |
| // [1] https://github.com/dart-lang/sdk/blob/master/AUTHORS |
| // [2] https://github.com/dart-lang/sdk/blob/master/LICENSE |
| |
| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file [3]. |
| // |
| // [3] https://golang.org/LICENSE |
| |
| #include "src/objects/bigint.h" |
| |
| #include "src/double.h" |
| #include "src/objects-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // The MutableBigInt class is an implementation detail designed to prevent |
| // accidental mutation of a BigInt after its construction. Step-by-step |
| // construction of a BigInt must happen in terms of MutableBigInt, the |
| // final result is then passed through MutableBigInt::MakeImmutable and not |
| // modified further afterwards. |
| // Many of the functions in this class use arguments of type {BigIntBase}, |
| // indicating that they will be used in a read-only capacity, and both |
| // {BigInt} and {MutableBigInt} objects can be passed in. |
| class MutableBigInt : public FreshlyAllocatedBigInt { |
| public: |
| // Bottleneck for converting MutableBigInts to BigInts. |
| static MaybeHandle<BigInt> MakeImmutable(MaybeHandle<MutableBigInt> maybe); |
| static Handle<BigInt> MakeImmutable(Handle<MutableBigInt> result); |
| |
| // Allocation helpers. |
| static MaybeHandle<MutableBigInt> New(Isolate* isolate, int length); |
| static Handle<BigInt> NewFromInt(Isolate* isolate, int value); |
| static Handle<BigInt> NewFromSafeInteger(Isolate* isolate, double value); |
| void InitializeDigits(int length, byte value = 0); |
| static Handle<MutableBigInt> Copy(Handle<BigIntBase> source); |
| static Handle<BigInt> Zero(Isolate* isolate) { |
| // TODO(jkummerow): Consider caching a canonical zero-BigInt. |
| return MakeImmutable(New(isolate, 0)).ToHandleChecked(); |
| } |
| |
| static Handle<MutableBigInt> Cast(Handle<FreshlyAllocatedBigInt> bigint) { |
| SLOW_DCHECK(bigint->IsBigInt()); |
| return Handle<MutableBigInt>::cast(bigint); |
| } |
| |
| // Internal helpers. |
| static MaybeHandle<MutableBigInt> BitwiseAnd(Handle<BigInt> x, |
| Handle<BigInt> y); |
| static MaybeHandle<MutableBigInt> BitwiseXor(Handle<BigInt> x, |
| Handle<BigInt> y); |
| static MaybeHandle<MutableBigInt> BitwiseOr(Handle<BigInt> x, |
| Handle<BigInt> y); |
| |
| static Handle<BigInt> TruncateToNBits(int n, Handle<BigInt> x); |
| static Handle<BigInt> TruncateAndSubFromPowerOfTwo(int n, Handle<BigInt> x, |
| bool result_sign); |
| |
| static MaybeHandle<BigInt> AbsoluteAdd(Handle<BigInt> x, Handle<BigInt> y, |
| bool result_sign); |
| static Handle<BigInt> AbsoluteSub(Handle<BigInt> x, Handle<BigInt> y, |
| bool result_sign); |
| static MaybeHandle<MutableBigInt> AbsoluteAddOne( |
| Handle<BigIntBase> x, bool sign, MutableBigInt* result_storage = nullptr); |
| static Handle<MutableBigInt> AbsoluteSubOne(Handle<BigIntBase> x); |
| static MaybeHandle<MutableBigInt> AbsoluteSubOne(Handle<BigIntBase> x, |
| int result_length); |
| |
| enum ExtraDigitsHandling { kCopy, kSkip }; |
| enum SymmetricOp { kSymmetric, kNotSymmetric }; |
| static inline Handle<MutableBigInt> AbsoluteBitwiseOp( |
| Handle<BigIntBase> x, Handle<BigIntBase> y, MutableBigInt* result_storage, |
| ExtraDigitsHandling extra_digits, SymmetricOp symmetric, |
| std::function<digit_t(digit_t, digit_t)> op); |
| static Handle<MutableBigInt> AbsoluteAnd( |
| Handle<BigIntBase> x, Handle<BigIntBase> y, |
| MutableBigInt* result_storage = nullptr); |
| static Handle<MutableBigInt> AbsoluteAndNot( |
| Handle<BigIntBase> x, Handle<BigIntBase> y, |
| MutableBigInt* result_storage = nullptr); |
| static Handle<MutableBigInt> AbsoluteOr( |
| Handle<BigIntBase> x, Handle<BigIntBase> y, |
| MutableBigInt* result_storage = nullptr); |
| static Handle<MutableBigInt> AbsoluteXor( |
| Handle<BigIntBase> x, Handle<BigIntBase> y, |
| MutableBigInt* result_storage = nullptr); |
| |
| static int AbsoluteCompare(Handle<BigIntBase> x, Handle<BigIntBase> y); |
| |
| static void MultiplyAccumulate(Handle<BigIntBase> multiplicand, |
| digit_t multiplier, |
| Handle<MutableBigInt> accumulator, |
| int accumulator_index); |
| static void InternalMultiplyAdd(BigIntBase* source, digit_t factor, |
| digit_t summand, int n, |
| MutableBigInt* result); |
| void InplaceMultiplyAdd(uintptr_t factor, uintptr_t summand); |
| |
| // Specialized helpers for Divide/Remainder. |
| static void AbsoluteDivSmall(Handle<BigIntBase> x, digit_t divisor, |
| Handle<MutableBigInt>* quotient, |
| digit_t* remainder); |
| static bool AbsoluteDivLarge(Handle<BigIntBase> dividend, |
| Handle<BigIntBase> divisor, |
| Handle<MutableBigInt>* quotient, |
| Handle<MutableBigInt>* remainder); |
| static bool ProductGreaterThan(digit_t factor1, digit_t factor2, digit_t high, |
| digit_t low); |
| digit_t InplaceAdd(Handle<BigIntBase> summand, int start_index); |
| digit_t InplaceSub(Handle<BigIntBase> subtrahend, int start_index); |
| void InplaceRightShift(int shift); |
| enum SpecialLeftShiftMode { |
| kSameSizeResult, |
| kAlwaysAddOneDigit, |
| }; |
| static MaybeHandle<MutableBigInt> SpecialLeftShift(Handle<BigIntBase> x, |
| int shift, |
| SpecialLeftShiftMode mode); |
| |
| // Specialized helpers for shift operations. |
| static MaybeHandle<BigInt> LeftShiftByAbsolute(Handle<BigIntBase> x, |
| Handle<BigIntBase> y); |
| static Handle<BigInt> RightShiftByAbsolute(Handle<BigIntBase> x, |
| Handle<BigIntBase> y); |
| static Handle<BigInt> RightShiftByMaximum(Isolate* isolate, bool sign); |
| static Maybe<digit_t> ToShiftAmount(Handle<BigIntBase> x); |
| |
| static MaybeHandle<String> ToStringBasePowerOfTwo(Handle<BigIntBase> x, |
| int radix); |
| static MaybeHandle<String> ToStringGeneric(Handle<BigIntBase> x, int radix); |
| |
| static double ToDouble(Handle<BigIntBase> x); |
| enum Rounding { kRoundDown, kTie, kRoundUp }; |
| static Rounding DecideRounding(Handle<BigIntBase> x, int mantissa_bits_unset, |
| int digit_index, uint64_t current_digit); |
| |
| // Digit arithmetic helpers. |
| static inline digit_t digit_add(digit_t a, digit_t b, digit_t* carry); |
| static inline digit_t digit_sub(digit_t a, digit_t b, digit_t* borrow); |
| static inline digit_t digit_mul(digit_t a, digit_t b, digit_t* high); |
| static inline digit_t digit_div(digit_t high, digit_t low, digit_t divisor, |
| digit_t* remainder); |
| static digit_t digit_pow(digit_t base, digit_t exponent); |
| static inline bool digit_ismax(digit_t x) { |
| return static_cast<digit_t>(~x) == 0; |
| } |
| |
| // Internal field setters. Non-mutable BigInts don't have these. |
| #include "src/objects/object-macros.h" |
| inline void set_sign(bool new_sign) { |
| intptr_t bitfield = READ_INTPTR_FIELD(this, kBitfieldOffset); |
| bitfield = SignBits::update(static_cast<uint32_t>(bitfield), new_sign); |
| WRITE_INTPTR_FIELD(this, kBitfieldOffset, bitfield); |
| } |
| inline void set_length(int new_length) { |
| intptr_t bitfield = READ_INTPTR_FIELD(this, kBitfieldOffset); |
| bitfield = LengthBits::update(static_cast<uint32_t>(bitfield), new_length); |
| WRITE_INTPTR_FIELD(this, kBitfieldOffset, bitfield); |
| } |
| inline void set_digit(int n, digit_t value) { |
| SLOW_DCHECK(0 <= n && n < length()); |
| byte* address = FIELD_ADDR(this, kDigitsOffset + n * kDigitSize); |
| (*reinterpret_cast<digit_t*>(reinterpret_cast<intptr_t>(address))) = value; |
| } |
| #include "src/objects/object-macros-undef.h" |
| }; |
| |
| MaybeHandle<MutableBigInt> MutableBigInt::New(Isolate* isolate, int length) { |
| if (length > BigInt::kMaxLength) { |
| THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), |
| MutableBigInt); |
| } |
| Handle<MutableBigInt> result = Cast(isolate->factory()->NewBigInt(length)); |
| result->set_length(length); |
| result->set_sign(false); |
| #if DEBUG |
| result->InitializeDigits(length, 0xBF); |
| #endif |
| return result; |
| } |
| |
| Handle<BigInt> MutableBigInt::NewFromInt(Isolate* isolate, int value) { |
| if (value == 0) return Zero(isolate); |
| Handle<MutableBigInt> result = Cast(isolate->factory()->NewBigInt(1)); |
| result->set_length(1); |
| if (value > 0) { |
| result->set_sign(false); |
| result->set_digit(0, value); |
| } else { |
| result->set_sign(true); |
| if (value == kMinInt) { |
| STATIC_ASSERT(kMinInt == -kMaxInt - 1); |
| result->set_digit(0, static_cast<BigInt::digit_t>(kMaxInt) + 1); |
| } else { |
| result->set_digit(0, -value); |
| } |
| } |
| return MakeImmutable(result); |
| } |
| |
| Handle<BigInt> MutableBigInt::NewFromSafeInteger(Isolate* isolate, |
| double value) { |
| if (value == 0) return Zero(isolate); |
| |
| uint64_t absolute = std::abs(value); |
| int length = 64 / kDigitBits; |
| Handle<MutableBigInt> result = Cast(isolate->factory()->NewBigInt(length)); |
| result->set_length(length); |
| result->set_sign(value < 0); // Treats -0 like 0. |
| if (kDigitBits == 64) { |
| result->set_digit(0, absolute); |
| } else { |
| DCHECK_EQ(kDigitBits, 32); |
| result->set_digit(0, absolute); |
| result->set_digit(1, absolute >> 32); |
| } |
| return MakeImmutable(result); |
| } |
| |
| Handle<MutableBigInt> MutableBigInt::Copy(Handle<BigIntBase> source) { |
| int length = source->length(); |
| // Allocating a BigInt of the same length as an existing BigInt cannot throw. |
| Handle<MutableBigInt> result = |
| New(source->GetIsolate(), length).ToHandleChecked(); |
| memcpy(result->address() + BigIntBase::kHeaderSize, |
| source->address() + BigIntBase::kHeaderSize, |
| BigInt::SizeFor(length) - BigIntBase::kHeaderSize); |
| return result; |
| } |
| |
| void MutableBigInt::InitializeDigits(int length, byte value) { |
| memset(reinterpret_cast<void*>(reinterpret_cast<Address>(this) + |
| kDigitsOffset - kHeapObjectTag), |
| value, length * kDigitSize); |
| } |
| |
| MaybeHandle<BigInt> MutableBigInt::MakeImmutable( |
| MaybeHandle<MutableBigInt> maybe) { |
| Handle<MutableBigInt> result; |
| if (!maybe.ToHandle(&result)) return MaybeHandle<BigInt>(); |
| return MakeImmutable(result); |
| } |
| |
| Handle<BigInt> MutableBigInt::MakeImmutable(Handle<MutableBigInt> result) { |
| // Check if we need to right-trim any leading zero-digits. |
| int old_length = result->length(); |
| int new_length = old_length; |
| while (new_length > 0 && result->digit(new_length - 1) == 0) new_length--; |
| int to_trim = old_length - new_length; |
| if (to_trim != 0) { |
| int size_delta = to_trim * kDigitSize; |
| Address new_end = result->address() + BigInt::SizeFor(new_length); |
| Heap* heap = result->GetHeap(); |
| heap->CreateFillerObjectAt(new_end, size_delta, ClearRecordedSlots::kNo); |
| result->set_length(new_length); |
| |
| // Canonicalize -0n. |
| if (new_length == 0) { |
| result->set_sign(false); |
| // TODO(jkummerow): If we cache a canonical 0n, return that here. |
| } |
| } |
| DCHECK_IMPLIES(result->length() > 0, |
| result->digit(result->length() - 1) != 0); // MSD is non-zero. |
| return Handle<BigInt>(reinterpret_cast<BigInt**>(result.location())); |
| } |
| |
| Handle<BigInt> BigInt::Zero(Isolate* isolate) { |
| return MutableBigInt::Zero(isolate); |
| } |
| |
| Handle<BigInt> BigInt::UnaryMinus(Handle<BigInt> x) { |
| // Special case: There is no -0n. |
| if (x->is_zero()) { |
| return x; |
| } |
| Handle<MutableBigInt> result = MutableBigInt::Copy(x); |
| result->set_sign(!x->sign()); |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| MaybeHandle<BigInt> BigInt::BitwiseNot(Handle<BigInt> x) { |
| MaybeHandle<MutableBigInt> result; |
| if (x->sign()) { |
| // ~(-x) == ~(~(x-1)) == x-1 |
| result = MutableBigInt::AbsoluteSubOne(x, x->length()); |
| } else { |
| // ~x == -x-1 == -(x+1) |
| result = MutableBigInt::AbsoluteAddOne(x, true); |
| } |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| MaybeHandle<BigInt> BigInt::Exponentiate(Handle<BigInt> base, |
| Handle<BigInt> exponent) { |
| Isolate* isolate = base->GetIsolate(); |
| // 1. If exponent is < 0, throw a RangeError exception. |
| if (exponent->sign()) { |
| THROW_NEW_ERROR(isolate, |
| NewRangeError(MessageTemplate::kBigIntNegativeExponent), |
| BigInt); |
| } |
| // 2. If base is 0n and exponent is 0n, return 1n. |
| if (exponent->is_zero()) { |
| return MutableBigInt::NewFromInt(isolate, 1); |
| } |
| // 3. Return a BigInt representing the mathematical value of base raised |
| // to the power exponent. |
| if (base->is_zero()) return base; |
| if (base->length() == 1 && base->digit(0) == 1) return base; |
| // For all bases >= 2, very large exponents would lead to unrepresentable |
| // results. |
| STATIC_ASSERT(kMaxLengthBits < std::numeric_limits<digit_t>::max()); |
| if (exponent->length() > 1) { |
| THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), |
| BigInt); |
| } |
| digit_t exp_value = exponent->digit(0); |
| if (exp_value == 1) return base; |
| if (exp_value >= kMaxLengthBits) { |
| THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), |
| BigInt); |
| } |
| STATIC_ASSERT(kMaxLengthBits <= kMaxInt); |
| int n = static_cast<int>(exp_value); |
| if (base->length() == 1 && base->digit(0) == 2) { |
| // Fast path for 2^n. |
| int needed_digits = 1 + (n / kDigitBits); |
| Handle<MutableBigInt> result = |
| MutableBigInt::New(isolate, needed_digits).ToHandleChecked(); |
| result->InitializeDigits(needed_digits); |
| // All bits are zero. Now set the n-th bit. |
| digit_t msd = static_cast<digit_t>(1) << (n % kDigitBits); |
| result->set_digit(needed_digits - 1, msd); |
| // Result is negative for odd powers of -2n. |
| if (base->sign()) result->set_sign((n & 1) != 0); |
| return MutableBigInt::MakeImmutable(result); |
| } |
| Handle<BigInt> result; |
| Handle<BigInt> running_square = base; |
| // This implicitly sets the result's sign correctly. |
| if (n & 1) result = base; |
| n >>= 1; |
| for (; n != 0; n >>= 1) { |
| if (!Multiply(running_square, running_square).ToHandle(&running_square)) { |
| THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), |
| BigInt); |
| } |
| if (n & 1) { |
| if (result.is_null()) { |
| result = running_square; |
| } else { |
| if (!Multiply(result, running_square).ToHandle(&result)) { |
| THROW_NEW_ERROR( |
| isolate, NewRangeError(MessageTemplate::kBigIntTooBig), BigInt); |
| } |
| } |
| } |
| } |
| return result; |
| } |
| |
| MaybeHandle<BigInt> BigInt::Multiply(Handle<BigInt> x, Handle<BigInt> y) { |
| if (x->is_zero()) return x; |
| if (y->is_zero()) return y; |
| int result_length = x->length() + y->length(); |
| Handle<MutableBigInt> result; |
| if (!MutableBigInt::New(x->GetIsolate(), result_length).ToHandle(&result)) { |
| return MaybeHandle<BigInt>(); |
| } |
| result->InitializeDigits(result_length); |
| for (int i = 0; i < x->length(); i++) { |
| MutableBigInt::MultiplyAccumulate(y, x->digit(i), result, i); |
| } |
| result->set_sign(x->sign() != y->sign()); |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| MaybeHandle<BigInt> BigInt::Divide(Handle<BigInt> x, Handle<BigInt> y) { |
| // 1. If y is 0n, throw a RangeError exception. |
| if (y->is_zero()) { |
| THROW_NEW_ERROR(y->GetIsolate(), |
| NewRangeError(MessageTemplate::kBigIntDivZero), BigInt); |
| } |
| // 2. Let quotient be the mathematical value of x divided by y. |
| // 3. Return a BigInt representing quotient rounded towards 0 to the next |
| // integral value. |
| if (MutableBigInt::AbsoluteCompare(x, y) < 0) { |
| return Zero(x->GetIsolate()); |
| } |
| Handle<MutableBigInt> quotient; |
| bool result_sign = x->sign() != y->sign(); |
| if (y->length() == 1) { |
| digit_t divisor = y->digit(0); |
| if (divisor == 1) { |
| return result_sign == x->sign() ? x : UnaryMinus(x); |
| } |
| digit_t remainder; |
| MutableBigInt::AbsoluteDivSmall(x, divisor, "ient, &remainder); |
| } else { |
| if (!MutableBigInt::AbsoluteDivLarge(x, y, "ient, nullptr)) { |
| return MaybeHandle<BigInt>(); |
| } |
| } |
| quotient->set_sign(x->sign() != y->sign()); |
| return MutableBigInt::MakeImmutable(quotient); |
| } |
| |
| MaybeHandle<BigInt> BigInt::Remainder(Handle<BigInt> x, Handle<BigInt> y) { |
| Isolate* isolate = x->GetIsolate(); |
| // 1. If y is 0n, throw a RangeError exception. |
| if (y->is_zero()) { |
| THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntDivZero), |
| BigInt); |
| } |
| // 2. Return the BigInt representing x modulo y. |
| // See https://github.com/tc39/proposal-bigint/issues/84 though. |
| if (MutableBigInt::AbsoluteCompare(x, y) < 0) return x; |
| Handle<MutableBigInt> remainder; |
| if (y->length() == 1) { |
| digit_t divisor = y->digit(0); |
| if (divisor == 1) return Zero(isolate); |
| digit_t remainder_digit; |
| MutableBigInt::AbsoluteDivSmall(x, divisor, nullptr, &remainder_digit); |
| if (remainder_digit == 0) { |
| return Zero(isolate); |
| } |
| remainder = MutableBigInt::New(isolate, 1).ToHandleChecked(); |
| remainder->set_digit(0, remainder_digit); |
| } else { |
| if (!MutableBigInt::AbsoluteDivLarge(x, y, nullptr, &remainder)) { |
| return MaybeHandle<BigInt>(); |
| } |
| } |
| remainder->set_sign(x->sign()); |
| return MutableBigInt::MakeImmutable(remainder); |
| } |
| |
| MaybeHandle<BigInt> BigInt::Add(Handle<BigInt> x, Handle<BigInt> y) { |
| bool xsign = x->sign(); |
| if (xsign == y->sign()) { |
| // x + y == x + y |
| // -x + -y == -(x + y) |
| return MutableBigInt::AbsoluteAdd(x, y, xsign); |
| } |
| // x + -y == x - y == -(y - x) |
| // -x + y == y - x == -(x - y) |
| if (MutableBigInt::AbsoluteCompare(x, y) >= 0) { |
| return MutableBigInt::AbsoluteSub(x, y, xsign); |
| } |
| return MutableBigInt::AbsoluteSub(y, x, !xsign); |
| } |
| |
| MaybeHandle<BigInt> BigInt::Subtract(Handle<BigInt> x, Handle<BigInt> y) { |
| bool xsign = x->sign(); |
| if (xsign != y->sign()) { |
| // x - (-y) == x + y |
| // (-x) - y == -(x + y) |
| return MutableBigInt::AbsoluteAdd(x, y, xsign); |
| } |
| // x - y == -(y - x) |
| // (-x) - (-y) == y - x == -(x - y) |
| if (MutableBigInt::AbsoluteCompare(x, y) >= 0) { |
| return MutableBigInt::AbsoluteSub(x, y, xsign); |
| } |
| return MutableBigInt::AbsoluteSub(y, x, !xsign); |
| } |
| |
| MaybeHandle<BigInt> BigInt::LeftShift(Handle<BigInt> x, Handle<BigInt> y) { |
| if (y->is_zero() || x->is_zero()) return x; |
| if (y->sign()) return MutableBigInt::RightShiftByAbsolute(x, y); |
| return MutableBigInt::LeftShiftByAbsolute(x, y); |
| } |
| |
| MaybeHandle<BigInt> BigInt::SignedRightShift(Handle<BigInt> x, |
| Handle<BigInt> y) { |
| if (y->is_zero() || x->is_zero()) return x; |
| if (y->sign()) return MutableBigInt::LeftShiftByAbsolute(x, y); |
| return MutableBigInt::RightShiftByAbsolute(x, y); |
| } |
| |
| MaybeHandle<BigInt> BigInt::UnsignedRightShift(Handle<BigInt> x, |
| Handle<BigInt> y) { |
| THROW_NEW_ERROR(x->GetIsolate(), NewTypeError(MessageTemplate::kBigIntShr), |
| BigInt); |
| } |
| |
| namespace { |
| |
| // Produces comparison result for {left_negative} == sign(x) != sign(y). |
| ComparisonResult UnequalSign(bool left_negative) { |
| return left_negative ? ComparisonResult::kLessThan |
| : ComparisonResult::kGreaterThan; |
| } |
| |
| // Produces result for |x| > |y|, with {both_negative} == sign(x) == sign(y); |
| ComparisonResult AbsoluteGreater(bool both_negative) { |
| return both_negative ? ComparisonResult::kLessThan |
| : ComparisonResult::kGreaterThan; |
| } |
| |
| // Produces result for |x| < |y|, with {both_negative} == sign(x) == sign(y). |
| ComparisonResult AbsoluteLess(bool both_negative) { |
| return both_negative ? ComparisonResult::kGreaterThan |
| : ComparisonResult::kLessThan; |
| } |
| |
| } // namespace |
| |
| // (Never returns kUndefined.) |
| ComparisonResult BigInt::CompareToBigInt(Handle<BigInt> x, Handle<BigInt> y) { |
| bool x_sign = x->sign(); |
| if (x_sign != y->sign()) return UnequalSign(x_sign); |
| |
| int result = MutableBigInt::AbsoluteCompare(x, y); |
| if (result > 0) return AbsoluteGreater(x_sign); |
| if (result < 0) return AbsoluteLess(x_sign); |
| return ComparisonResult::kEqual; |
| } |
| |
| bool BigInt::EqualToBigInt(BigInt* x, BigInt* y) { |
| if (x->sign() != y->sign()) return false; |
| if (x->length() != y->length()) return false; |
| for (int i = 0; i < x->length(); i++) { |
| if (x->digit(i) != y->digit(i)) return false; |
| } |
| return true; |
| } |
| |
| MaybeHandle<BigInt> BigInt::BitwiseAnd(Handle<BigInt> x, Handle<BigInt> y) { |
| return MutableBigInt::MakeImmutable(MutableBigInt::BitwiseAnd(x, y)); |
| } |
| |
| MaybeHandle<MutableBigInt> MutableBigInt::BitwiseAnd(Handle<BigInt> x, |
| Handle<BigInt> y) { |
| if (!x->sign() && !y->sign()) { |
| return AbsoluteAnd(x, y); |
| } else if (x->sign() && y->sign()) { |
| int result_length = Max(x->length(), y->length()) + 1; |
| // (-x) & (-y) == ~(x-1) & ~(y-1) == ~((x-1) | (y-1)) |
| // == -(((x-1) | (y-1)) + 1) |
| Handle<MutableBigInt> result; |
| if (!AbsoluteSubOne(x, result_length).ToHandle(&result)) { |
| return MaybeHandle<MutableBigInt>(); |
| } |
| result = AbsoluteOr(result, AbsoluteSubOne(y), *result); |
| return AbsoluteAddOne(result, true, *result); |
| } else { |
| DCHECK(x->sign() != y->sign()); |
| // Assume that x is the positive BigInt. |
| if (x->sign()) std::swap(x, y); |
| // x & (-y) == x & ~(y-1) == x &~ (y-1) |
| return AbsoluteAndNot(x, AbsoluteSubOne(y)); |
| } |
| } |
| |
| MaybeHandle<BigInt> BigInt::BitwiseXor(Handle<BigInt> x, Handle<BigInt> y) { |
| return MutableBigInt::MakeImmutable(MutableBigInt::BitwiseXor(x, y)); |
| } |
| |
| MaybeHandle<MutableBigInt> MutableBigInt::BitwiseXor(Handle<BigInt> x, |
| Handle<BigInt> y) { |
| if (!x->sign() && !y->sign()) { |
| return AbsoluteXor(x, y); |
| } else if (x->sign() && y->sign()) { |
| int result_length = Max(x->length(), y->length()); |
| // (-x) ^ (-y) == ~(x-1) ^ ~(y-1) == (x-1) ^ (y-1) |
| Handle<MutableBigInt> result = |
| AbsoluteSubOne(x, result_length).ToHandleChecked(); |
| return AbsoluteXor(result, AbsoluteSubOne(y), *result); |
| } else { |
| DCHECK(x->sign() != y->sign()); |
| int result_length = Max(x->length(), y->length()) + 1; |
| // Assume that x is the positive BigInt. |
| if (x->sign()) std::swap(x, y); |
| // x ^ (-y) == x ^ ~(y-1) == ~(x ^ (y-1)) == -((x ^ (y-1)) + 1) |
| Handle<MutableBigInt> result; |
| if (!AbsoluteSubOne(y, result_length).ToHandle(&result)) { |
| return MaybeHandle<MutableBigInt>(); |
| } |
| result = AbsoluteXor(result, x, *result); |
| return AbsoluteAddOne(result, true, *result); |
| } |
| } |
| |
| MaybeHandle<BigInt> BigInt::BitwiseOr(Handle<BigInt> x, Handle<BigInt> y) { |
| return MutableBigInt::MakeImmutable(MutableBigInt::BitwiseOr(x, y)); |
| } |
| |
| MaybeHandle<MutableBigInt> MutableBigInt::BitwiseOr(Handle<BigInt> x, |
| Handle<BigInt> y) { |
| int result_length = Max(x->length(), y->length()); |
| if (!x->sign() && !y->sign()) { |
| return AbsoluteOr(x, y); |
| } else if (x->sign() && y->sign()) { |
| // (-x) | (-y) == ~(x-1) | ~(y-1) == ~((x-1) & (y-1)) |
| // == -(((x-1) & (y-1)) + 1) |
| Handle<MutableBigInt> result = |
| AbsoluteSubOne(x, result_length).ToHandleChecked(); |
| result = AbsoluteAnd(result, AbsoluteSubOne(y), *result); |
| return AbsoluteAddOne(result, true, *result); |
| } else { |
| DCHECK(x->sign() != y->sign()); |
| // Assume that x is the positive BigInt. |
| if (x->sign()) std::swap(x, y); |
| // x | (-y) == x | ~(y-1) == ~((y-1) &~ x) == -(((y-1) &~ x) + 1) |
| Handle<MutableBigInt> result = |
| AbsoluteSubOne(y, result_length).ToHandleChecked(); |
| result = AbsoluteAndNot(result, x, *result); |
| return AbsoluteAddOne(result, true, *result); |
| } |
| } |
| |
| MaybeHandle<BigInt> BigInt::Increment(Handle<BigInt> x) { |
| if (x->sign()) { |
| Handle<MutableBigInt> result = MutableBigInt::AbsoluteSubOne(x); |
| result->set_sign(true); |
| return MutableBigInt::MakeImmutable(result); |
| } else { |
| return MutableBigInt::MakeImmutable( |
| MutableBigInt::AbsoluteAddOne(x, false)); |
| } |
| } |
| |
| MaybeHandle<BigInt> BigInt::Decrement(Handle<BigInt> x) { |
| MaybeHandle<MutableBigInt> result; |
| if (x->sign()) { |
| result = MutableBigInt::AbsoluteAddOne(x, true); |
| } else if (x->is_zero()) { |
| // TODO(jkummerow): Consider caching a canonical -1n BigInt. |
| return MutableBigInt::NewFromInt(x->GetIsolate(), -1); |
| } else { |
| result = MutableBigInt::AbsoluteSubOne(x); |
| } |
| return MutableBigInt::MakeImmutable(result); |
| } |
| |
| bool BigInt::EqualToString(Handle<BigInt> x, Handle<String> y) { |
| Isolate* isolate = x->GetIsolate(); |
| // a. Let n be StringToBigInt(y). |
| MaybeHandle<BigInt> maybe_n = StringToBigInt(isolate, y); |
| // b. If n is NaN, return false. |
| Handle<BigInt> n; |
| if (!maybe_n.ToHandle(&n)) { |
| DCHECK(!isolate->has_pending_exception()); |
| return false; |
| } |
| // c. Return the result of x == n. |
| return EqualToBigInt(*x, *n); |
| } |
| |
| bool BigInt::EqualToNumber(Handle<BigInt> x, Handle<Object> y) { |
| DCHECK(y->IsNumber()); |
| // a. If x or y are any of NaN, +∞, or -∞, return false. |
| // b. If the mathematical value of x is equal to the mathematical value of y, |
| // return true, otherwise return false. |
| if (y->IsSmi()) { |
| int value = Smi::ToInt(*y); |
| if (value == 0) return x->is_zero(); |
| // Any multi-digit BigInt is bigger than a Smi. |
| STATIC_ASSERT(sizeof(digit_t) >= sizeof(value)); |
| return (x->length() == 1) && (x->sign() == (value < 0)) && |
| (x->digit(0) == |
| static_cast<digit_t>(std::abs(static_cast<int64_t>(value)))); |
| } |
| DCHECK(y->IsHeapNumber()); |
| double value = Handle<HeapNumber>::cast(y)->value(); |
| return CompareToDouble(x, value) == ComparisonResult::kEqual; |
| } |
| |
| ComparisonResult BigInt::CompareToNumber(Handle<BigInt> x, Handle<Object> y) { |
| DCHECK(y->IsNumber()); |
| if (y->IsSmi()) { |
| bool x_sign = x->sign(); |
| int y_value = Smi::ToInt(*y); |
| bool y_sign = (y_value < 0); |
| if (x_sign != y_sign) return UnequalSign(x_sign); |
| |
| if (x->is_zero()) { |
| DCHECK(!y_sign); |
| return y_value == 0 ? ComparisonResult::kEqual |
| : ComparisonResult::kLessThan; |
| } |
| // Any multi-digit BigInt is bigger than a Smi. |
| STATIC_ASSERT(sizeof(digit_t) >= sizeof(y_value)); |
| if (x->length() > 1) return AbsoluteGreater(x_sign); |
| |
| digit_t abs_value = std::abs(static_cast<int64_t>(y_value)); |
| digit_t x_digit = x->digit(0); |
| if (x_digit > abs_value) return AbsoluteGreater(x_sign); |
| if (x_digit < abs_value) return AbsoluteLess(x_sign); |
| return ComparisonResult::kEqual; |
| } |
| DCHECK(y->IsHeapNumber()); |
| double value = Handle<HeapNumber>::cast(y)->value(); |
| return CompareToDouble(x, value); |
| } |
| |
| ComparisonResult BigInt::CompareToDouble(Handle<BigInt> x, double y) { |
| if (std::isnan(y)) return ComparisonResult::kUndefined; |
| if (y == V8_INFINITY) return ComparisonResult::kLessThan; |
| if (y == -V8_INFINITY) return ComparisonResult::kGreaterThan; |
| bool x_sign = x->sign(); |
| // Note that this is different from the double's sign bit for -0. That's |
| // intentional because -0 must be treated like 0. |
| bool y_sign = (y < 0); |
| if (x_sign != y_sign) return UnequalSign(x_sign); |
| if (y == 0) { |
| DCHECK(!x_sign); |
| return x->is_zero() ? ComparisonResult::kEqual |
| : ComparisonResult::kGreaterThan; |
| } |
| if (x->is_zero()) { |
| DCHECK(!y_sign); |
| return ComparisonResult::kLessThan; |
| } |
| uint64_t double_bits = bit_cast<uint64_t>(y); |
| int raw_exponent = |
| static_cast<int>(double_bits >> Double::kPhysicalSignificandSize) & 0x7FF; |
| uint64_t mantissa = double_bits & Double::kSignificandMask; |
| // Non-finite doubles are handled above. |
| DCHECK_NE(raw_exponent, 0x7FF); |
| int exponent = raw_exponent - 0x3FF; |
| if (exponent < 0) { |
| // The absolute value of the double is less than 1. Only 0n has an |
| // absolute value smaller than that, but we've already covered that case. |
| DCHECK(!x->is_zero()); |
| return AbsoluteGreater(x_sign); |
| } |
| int x_length = x->length(); |
| digit_t x_msd = x->digit(x_length - 1); |
| int msd_leading_zeros = base::bits::CountLeadingZeros(x_msd); |
| int x_bitlength = x_length * kDigitBits - msd_leading_zeros; |
| int y_bitlength = exponent + 1; |
| if (x_bitlength < y_bitlength) return AbsoluteLess(x_sign); |
| if (x_bitlength > y_bitlength) return AbsoluteGreater(x_sign); |
| |
| // At this point, we know that signs and bit lengths (i.e. position of |
| // the most significant bit in exponent-free representation) are identical. |
| // {x} is not zero, {y} is finite and not denormal. |
| // Now we virtually convert the double to an integer by shifting its |
| // mantissa according to its exponent, so it will align with the BigInt {x}, |
| // and then we compare them bit for bit until we find a difference or the |
| // least significant bit. |
| // <----- 52 ------> <-- virtual trailing zeroes --> |
| // y / mantissa: 1yyyyyyyyyyyyyyyyy 0000000000000000000000000000000 |
| // x / digits: 0001xxxx xxxxxxxx xxxxxxxx ... |
| // <--> <------> |
| // msd_topbit kDigitBits |
| // |
| mantissa |= Double::kHiddenBit; |
| const int kMantissaTopBit = 52; // 0-indexed. |
| // 0-indexed position of {x}'s most significant bit within the {msd}. |
| int msd_topbit = kDigitBits - 1 - msd_leading_zeros; |
| DCHECK_EQ(msd_topbit, (x_bitlength - 1) % kDigitBits); |
| // Shifted chunk of {mantissa} for comparing with {digit}. |
| digit_t compare_mantissa; |
| // Number of unprocessed bits in {mantissa}. We'll keep them shifted to |
| // the left (i.e. most significant part) of the underlying uint64_t. |
| int remaining_mantissa_bits = 0; |
| |
| // First, compare the most significant digit against the beginning of |
| // the mantissa. |
| if (msd_topbit < kMantissaTopBit) { |
| remaining_mantissa_bits = (kMantissaTopBit - msd_topbit); |
| compare_mantissa = mantissa >> remaining_mantissa_bits; |
| mantissa = mantissa << (64 - remaining_mantissa_bits); |
| } else { |
| DCHECK_GE(msd_topbit, kMantissaTopBit); |
| compare_mantissa = mantissa << (msd_topbit - kMantissaTopBit); |
| mantissa = 0; |
| } |
| if (x_msd > compare_mantissa) return AbsoluteGreater(x_sign); |
| if (x_msd < compare_mantissa) return AbsoluteLess(x_sign); |
| |
| // Then, compare additional digits against any remaining mantissa bits. |
| for (int digit_index = x_length - 2; digit_index >= 0; digit_index--) { |
| if (remaining_mantissa_bits > 0) { |
| remaining_mantissa_bits -= kDigitBits; |
| if (sizeof(mantissa) != sizeof(x_msd)) { |
| compare_mantissa = mantissa >> (64 - kDigitBits); |
| // "& 63" to appease compilers. kDigitBits is 32 here anyway. |
| mantissa = mantissa << (kDigitBits & 63); |
| } else { |
| compare_mantissa = mantissa; |
| mantissa = 0; |
| } |
| } else { |
| compare_mantissa = 0; |
| } |
| digit_t digit = x->digit(digit_index); |
| if (digit > compare_mantissa) return AbsoluteGreater(x_sign); |
| if (digit < compare_mantissa) return AbsoluteLess(x_sign); |
| } |
| |
| // Integer parts are equal; check whether {y} has a fractional part. |
| if (mantissa != 0) { |
| DCHECK_GT(remaining_mantissa_bits, 0); |
| return AbsoluteLess(x_sign); |
| } |
| return ComparisonResult::kEqual; |
| } |
| |
| MaybeHandle<String> BigInt::ToString(Handle<BigInt> bigint, int radix) { |
| Isolate* isolate = bigint->GetIsolate(); |
| if (bigint->is_zero()) { |
| return isolate->factory()->NewStringFromStaticChars("0"); |
| } |
| if (base::bits::IsPowerOfTwo(radix)) { |
| return MutableBigInt::ToStringBasePowerOfTwo(bigint, radix); |
| } |
| return MutableBigInt::ToStringGeneric(bigint, radix); |
| } |
| |
| namespace { |
| |
| bool IsSafeInteger(double value) { |
| if (std::isnan(value) || std::isinf(value)) return false; |
| |
| // Let integer be ! ToInteger(value). |
| // If ! SameValueZero(integer, value) is false, return false. |
| if (DoubleToInteger(value) != value) return false; |
| |
| return std::abs(value) <= kMaxSafeInteger; |
| } |
| |
| } // anonymous namespace |
| |
| MaybeHandle<BigInt> BigInt::FromNumber(Isolate* isolate, |
| Handle<Object> number) { |
| DCHECK(number->IsNumber()); |
| if (number->IsSmi()) { |
| return MutableBigInt::NewFromInt(isolate, Smi::ToInt(*number)); |
| } |
| if (!IsSafeInteger(Handle<HeapNumber>::cast(number)->value())) { |
| THROW_NEW_ERROR(isolate, |
| NewRangeError(MessageTemplate::kBigIntFromNumber, number), |
| BigInt); |
| } |
| return MutableBigInt::NewFromSafeInteger( |
| isolate, Handle<HeapNumber>::cast(number)->value()); |
| } |
| |
| MaybeHandle<BigInt> BigInt::FromObject(Isolate* isolate, Handle<Object> obj) { |
| if (obj->IsJSReceiver()) { |
| ASSIGN_RETURN_ON_EXCEPTION( |
| isolate, obj, |
| JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(obj), |
| ToPrimitiveHint::kNumber), |
| BigInt); |
| } |
| |
| if (obj->IsBoolean()) { |
| return MutableBigInt::NewFromInt(isolate, obj->BooleanValue()); |
| } |
| if (obj->IsBigInt()) { |
| return Handle<BigInt>::cast(obj); |
| } |
| if (obj->IsString()) { |
| Handle<BigInt> n; |
| if (!StringToBigInt(isolate, Handle<String>::cast(obj)).ToHandle(&n)) { |
| THROW_NEW_ERROR(isolate, |
| NewSyntaxError(MessageTemplate::kBigIntFromObject, obj), |
| BigInt); |
| } |
| return n; |
| } |
| |
| THROW_NEW_ERROR( |
| isolate, NewTypeError(MessageTemplate::kBigIntFromObject, obj), BigInt); |
| } |
| |
| Handle<Object> BigInt::ToNumber(Handle<BigInt> x) { |
| Isolate* isolate = x->GetIsolate(); |
| if (x->is_zero()) return Handle<Smi>(Smi::kZero, isolate); |
| if (x->length() == 1 && x->digit(0) < Smi::kMaxValue) { |
| int value = static_cast<int>(x->digit(0)); |
| if (x->sign()) value = -value; |
| return Handle<Smi>(Smi::FromInt(value), isolate); |
| } |
| double result = MutableBigInt::ToDouble(x); |
| return isolate->factory()->NewHeapNumber(result); |
| } |
| |
| double MutableBigInt::ToDouble(Handle<BigIntBase> x) { |
| if (x->is_zero()) return 0.0; |
| int x_length = x->length(); |
| digit_t x_msd = x->digit(x_length - 1); |
| int msd_leading_zeros = base::bits::CountLeadingZeros(x_msd); |
| int x_bitlength = x_length * kDigitBits - msd_leading_zeros; |
| if (x_bitlength > 1024) return x->sign() ? -V8_INFINITY : V8_INFINITY; |
| uint64_t exponent = x_bitlength - 1; |
| // We need the most significant bit shifted to the position of a double's |
| // "hidden bit". We also need to hide that MSB, so we shift it out. |
| uint64_t current_digit = x_msd; |
| int digit_index = x_length - 1; |
| int shift = msd_leading_zeros + 1 + (64 - kDigitBits); |
| DCHECK_LE(1, shift); |
| DCHECK_LE(shift, 64); |
| uint64_t mantissa = (shift == 64) ? 0 : current_digit << shift; |
| mantissa >>= 12; |
| int mantissa_bits_unset = shift - 12; |
| // If not all mantissa bits are defined yet, get more digits as needed. |
| if (mantissa_bits_unset >= kDigitBits && digit_index > 0) { |
| digit_index--; |
| current_digit = static_cast<uint64_t>(x->digit(digit_index)); |
| mantissa |= (current_digit << (mantissa_bits_unset - kDigitBits)); |
| mantissa_bits_unset -= kDigitBits; |
| } |
| if (mantissa_bits_unset > 0 && digit_index > 0) { |
| DCHECK_LT(mantissa_bits_unset, kDigitBits); |
| digit_index--; |
| current_digit = static_cast<uint64_t>(x->digit(digit_index)); |
| mantissa |= (current_digit >> (kDigitBits - mantissa_bits_unset)); |
| mantissa_bits_unset -= kDigitBits; |
| } |
| // If there are unconsumed digits left, we may have to round. |
| Rounding rounding = |
| DecideRounding(x, mantissa_bits_unset, digit_index, current_digit); |
| if (rounding == kRoundUp || (rounding == kTie && (mantissa & 1) == 1)) { |
| mantissa++; |
| // Incrementing the mantissa can overflow the mantissa bits. In that case |
| // the new mantissa will be all zero (plus hidden bit). |
| if ((mantissa >> Double::kPhysicalSignificandSize) != 0) { |
| mantissa = 0; |
| exponent++; |
| // Incrementing the exponent can overflow too. |
| if (exponent > 1023) { |
| return x->sign() ? -V8_INFINITY : V8_INFINITY; |
| } |
| } |
| } |
| // Assemble the result. |
| uint64_t sign_bit = x->sign() ? (static_cast<uint64_t>(1) << 63) : 0; |
| exponent = (exponent + 0x3FF) << Double::kPhysicalSignificandSize; |
| uint64_t double_bits = sign_bit | exponent | mantissa; |
| return bit_cast<double>(double_bits); |
| } |
| |
| // This is its own function to keep control flow sane. The meaning of the |
| // parameters is defined by {ToDouble}'s local variable usage. |
| MutableBigInt::Rounding MutableBigInt::DecideRounding(Handle<BigIntBase> x, |
| int mantissa_bits_unset, |
| int digit_index, |
| uint64_t current_digit) { |
| if (mantissa_bits_unset > 0) return kRoundDown; |
| int top_unconsumed_bit; |
| if (mantissa_bits_unset < 0) { |
| // There are unconsumed bits in {current_digit}. |
| top_unconsumed_bit = -mantissa_bits_unset - 1; |
| } else { |
| DCHECK_EQ(mantissa_bits_unset, 0); |
| // {current_digit} fit the mantissa exactly; look at the next digit. |
| if (digit_index == 0) return kRoundDown; |
| digit_index--; |
| current_digit = static_cast<uint64_t>(x->digit(digit_index)); |
| top_unconsumed_bit = kDigitBits - 1; |
| } |
| // If the most significant remaining bit is 0, round down. |
| uint64_t bitmask = static_cast<uint64_t>(1) << top_unconsumed_bit; |
| if ((current_digit & bitmask) == 0) { |
| return kRoundDown; |
| } |
| // If any other remaining bit is set, round up. |
| bitmask -= 1; |
| if ((current_digit & bitmask) != 0) return kRoundUp; |
| for (; digit_index >= 0; digit_index--) { |
| if (x->digit(digit_index) != 0) return kRoundUp; |
| } |
| return kTie; |
| } |
| |
| void BigInt::BigIntShortPrint(std::ostream& os) { |
| if (sign()) os << "-"; |
| int len = length(); |
| if (len == 0) { |
| os << "0"; |
| return; |
| } |
| if (len > 1) os << "..."; |
| os << digit(0); |
| } |
| |
| // Internal helpers. |
| |
| MaybeHandle<BigInt> MutableBigInt::AbsoluteAdd(Handle<BigInt> x, |
| Handle<BigInt> y, |
| bool result_sign) { |
| if (x->length() < y->length()) return AbsoluteAdd(y, x, result_sign); |
| if (x->is_zero()) { |
| DCHECK(y->is_zero()); |
| return x; |
| } |
| if (y->is_zero()) { |
| return result_sign == x->sign() ? x : BigInt::UnaryMinus(x); |
| } |
| Handle<MutableBigInt> result; |
| if (!New(x->GetIsolate(), x->length() + 1).ToHandle(&result)) { |
| return MaybeHandle<BigInt>(); |
| } |
| digit_t carry = 0; |
| int i = 0; |
| for (; i < y->length(); i++) { |
| digit_t new_carry = 0; |
| digit_t sum = digit_add(x->digit(i), y->digit(i), &new_carry); |
| sum = digit_add(sum, carry, &new_carry); |
| result->set_digit(i, sum); |
| carry = new_carry; |
| } |
| for (; i < x->length(); i++) { |
| digit_t new_carry = 0; |
| digit_t sum = digit_add(x->digit(i), carry, &new_carry); |
| result->set_digit(i, sum); |
| carry = new_carry; |
| } |
| result->set_digit(i, carry); |
| result->set_sign(result_sign); |
| return MakeImmutable(result); |
| } |
| |
| Handle<BigInt> MutableBigInt::AbsoluteSub(Handle<BigInt> x, Handle<BigInt> y, |
| bool result_sign) { |
| DCHECK(x->length() >= y->length()); |
| SLOW_DCHECK(AbsoluteCompare(x, y) >= 0); |
| if (x->is_zero()) { |
| DCHECK(y->is_zero()); |
| return x; |
| } |
| if (y->is_zero()) { |
| return result_sign == x->sign() ? x : BigInt::UnaryMinus(x); |
| } |
| Handle<MutableBigInt> result = |
| New(x->GetIsolate(), x->length()).ToHandleChecked(); |
| digit_t borrow = 0; |
| int i = 0; |
| for (; i < y->length(); i++) { |
| digit_t new_borrow = 0; |
| digit_t difference = digit_sub(x->digit(i), y->digit(i), &new_borrow); |
| difference = digit_sub(difference, borrow, &new_borrow); |
| result->set_digit(i, difference); |
| borrow = new_borrow; |
| } |
| for (; i < x->length(); i++) { |
| digit_t new_borrow = 0; |
| digit_t difference = digit_sub(x->digit(i), borrow, &new_borrow); |
| result->set_digit(i, difference); |
| borrow = new_borrow; |
| } |
| DCHECK_EQ(0, borrow); |
| result->set_sign(result_sign); |
| return MakeImmutable(result); |
| } |
| |
| // Adds 1 to the absolute value of {x} and sets the result's sign to {sign}. |
| // {result_storage} is optional; if present, it will be used to store the |
| // result, otherwise a new BigInt will be allocated for the result. |
| // {result_storage} and {x} may refer to the same BigInt for in-place |
| // modification. |
| MaybeHandle<MutableBigInt> MutableBigInt::AbsoluteAddOne( |
| Handle<BigIntBase> x, bool sign, MutableBigInt* result_storage) { |
| int input_length = x->length(); |
| // The addition will overflow into a new digit if all existing digits are |
| // at maximum. |
| bool will_overflow = true; |
| for (int i = 0; i < input_length; i++) { |
| if (!digit_ismax(x->digit(i))) { |
| will_overflow = false; |
| break; |
| } |
| } |
| int result_length = input_length + will_overflow; |
| Isolate* isolate = x->GetIsolate(); |
| Handle<MutableBigInt> result(result_storage, isolate); |
| if (result_storage == nullptr) { |
| if (!New(isolate, result_length).ToHandle(&result)) { |
| return MaybeHandle<MutableBigInt>(); |
| } |
| } else { |
| DCHECK(result->length() == result_length); |
| } |
| digit_t carry = 1; |
| for (int i = 0; i < input_length; i++) { |
| digit_t new_carry = 0; |
| result->set_digit(i, digit_add(x->digit(i), carry, &new_carry)); |
| carry = new_carry; |
| } |
| if (result_length > input_length) { |
| result->set_digit(input_length, carry); |
| } else { |
| DCHECK_EQ(carry, 0); |
| } |
| result->set_sign(sign); |
| return result; |
| } |
| |
| // Subtracts 1 from the absolute value of {x}. {x} must not be zero. |
| Handle<MutableBigInt> MutableBigInt::AbsoluteSubOne(Handle<BigIntBase> x) { |
| DCHECK(!x->is_zero()); |
| // Requesting a result length identical to an existing BigInt's length |
| // cannot overflow the limit. |
| return AbsoluteSubOne(x, x->length()).ToHandleChecked(); |
| } |
| |
| // Like the above, but you can specify that the allocated result should have |
| // length {result_length}, which must be at least as large as {x->length()}. |
| MaybeHandle<MutableBigInt> MutableBigInt::AbsoluteSubOne(Handle<BigIntBase> x, |
| int result_length) { |
| DCHECK(!x->is_zero()); |
| DCHECK(result_length >= x->length()); |
| Handle<MutableBigInt> result; |
| if (!New(x->GetIsolate(), result_length).ToHandle(&result)) { |
| return MaybeHandle<MutableBigInt>(); |
| } |
| int length = x->length(); |
| digit_t borrow = 1; |
| for (int i = 0; i < length; i++) { |
| digit_t new_borrow = 0; |
| result->set_digit(i, digit_sub(x->digit(i), borrow, &new_borrow)); |
| borrow = new_borrow; |
| } |
| DCHECK_EQ(borrow, 0); |
| for (int i = length; i < result_length; i++) { |
| result->set_digit(i, borrow); |
| } |
| return result; |
| } |
| |
| // Helper for Absolute{And,AndNot,Or,Xor}. |
| // Performs the given binary {op} on digit pairs of {x} and {y}; when the |
| // end of the shorter of the two is reached, {extra_digits} configures how |
| // remaining digits in the longer input (if {symmetric} == kSymmetric, in |
| // {x} otherwise) are handled: copied to the result or ignored. |
| // If {result_storage} is non-nullptr, it will be used for the result and |
| // any extra digits in it will be zeroed out, otherwise a new BigInt (with |
| // the same length as the longer input) will be allocated. |
| // {result_storage} may alias {x} or {y} for in-place modification. |
| // Example: |
| // y: [ y2 ][ y1 ][ y0 ] |
| // x: [ x3 ][ x2 ][ x1 ][ x0 ] |
| // | | | | |
| // (kCopy) (op) (op) (op) |
| // | | | | |
| // v v v v |
| // result_storage: [ 0 ][ x3 ][ r2 ][ r1 ][ r0 ] |
| inline Handle<MutableBigInt> MutableBigInt::AbsoluteBitwiseOp( |
| Handle<BigIntBase> x, Handle<BigIntBase> y, MutableBigInt* result_storage, |
| ExtraDigitsHandling extra_digits, SymmetricOp symmetric, |
| std::function<digit_t(digit_t, digit_t)> op) { |
| int x_length = x->length(); |
| int y_length = y->length(); |
| int num_pairs = y_length; |
| if (x_length < y_length) { |
| num_pairs = x_length; |
| if (symmetric == kSymmetric) { |
| std::swap(x, y); |
| std::swap(x_length, y_length); |
| } |
| } |
| DCHECK(num_pairs == Min(x_length, y_length)); |
| Isolate* isolate = x->GetIsolate(); |
| Handle<MutableBigInt> result(result_storage, isolate); |
| int result_length = extra_digits == kCopy ? x_length : num_pairs; |
| if (result_storage == nullptr) { |
| result = New(isolate, result_length).ToHandleChecked(); |
| } else { |
| DCHECK(result_storage->length() >= result_length); |
| result_length = result_storage->length(); |
| } |
| int i = 0; |
| for (; i < num_pairs; i++) { |
| result->set_digit(i, op(x->digit(i), y->digit(i))); |
| } |
| if (extra_digits == kCopy) { |
| for (; i < x_length; i++) { |
| result->set_digit(i, x->digit(i)); |
| } |
| } |
| for (; i < result_length; i++) { |
| result->set_digit(i, 0); |
| } |
| return result; |
| } |
| |
| // If {result_storage} is non-nullptr, it will be used for the result, |
| // otherwise a new BigInt of appropriate length will be allocated. |
| // {result_storage} may alias {x} or {y} for in-place modification. |
| Handle<MutableBigInt> MutableBigInt::AbsoluteAnd( |
| Handle<BigIntBase> x, Handle<BigIntBase> y, MutableBigInt* result_storage) { |
| return AbsoluteBitwiseOp(x, y, result_storage, kSkip, kSymmetric, |
| [](digit_t a, digit_t b) { return a & b; }); |
| } |
| |
| // If {result_storage} is non-nullptr, it will be used for the result, |
| // otherwise a new BigInt of appropriate length will be allocated. |
| // {result_storage} may alias {x} or {y} for in-place modification. |
| Handle<MutableBigInt> MutableBigInt::AbsoluteAndNot( |
| Handle<BigIntBase> x, Handle<BigIntBase> y, MutableBigInt* result_storage) { |
| return AbsoluteBitwiseOp(x, y, result_storage, kCopy, kNotSymmetric, |
| [](digit_t a, digit_t b) { return a & ~b; }); |
| } |
| |
| // If {result_storage} is non-nullptr, it will be used for the result, |
| // otherwise a new BigInt of appropriate length will be allocated. |
| // {result_storage} may alias {x} or {y} for in-place modification. |
| Handle<MutableBigInt> MutableBigInt::AbsoluteOr(Handle<BigIntBase> x, |
| Handle<BigIntBase> y, |
| MutableBigInt* result_storage) { |
| return AbsoluteBitwiseOp(x, y, result_storage, kCopy, kSymmetric, |
| [](digit_t a, digit_t b) { return a | b; }); |
| } |
| |
| // If {result_storage} is non-nullptr, it will be used for the result, |
| // otherwise a new BigInt of appropriate length will be allocated. |
| // {result_storage} may alias {x} or {y} for in-place modification. |
| Handle<MutableBigInt> MutableBigInt::AbsoluteXor( |
| Handle<BigIntBase> x, Handle<BigIntBase> y, MutableBigInt* result_storage) { |
| return AbsoluteBitwiseOp(x, y, result_storage, kCopy, kSymmetric, |
| [](digit_t a, digit_t b) { return a ^ b; }); |
| } |
| |
| // Returns a positive value if abs(x) > abs(y), a negative value if |
| // abs(x) < abs(y), or zero if abs(x) == abs(y). |
| int MutableBigInt::AbsoluteCompare(Handle<BigIntBase> x, Handle<BigIntBase> y) { |
| int diff = x->length() - y->length(); |
| if (diff != 0) return diff; |
| int i = x->length() - 1; |
| while (i >= 0 && x->digit(i) == y->digit(i)) i--; |
| if (i < 0) return 0; |
| return x->digit(i) > y->digit(i) ? 1 : -1; |
| } |
| |
| // Multiplies {multiplicand} with {multiplier} and adds the result to |
| // {accumulator}, starting at {accumulator_index} for the least-significant |
| // digit. |
| // Callers must ensure that {accumulator} is big enough to hold the result. |
| void MutableBigInt::MultiplyAccumulate(Handle<BigIntBase> multiplicand, |
| digit_t multiplier, |
| Handle<MutableBigInt> accumulator, |
| int accumulator_index) { |
| // This is a minimum requirement; the DCHECK in the second loop below |
| // will enforce more as needed. |
| DCHECK(accumulator->length() > multiplicand->length() + accumulator_index); |
| if (multiplier == 0L) return; |
| digit_t carry = 0; |
| digit_t high = 0; |
| for (int i = 0; i < multiplicand->length(); i++, accumulator_index++) { |
| digit_t acc = accumulator->digit(accumulator_index); |
| digit_t new_carry = 0; |
| // Add last round's carryovers. |
| acc = digit_add(acc, high, &new_carry); |
| acc = digit_add(acc, carry, &new_carry); |
| // Compute this round's multiplication. |
| digit_t m_digit = multiplicand->digit(i); |
| digit_t low = digit_mul(multiplier, m_digit, &high); |
| acc = digit_add(acc, low, &new_carry); |
| // Store result and prepare for next round. |
| accumulator->set_digit(accumulator_index, acc); |
| carry = new_carry; |
| } |
| for (; carry != 0 || high != 0; accumulator_index++) { |
| DCHECK(accumulator_index < accumulator->length()); |
| digit_t acc = accumulator->digit(accumulator_index); |
| digit_t new_carry = 0; |
| acc = digit_add(acc, high, &new_carry); |
| high = 0; |
| acc = digit_add(acc, carry, &new_carry); |
| accumulator->set_digit(accumulator_index, acc); |
| carry = new_carry; |
| } |
| } |
| |
| // Multiplies {source} with {factor} and adds {summand} to the result. |
| // {result} and {source} may be the same BigInt for inplace modification. |
| void MutableBigInt::InternalMultiplyAdd(BigIntBase* source, digit_t factor, |
| digit_t summand, int n, |
| MutableBigInt* result) { |
| DCHECK(source->length() >= n); |
| DCHECK(result->length() >= n); |
| digit_t carry = summand; |
| digit_t high = 0; |
| for (int i = 0; i < n; i++) { |
| digit_t current = source->digit(i); |
| digit_t new_carry = 0; |
| // Compute this round's multiplication. |
| digit_t new_high = 0; |
| current = digit_mul(current, factor, &new_high); |
| // Add last round's carryovers. |
| current = digit_add(current, high, &new_carry); |
| current = digit_add(current, carry, &new_carry); |
| // Store result and prepare for next round. |
| result->set_digit(i, current); |
| carry = new_carry; |
| high = new_high; |
| } |
| if (result->length() > n) { |
| result->set_digit(n++, carry + high); |
| // Current callers don't pass in such large results, but let's be robust. |
| while (n < result->length()) { |
| result->set_digit(n++, 0); |
| } |
| } else { |
| CHECK_EQ(carry + high, 0); |
| } |
| } |
| |
| // Multiplies {x} with {factor} and then adds {summand} to it. |
| void BigInt::InplaceMultiplyAdd(Handle<FreshlyAllocatedBigInt> x, |
| uintptr_t factor, uintptr_t summand) { |
| STATIC_ASSERT(sizeof(factor) == sizeof(digit_t)); |
| STATIC_ASSERT(sizeof(summand) == sizeof(digit_t)); |
| Handle<MutableBigInt> bigint = MutableBigInt::Cast(x); |
| MutableBigInt::InternalMultiplyAdd(*bigint, factor, summand, bigint->length(), |
| *bigint); |
| } |
| |
| // Divides {x} by {divisor}, returning the result in {quotient} and {remainder}. |
| // Mathematically, the contract is: |
| // quotient = (x - remainder) / divisor, with 0 <= remainder < divisor. |
| // If {quotient} is an empty handle, an appropriately sized BigInt will be |
| // allocated for it; otherwise the caller must ensure that it is big enough. |
| // {quotient} can be the same as {x} for an in-place division. {quotient} can |
| // also be nullptr if the caller is only interested in the remainder. |
| void MutableBigInt::AbsoluteDivSmall(Handle<BigIntBase> x, digit_t divisor, |
| Handle<MutableBigInt>* quotient, |
| digit_t* remainder) { |
| DCHECK_NE(divisor, 0); |
| DCHECK(!x->is_zero()); // Callers check anyway, no need to handle this. |
| *remainder = 0; |
| int length = x->length(); |
| if (quotient != nullptr) { |
| if ((*quotient).is_null()) { |
| *quotient = New(x->GetIsolate(), length).ToHandleChecked(); |
| } |
| for (int i = length - 1; i >= 0; i--) { |
| digit_t q = digit_div(*remainder, x->digit(i), divisor, remainder); |
| (*quotient)->set_digit(i, q); |
| } |
| } else { |
| for (int i = length - 1; i >= 0; i--) { |
| digit_div(*remainder, x->digit(i), divisor, remainder); |
| } |
| } |
| } |
| |
| // Divides {dividend} by {divisor}, returning the result in {quotient} and |
| // {remainder}. Mathematically, the contract is: |
| // quotient = (dividend - remainder) / divisor, with 0 <= remainder < divisor. |
| // Both {quotient} and {remainder} are optional, for callers that are only |
| // interested in one of them. |
| // See Knuth, Volume 2, section 4.3.1, Algorithm D. |
| bool MutableBigInt::AbsoluteDivLarge(Handle<BigIntBase> dividend, |
| Handle<BigIntBase> divisor, |
| Handle<MutableBigInt>* quotient, |
| Handle<MutableBigInt>* remainder) { |
| DCHECK_GE(divisor->length(), 2); |
| DCHECK(dividend->length() >= divisor->length()); |
| Isolate* isolate = dividend->GetIsolate(); |
| // The unusual variable names inside this function are consistent with |
| // Knuth's book, as well as with Go's implementation of this algorithm. |
| // Maintaining this consistency is probably more useful than trying to |
| // come up with more descriptive names for them. |
| int n = divisor->length(); |
| int m = dividend->length() - n; |
| |
| // The quotient to be computed. |
| Handle<MutableBigInt> q; |
| if (quotient != nullptr) q = New(isolate, m + 1).ToHandleChecked(); |
| // In each iteration, {qhatv} holds {divisor} * {current quotient digit}. |
| // "v" is the book's name for {divisor}, "qhat" the current quotient digit. |
| Handle<MutableBigInt> qhatv; |
| if (!New(isolate, n + 1).ToHandle(&qhatv)) return false; |
| |
| // D1. |
| // Left-shift inputs so that the divisor's MSB is set. This is necessary |
| // to prevent the digit-wise divisions (see digit_div call below) from |
| // overflowing (they take a two digits wide input, and return a one digit |
| // result). |
| int shift = base::bits::CountLeadingZeros(divisor->digit(n - 1)); |
| if (shift > 0) { |
| divisor = |
| SpecialLeftShift(divisor, shift, kSameSizeResult).ToHandleChecked(); |
| } |
| // Holds the (continuously updated) remaining part of the dividend, which |
| // eventually becomes the remainder. |
| Handle<MutableBigInt> u; |
| if (!SpecialLeftShift(dividend, shift, kAlwaysAddOneDigit).ToHandle(&u)) { |
| return false; |
| } |
| |
| // D2. |
| // Iterate over the dividend's digit (like the "grad school" algorithm). |
| // {vn1} is the divisor's most significant digit. |
| digit_t vn1 = divisor->digit(n - 1); |
| for (int j = m; j >= 0; j--) { |
| // D3. |
| // Estimate the current iteration's quotient digit (see Knuth for details). |
| // {qhat} is the current quotient digit. |
| digit_t qhat = std::numeric_limits<digit_t>::max(); |
| // {ujn} is the dividend's most significant remaining digit. |
| digit_t ujn = u->digit(j + n); |
| if (ujn != vn1) { |
| // {rhat} is the current iteration's remainder. |
| digit_t rhat = 0; |
| // Estimate the current quotient digit by dividing the most significant |
| // digits of dividend and divisor. The result will not be too small, |
| // but could be a bit too large. |
| qhat = digit_div(ujn, u->digit(j + n - 1), vn1, &rhat); |
| |
| // Decrement the quotient estimate as needed by looking at the next |
| // digit, i.e. by testing whether |
| // qhat * v_{n-2} > (rhat << kDigitBits) + u_{j+n-2}. |
| digit_t vn2 = divisor->digit(n - 2); |
| digit_t ujn2 = u->digit(j + n - 2); |
| while (ProductGreaterThan(qhat, vn2, rhat, ujn2)) { |
| qhat--; |
| digit_t prev_rhat = rhat; |
| rhat += vn1; |
| // v[n-1] >= 0, so this tests for overflow. |
| if (rhat < prev_rhat) break; |
| } |
| } |
| |
| // D4. |
| // Multiply the divisor with the current quotient digit, and subtract |
| // it from the dividend. If there was "borrow", then the quotient digit |
| // was one too high, so we must correct it and undo one subtraction of |
| // the (shifted) divisor. |
| InternalMultiplyAdd(*divisor, qhat, 0, n, *qhatv); |
| digit_t c = u->InplaceSub(qhatv, j); |
| if (c != 0) { |
| c = u->InplaceAdd(divisor, j); |
| u->set_digit(j + n, u->digit(j + n) + c); |
| qhat--; |
| } |
| |
| if (quotient != nullptr) q->set_digit(j, qhat); |
| } |
| if (quotient != nullptr) { |
| *quotient = q; // Caller will right-trim. |
| } |
| if (remainder != nullptr) { |
| u->InplaceRightShift(shift); |
| *remainder = u; |
| } |
| return true; |
| } |
| |
| // Returns whether (factor1 * factor2) > (high << kDigitBits) + low. |
| bool MutableBigInt::ProductGreaterThan(digit_t factor1, digit_t factor2, |
| digit_t high, digit_t low) { |
| digit_t result_high; |
| digit_t result_low = digit_mul(factor1, factor2, &result_high); |
| return result_high > high || (result_high == high && result_low > low); |
| } |
| |
| // Adds {summand} onto {this}, starting with {summand}'s 0th digit |
| // at {this}'s {start_index}'th digit. Returns the "carry" (0 or 1). |
| BigInt::digit_t MutableBigInt::InplaceAdd(Handle<BigIntBase> summand, |
| int start_index) { |
| digit_t carry = 0; |
| int n = summand->length(); |
| DCHECK(length() >= start_index + n); |
| for (int i = 0; i < n; i++) { |
| digit_t new_carry = 0; |
| digit_t sum = |
| digit_add(digit(start_index + i), summand->digit(i), &new_carry); |
| sum = digit_add(sum, carry, &new_carry); |
| set_digit(start_index + i, sum); |
| carry = new_carry; |
| } |
| return carry; |
| } |
| |
| // Subtracts {subtrahend} from {this}, starting with {subtrahend}'s 0th digit |
| // at {this}'s {start_index}-th digit. Returns the "borrow" (0 or 1). |
| BigInt::digit_t MutableBigInt::InplaceSub(Handle<BigIntBase> subtrahend, |
| int start_index) { |
| digit_t borrow = 0; |
| int n = subtrahend->length(); |
| DCHECK(length() >= start_index + n); |
| for (int i = 0; i < n; i++) { |
| digit_t new_borrow = 0; |
| digit_t difference = |
| digit_sub(digit(start_index + i), subtrahend->digit(i), &new_borrow); |
| difference = digit_sub(difference, borrow, &new_borrow); |
| set_digit(start_index + i, difference); |
| borrow = new_borrow; |
| } |
| return borrow; |
| } |
| |
| void MutableBigInt::InplaceRightShift(int shift) { |
| DCHECK_GE(shift, 0); |
| DCHECK_LT(shift, kDigitBits); |
| DCHECK_GT(length(), 0); |
| DCHECK_EQ(digit(0) & ((static_cast<digit_t>(1) << shift) - 1), 0); |
| if (shift == 0) return; |
| digit_t carry = digit(0) >> shift; |
| int last = length() - 1; |
| for (int i = 0; i < last; i++) { |
| digit_t d = digit(i + 1); |
| set_digit(i, (d << (kDigitBits - shift)) | carry); |
| carry = d >> shift; |
| } |
| set_digit(last, carry); |
| } |
| |
| // Always copies the input, even when {shift} == 0. |
| // {shift} must be less than kDigitBits, {x} must be non-zero. |
| MaybeHandle<MutableBigInt> MutableBigInt::SpecialLeftShift( |
| Handle<BigIntBase> x, int shift, SpecialLeftShiftMode mode) { |
| DCHECK_GE(shift, 0); |
| DCHECK_LT(shift, kDigitBits); |
| DCHECK_GT(x->length(), 0); |
| int n = x->length(); |
| int result_length = mode == kAlwaysAddOneDigit ? n + 1 : n; |
| Handle<MutableBigInt> result; |
| if (!New(x->GetIsolate(), result_length).ToHandle(&result)) { |
| return MaybeHandle<MutableBigInt>(); |
| } |
| if (shift == 0) { |
| for (int i = 0; i < n; i++) result->set_digit(i, x->digit(i)); |
| if (mode == kAlwaysAddOneDigit) result->set_digit(n, 0); |
| return result; |
| } |
| DCHECK_GT(shift, 0); |
| digit_t carry = 0; |
| for (int i = 0; i < n; i++) { |
| digit_t d = x->digit(i); |
| result->set_digit(i, (d << shift) | carry); |
| carry = d >> (kDigitBits - shift); |
| } |
| if (mode == kAlwaysAddOneDigit) { |
| result->set_digit(n, carry); |
| } else { |
| DCHECK_EQ(mode, kSameSizeResult); |
| DCHECK_EQ(carry, 0); |
| } |
| return result; |
| } |
| |
| MaybeHandle<BigInt> MutableBigInt::LeftShiftByAbsolute(Handle<BigIntBase> x, |
| Handle<BigIntBase> y) { |
| Isolate* isolate = x->GetIsolate(); |
| Maybe<digit_t> maybe_shift = ToShiftAmount(y); |
| if (maybe_shift.IsNothing()) { |
| THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), |
| BigInt); |
| } |
| digit_t shift = maybe_shift.FromJust(); |
| int digit_shift = static_cast<int>(shift / kDigitBits); |
| int bits_shift = static_cast<int>(shift % kDigitBits); |
| int length = x->length(); |
| bool grow = bits_shift != 0 && |
| (x->digit(length - 1) >> (kDigitBits - bits_shift)) != 0; |
| int result_length = length + digit_shift + grow; |
| if (result_length > kMaxLength) { |
| THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), |
| BigInt); |
| } |
| Handle<MutableBigInt> result; |
| if (!New(isolate, result_length).ToHandle(&result)) { |
| return MaybeHandle<BigInt>(); |
| } |
| if (bits_shift == 0) { |
| int i = 0; |
| for (; i < digit_shift; i++) result->set_digit(i, 0ul); |
| for (; i < result_length; i++) { |
| result->set_digit(i, x->digit(i - digit_shift)); |
| } |
| } else { |
| digit_t carry = 0; |
| for (int i = 0; i < digit_shift; i++) result->set_digit(i, 0ul); |
| for (int i = 0; i < length; i++) { |
| digit_t d = x->digit(i); |
| result->set_digit(i + digit_shift, (d << bits_shift) | carry); |
| carry = d >> (kDigitBits - bits_shift); |
| } |
| if (grow) { |
| result->set_digit(length + digit_shift, carry); |
| } else { |
| DCHECK_EQ(carry, 0); |
| } |
| } |
| result->set_sign(x->sign()); |
| return MakeImmutable(result); |
| } |
| |
| Handle<BigInt> MutableBigInt::RightShiftByAbsolute(Handle<BigIntBase> x, |
| Handle<BigIntBase> y) { |
| Isolate* isolate = x->GetIsolate(); |
| int length = x->length(); |
| bool sign = x->sign(); |
| Maybe<digit_t> maybe_shift = ToShiftAmount(y); |
| if (maybe_shift.IsNothing()) { |
| return RightShiftByMaximum(isolate, sign); |
| } |
| digit_t shift = maybe_shift.FromJust(); |
| int digit_shift = static_cast<int>(shift / kDigitBits); |
| int bits_shift = static_cast<int>(shift % kDigitBits); |
| int result_length = length - digit_shift; |
| if (result_length <= 0) { |
| return RightShiftByMaximum(isolate, sign); |
| } |
| // For negative numbers, round down if any bit was shifted out (so that e.g. |
| // -5n >> 1n == -3n and not -2n). Check now whether this will happen and |
| // whether it can cause overflow into a new digit. If we allocate the result |
| // large enough up front, it avoids having to do a second allocation later. |
| bool must_round_down = false; |
| if (sign) { |
| const digit_t mask = (static_cast<digit_t>(1) << bits_shift) - 1; |
| if ((x->digit(digit_shift) & mask) != 0) { |
| must_round_down = true; |
| } else { |
| for (int i = 0; i < digit_shift; i++) { |
| if (x->digit(i) != 0) { |
| must_round_down = true; |
| break; |
| } |
| } |
| } |
| } |
| // If bits_shift is non-zero, it frees up bits, preventing overflow. |
| if (must_round_down && bits_shift == 0) { |
| // Overflow cannot happen if the most significant digit has unset bits. |
| digit_t msd = x->digit(length - 1); |
| bool rounding_can_overflow = digit_ismax(msd); |
| if (rounding_can_overflow) result_length++; |
| } |
| |
| DCHECK_LE(result_length, length); |
| Handle<MutableBigInt> result = New(isolate, result_length).ToHandleChecked(); |
| if (bits_shift == 0) { |
| for (int i = digit_shift; i < length; i++) { |
| result->set_digit(i - digit_shift, x->digit(i)); |
| } |
| } else { |
| digit_t carry = x->digit(digit_shift) >> bits_shift; |
| int last = length - digit_shift - 1; |
| for (int i = 0; i < last; i++) { |
| digit_t d = x->digit(i + digit_shift + 1); |
| result->set_digit(i, (d << (kDigitBits - bits_shift)) | carry); |
| carry = d >> bits_shift; |
| } |
| result->set_digit(last, carry); |
| } |
| |
| if (sign) { |
| result->set_sign(true); |
| if (must_round_down) { |
| // Since the result is negative, rounding down means adding one to |
| // its absolute value. This cannot overflow. |
| result = AbsoluteAddOne(result, true, *result).ToHandleChecked(); |
| } |
| } |
| return MakeImmutable(result); |
| } |
| |
| Handle<BigInt> MutableBigInt::RightShiftByMaximum(Isolate* isolate, bool sign) { |
| if (sign) { |
| // TODO(jkummerow): Consider caching a canonical -1n BigInt. |
| return NewFromInt(isolate, -1); |
| } else { |
| return Zero(isolate); |
| } |
| } |
| |
| // Returns the value of {x} if it is less than the maximum bit length of |
| // a BigInt, or Nothing otherwise. |
| Maybe<BigInt::digit_t> MutableBigInt::ToShiftAmount(Handle<BigIntBase> x) { |
| if (x->length() > 1) return Nothing<digit_t>(); |
| digit_t value = x->digit(0); |
| STATIC_ASSERT(kMaxLengthBits < std::numeric_limits<digit_t>::max()); |
| if (value > kMaxLengthBits) return Nothing<digit_t>(); |
| return Just(value); |
| } |
| |
| // Lookup table for the maximum number of bits required per character of a |
| // base-N string representation of a number. To increase accuracy, the array |
| // value is the actual value multiplied by 32. To generate this table: |
| // for (var i = 0; i <= 36; i++) { print(Math.ceil(Math.log2(i) * 32) + ","); } |
| constexpr uint8_t kMaxBitsPerChar[] = { |
| 0, 0, 32, 51, 64, 75, 83, 90, 96, // 0..8 |
| 102, 107, 111, 115, 119, 122, 126, 128, // 9..16 |
| 131, 134, 136, 139, 141, 143, 145, 147, // 17..24 |
| 149, 151, 153, 154, 156, 158, 159, 160, // 25..32 |
| 162, 163, 165, 166, // 33..36 |
| }; |
| |
| static const int kBitsPerCharTableShift = 5; |
| static const size_t kBitsPerCharTableMultiplier = 1u << kBitsPerCharTableShift; |
| |
| MaybeHandle<FreshlyAllocatedBigInt> BigInt::AllocateFor( |
| Isolate* isolate, int radix, int charcount, ShouldThrow should_throw) { |
| DCHECK(2 <= radix && radix <= 36); |
| DCHECK_GE(charcount, 0); |
| size_t bits_per_char = kMaxBitsPerChar[radix]; |
| size_t chars = static_cast<size_t>(charcount); |
| const int roundup = kBitsPerCharTableMultiplier - 1; |
| if (chars <= (std::numeric_limits<size_t>::max() - roundup) / bits_per_char) { |
| size_t bits_min = bits_per_char * chars; |
| // Divide by 32 (see table), rounding up. |
| bits_min = (bits_min + roundup) >> kBitsPerCharTableShift; |
| if (bits_min <= static_cast<size_t>(kMaxInt)) { |
| // Divide by kDigitsBits, rounding up. |
| int length = (static_cast<int>(bits_min) + kDigitBits - 1) / kDigitBits; |
| if (length <= kMaxLength) { |
| Handle<MutableBigInt> result = |
| MutableBigInt::New(isolate, length).ToHandleChecked(); |
| result->InitializeDigits(length); |
| return result; |
| } |
| } |
| } |
| // All the overflow/maximum checks above fall through to here. |
| if (should_throw == kThrowOnError) { |
| THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), |
| FreshlyAllocatedBigInt); |
| } else { |
| return MaybeHandle<FreshlyAllocatedBigInt>(); |
| } |
| } |
| |
| Handle<BigInt> BigInt::Finalize(Handle<FreshlyAllocatedBigInt> x, bool sign) { |
| Handle<MutableBigInt> bigint = MutableBigInt::Cast(x); |
| bigint->set_sign(sign); |
| return MutableBigInt::MakeImmutable(bigint); |
| } |
| |
| static const char kConversionChars[] = "0123456789abcdefghijklmnopqrstuvwxyz"; |
| |
| MaybeHandle<String> MutableBigInt::ToStringBasePowerOfTwo(Handle<BigIntBase> x, |
| int radix) { |
| STATIC_ASSERT(base::bits::IsPowerOfTwo(kDigitBits)); |
| DCHECK(base::bits::IsPowerOfTwo(radix)); |
| DCHECK(radix >= 2 && radix <= 32); |
| DCHECK(!x->is_zero()); |
| Isolate* isolate = x->GetIsolate(); |
| |
| const int length = x->length(); |
| const bool sign = x->sign(); |
| const int bits_per_char = base::bits::CountTrailingZeros(radix); |
| const int char_mask = radix - 1; |
| // Compute the length of the resulting string: divide the bit length of the |
| // BigInt by the number of bits representable per character (rounding up). |
| const digit_t msd = x->digit(length - 1); |
| const int msd_leading_zeros = base::bits::CountLeadingZeros(msd); |
| const size_t bit_length = length * kDigitBits - msd_leading_zeros; |
| const size_t chars_required = |
| (bit_length + bits_per_char - 1) / bits_per_char + sign; |
| |
| if (chars_required > String::kMaxLength) { |
| THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), String); |
| } |
| |
| Handle<SeqOneByteString> result = |
| isolate->factory() |
| ->NewRawOneByteString(static_cast<int>(chars_required)) |
| .ToHandleChecked(); |
| DisallowHeapAllocation no_gc; |
| uint8_t* buffer = result->GetChars(); |
| // Print the number into the string, starting from the last position. |
| int pos = static_cast<int>(chars_required - 1); |
| digit_t digit = 0; |
| // Keeps track of how many unprocessed bits there are in {digit}. |
| int available_bits = 0; |
| for (int i = 0; i < length - 1; i++) { |
| digit_t new_digit = x->digit(i); |
| // Take any leftover bits from the last iteration into account. |
| int current = (digit | (new_digit << available_bits)) & char_mask; |
| buffer[pos--] = kConversionChars[current]; |
| int consumed_bits = bits_per_char - available_bits; |
| digit = new_digit >> consumed_bits; |
| available_bits = kDigitBits - consumed_bits; |
| while (available_bits >= bits_per_char) { |
| buffer[pos--] = kConversionChars[digit & char_mask]; |
| digit >>= bits_per_char; |
| available_bits -= bits_per_char; |
| } |
| } |
| // Take any leftover bits from the last iteration into account. |
| int current = (digit | (msd << available_bits)) & char_mask; |
| buffer[pos--] = kConversionChars[current]; |
| digit = msd >> (bits_per_char - available_bits); |
| while (digit != 0) { |
| buffer[pos--] = kConversionChars[digit & char_mask]; |
| digit >>= bits_per_char; |
| } |
| if (sign) buffer[pos--] = '-'; |
| DCHECK_EQ(pos, -1); |
| return result; |
| } |
| |
| MaybeHandle<String> MutableBigInt::ToStringGeneric(Handle<BigIntBase> x, |
| int radix) { |
| DCHECK(radix >= 2 && radix <= 36); |
| DCHECK(!x->is_zero()); |
| Heap* heap = x->GetHeap(); |
| Isolate* isolate = heap->isolate(); |
| |
| const int length = x->length(); |
| const bool sign = x->sign(); |
| |
| // Compute (an overapproximation of) the length of the resulting string: |
| // Divide bit length of the BigInt by bits representable per character. |
| const size_t bit_length = |
| length * kDigitBits - base::bits::CountLeadingZeros(x->digit(length - 1)); |
| // Maximum number of bits we can represent with one character. We'll use this |
| // to find an appropriate chunk size below. |
| const uint8_t max_bits_per_char = kMaxBitsPerChar[radix]; |
| // For estimating result length, we have to be pessimistic and work with |
| // the minimum number of bits one character can represent. |
| const uint8_t min_bits_per_char = max_bits_per_char - 1; |
| // Perform the following computation with uint64_t to avoid overflows. |
| uint64_t chars_required = bit_length; |
| chars_required *= kBitsPerCharTableMultiplier; |
| chars_required += min_bits_per_char - 1; // Round up. |
| chars_required /= min_bits_per_char; |
| chars_required += sign; |
| |
| if (chars_required > String::kMaxLength) { |
| THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), String); |
| } |
| Handle<SeqOneByteString> result = |
| isolate->factory() |
| ->NewRawOneByteString(static_cast<int>(chars_required)) |
| .ToHandleChecked(); |
| |
| #if DEBUG |
| // Zap the string first. |
| { |
| DisallowHeapAllocation no_gc; |
| uint8_t* chars = result->GetChars(); |
| for (int i = 0; i < static_cast<int>(chars_required); i++) chars[i] = '?'; |
| } |
| #endif |
| |
| // We assemble the result string in reverse order, and then reverse it. |
| // TODO(jkummerow): Consider building the string from the right, and |
| // left-shifting it if the length estimate was too large. |
| int pos = 0; |
| |
| digit_t last_digit; |
| if (length == 1) { |
| last_digit = x->digit(0); |
| } else { |
| int chunk_chars = |
| kDigitBits * kBitsPerCharTableMultiplier / max_bits_per_char; |
| digit_t chunk_divisor = digit_pow(radix, chunk_chars); |
| // By construction of chunk_chars, there can't have been overflow. |
| DCHECK_NE(chunk_divisor, 0); |
| int nonzero_digit = length - 1; |
| DCHECK_NE(x->digit(nonzero_digit), 0); |
| // {rest} holds the part of the BigInt that we haven't looked at yet. |
| // Not to be confused with "remainder"! |
| Handle<MutableBigInt> rest; |
| // In the first round, divide the input, allocating a new BigInt for |
| // the result == rest; from then on divide the rest in-place. |
| Handle<BigIntBase>* dividend = &x; |
| do { |
| digit_t chunk; |
| AbsoluteDivSmall(*dividend, chunk_divisor, &rest, &chunk); |
| DCHECK(!rest.is_null()); |
| dividend = reinterpret_cast<Handle<BigIntBase>*>(&rest); |
| DisallowHeapAllocation no_gc; |
| uint8_t* chars = result->GetChars(); |
| for (int i = 0; i < chunk_chars; i++) { |
| chars[pos++] = kConversionChars[chunk % radix]; |
| chunk /= radix; |
| } |
| DCHECK_EQ(chunk, 0); |
| if (rest->digit(nonzero_digit) == 0) nonzero_digit--; |
| // We can never clear more than one digit per iteration, because |
| // chunk_divisor is smaller than max digit value. |
| DCHECK_GT(rest->digit(nonzero_digit), 0); |
| } while (nonzero_digit > 0); |
| last_digit = rest->digit(0); |
| } |
| DisallowHeapAllocation no_gc; |
| uint8_t* chars = result->GetChars(); |
| do { |
| chars[pos++] = kConversionChars[last_digit % radix]; |
| last_digit /= radix; |
| } while (last_digit > 0); |
| DCHECK_GE(pos, 1); |
| DCHECK(pos <= static_cast<int>(chars_required)); |
| // Remove leading zeroes. |
| while (pos > 1 && chars[pos - 1] == '0') pos--; |
| if (sign) chars[pos++] = '-'; |
| // Trim any over-allocation (which can happen due to conservative estimates). |
| if (pos < static_cast<int>(chars_required)) { |
| result->synchronized_set_length(pos); |
| int string_size = |
| SeqOneByteString::SizeFor(static_cast<int>(chars_required)); |
| int needed_size = SeqOneByteString::SizeFor(pos); |
| if (needed_size < string_size) { |
| Address new_end = result->address() + needed_size; |
| heap->CreateFillerObjectAt(new_end, (string_size - needed_size), |
| ClearRecordedSlots::kNo); |
| } |
| } |
| // Reverse the string. |
| for (int i = 0, j = pos - 1; i < j; i++, j--) { |
| uint8_t tmp = chars[i]; |
| chars[i] = chars[j]; |
| chars[j] = tmp; |
| } |
| #if DEBUG |
| // Verify that all characters have been written. |
| DCHECK(result->length() == pos); |
| for (int i = 0; i < pos; i++) DCHECK_NE(chars[i], '?'); |
| #endif |
| return result; |
| } |
| |
| Handle<BigInt> BigInt::AsIntN(uint64_t n, Handle<BigInt> x) { |
| if (x->is_zero()) return x; |
| if (n == 0) return MutableBigInt::Zero(x->GetIsolate()); |
| uint64_t needed_length = (n + kDigitBits - 1) / kDigitBits; |
| uint64_t x_length = static_cast<uint64_t>(x->length()); |
| // If {x} has less than {n} bits, return it directly. |
| if (x_length < needed_length) return x; |
| DCHECK_LE(needed_length, kMaxInt); |
| digit_t top_digit = x->digit(static_cast<int>(needed_length) - 1); |
| digit_t compare_digit = static_cast<digit_t>(1) << ((n - 1) % kDigitBits); |
| if (x_length == needed_length && top_digit < compare_digit) return x; |
| // Otherwise we have to truncate (which is a no-op in the special case |
| // of x == -2^(n-1)), and determine the right sign. We also might have |
| // to subtract from 2^n to simulate having two's complement representation. |
| // In most cases, the result's sign is x->sign() xor "(n-1)th bit present". |
| // The only exception is when x is negative, has the (n-1)th bit, and all |
| // its bits below (n-1) are zero. In that case, the result is the minimum |
| // n-bit integer (example: asIntN(3, -12n) => -4n). |
| bool has_bit = (top_digit & compare_digit) == compare_digit; |
| DCHECK_LE(n, kMaxInt); |
| int N = static_cast<int>(n); |
| if (!has_bit) { |
| return MutableBigInt::TruncateToNBits(N, x); |
| } |
| if (!x->sign()) { |
| return MutableBigInt::TruncateAndSubFromPowerOfTwo(N, x, true); |
| } |
| // Negative numbers must subtract from 2^n, except for the special case |
| // described above. |
| if ((top_digit & (compare_digit - 1)) == 0) { |
| for (int i = static_cast<int>(needed_length) - 2; i >= 0; i--) { |
| if (x->digit(i) != 0) { |
| return MutableBigInt::TruncateAndSubFromPowerOfTwo(N, x, false); |
| } |
| } |
| return MutableBigInt::TruncateToNBits(N, x); |
| } |
| return MutableBigInt::TruncateAndSubFromPowerOfTwo(N, x, false); |
| } |
| |
| MaybeHandle<BigInt> BigInt::AsUintN(uint64_t n, Handle<BigInt> x) { |
| if (x->is_zero()) return x; |
| if (n == 0) return MutableBigInt::Zero(x->GetIsolate()); |
| // If {x} is negative, simulate two's complement representation. |
| if (x->sign()) { |
| if (n > kMaxLengthBits) { |
| THROW_NEW_ERROR(x->GetIsolate(), |
| NewRangeError(MessageTemplate::kBigIntTooBig), BigInt); |
| } |
| return MutableBigInt::TruncateAndSubFromPowerOfTwo(static_cast<int>(n), x, |
| false); |
| } |
| // If {x} is positive and has up to {n} bits, return it directly. |
| if (n >= kMaxLengthBits) return x; |
| STATIC_ASSERT(kMaxLengthBits < kMaxInt - kDigitBits); |
| int needed_length = static_cast<int>((n + kDigitBits - 1) / kDigitBits); |
| if (x->length() < needed_length) return x; |
| int bits_in_top_digit = n % kDigitBits; |
| if (bits_in_top_digit == 0) { |
| if (x->length() == needed_length) return x; |
| } else { |
| digit_t top_digit = x->digit(needed_length - 1); |
| if ((top_digit >> bits_in_top_digit) == 0) return x; |
| } |
| // Otherwise, truncate. |
| DCHECK_LE(n, kMaxInt); |
| return MutableBigInt::TruncateToNBits(static_cast<int>(n), x); |
| } |
| |
| Handle<BigInt> MutableBigInt::TruncateToNBits(int n, Handle<BigInt> x) { |
| // Only call this when there's something to do. |
| DCHECK_NE(n, 0); |
| DCHECK_GT(x->length(), n / kDigitBits); |
| Isolate* isolate = x->GetIsolate(); |
| |
| int needed_digits = (n + (kDigitBits - 1)) / kDigitBits; |
| DCHECK_LE(needed_digits, x->length()); |
| Handle<MutableBigInt> result = New(isolate, needed_digits).ToHandleChecked(); |
| |
| // Copy all digits except the MSD. |
| int last = needed_digits - 1; |
| for (int i = 0; i < last; i++) { |
| result->set_digit(i, x->digit(i)); |
| } |
| |
| // The MSD might contain extra bits that we don't want. |
| digit_t msd = x->digit(last); |
| if (n % kDigitBits != 0) { |
| int drop = kDigitBits - (n % kDigitBits); |
| msd = (msd << drop) >> drop; |
| } |
| result->set_digit(last, msd); |
| result->set_sign(x->sign()); |
| return MakeImmutable(result); |
| } |
| |
| // Subtracts the least significant n bits of abs(x) from 2^n. |
| Handle<BigInt> MutableBigInt::TruncateAndSubFromPowerOfTwo(int n, |
| Handle<BigInt> x, |
| bool result_sign) { |
| DCHECK_NE(n, 0); |
| DCHECK_LE(n, kMaxLengthBits); |
| Isolate* isolate = x->GetIsolate(); |
| |
| int needed_digits = (n + (kDigitBits - 1)) / kDigitBits; |
| DCHECK_LE(needed_digits, kMaxLength); // Follows from n <= kMaxLengthBits. |
| Handle<MutableBigInt> result = New(isolate, needed_digits).ToHandleChecked(); |
| |
| // Process all digits except the MSD. |
| int i = 0; |
| int last = needed_digits - 1; |
| int x_length = x->length(); |
| digit_t borrow = 0; |
| // Take digits from {x} unless its length is exhausted. |
| int limit = Min(last, x_length); |
| for (; i < limit; i++) { |
| digit_t new_borrow = 0; |
| digit_t difference = digit_sub(0, x->digit(i), &new_borrow); |
| difference = digit_sub(difference, borrow, &new_borrow); |
| result->set_digit(i, difference); |
| borrow = new_borrow; |
| } |
| // Then simulate leading zeroes in {x} as needed. |
| for (; i < last; i++) { |
| digit_t new_borrow = 0; |
| digit_t difference = digit_sub(0, borrow, &new_borrow); |
| result->set_digit(i, difference); |
| borrow = new_borrow; |
| } |
| |
| // The MSD might contain extra bits that we don't want. |
| digit_t msd = last < x_length ? x->digit(last) : 0; |
| int msd_bits_consumed = n % kDigitBits; |
| digit_t result_msd; |
| if (msd_bits_consumed == 0) { |
| digit_t new_borrow = 0; |
| result_msd = digit_sub(0, msd, &new_borrow); |
| result_msd = digit_sub(result_msd, borrow, &new_borrow); |
| } else { |
| int drop = kDigitBits - msd_bits_consumed; |
| msd = (msd << drop) >> drop; |
| digit_t minuend_msd = static_cast<digit_t>(1) << (kDigitBits - drop); |
| digit_t new_borrow = 0; |
| result_msd = digit_sub(minuend_msd, msd, &new_borrow); |
| result_msd = digit_sub(result_msd, borrow, &new_borrow); |
| DCHECK_EQ(new_borrow, 0); // result < 2^n. |
| // If all subtracted bits were zero, we have to get rid of the |
| // materialized minuend_msd again. |
| result_msd &= (minuend_msd - 1); |
| } |
| result->set_digit(last, result_msd); |
| result->set_sign(result_sign); |
| return MakeImmutable(result); |
| } |
| |
| // Digit arithmetic helpers. |
| |
| #if V8_TARGET_ARCH_32_BIT |
| #define HAVE_TWODIGIT_T 1 |
| typedef uint64_t twodigit_t; |
| #elif defined(__SIZEOF_INT128__) |
| // Both Clang and GCC support this on x64. |
| #define HAVE_TWODIGIT_T 1 |
| typedef __uint128_t twodigit_t; |
| #endif |
| |
| // {carry} must point to an initialized digit_t and will either be incremented |
| // by one or left alone. |
| inline BigInt::digit_t MutableBigInt::digit_add(digit_t a, digit_t b, |
| digit_t* carry) { |
| #if HAVE_TWODIGIT_T |
| twodigit_t result = static_cast<twodigit_t>(a) + static_cast<twodigit_t>(b); |
| *carry += result >> kDigitBits; |
| return static_cast<digit_t>(result); |
| #else |
| digit_t result = a + b; |
| if (result < a) *carry += 1; |
| return result; |
| #endif |
| } |
| |
| // {borrow} must point to an initialized digit_t and will either be incremented |
| // by one or left alone. |
| inline BigInt::digit_t MutableBigInt::digit_sub(digit_t a, digit_t b, |
| digit_t* borrow) { |
| #if HAVE_TWODIGIT_T |
| twodigit_t result = static_cast<twodigit_t>(a) - static_cast<twodigit_t>(b); |
| *borrow += (result >> kDigitBits) & 1; |
| return static_cast<digit_t>(result); |
| #else |
| digit_t result = a - b; |
| if (result > a) *borrow += 1; |
| return static_cast<digit_t>(result); |
| #endif |
| } |
| |
| // Returns the low half of the result. High half is in {high}. |
| inline BigInt::digit_t MutableBigInt::digit_mul(digit_t a, digit_t b, |
| digit_t* high) { |
| #if HAVE_TWODIGIT_T |
| twodigit_t result = static_cast<twodigit_t>(a) * static_cast<twodigit_t>(b); |
| *high = result >> kDigitBits; |
| return static_cast<digit_t>(result); |
| #else |
| // Multiply in half-pointer-sized chunks. |
| // For inputs [AH AL]*[BH BL], the result is: |
| // |
| // [AL*BL] // r_low |
| // + [AL*BH] // r_mid1 |
| // + [AH*BL] // r_mid2 |
| // + [AH*BH] // r_high |
| // = [R4 R3 R2 R1] // high = [R4 R3], low = [R2 R1] |
| // |
| // Where of course we must be careful with carries between the columns. |
| digit_t a_low = a & kHalfDigitMask; |
| digit_t a_high = a >> kHalfDigitBits; |
| digit_t b_low = b & kHalfDigitMask; |
| digit_t b_high = b >> kHalfDigitBits; |
| |
| digit_t r_low = a_low * b_low; |
| digit_t r_mid1 = a_low * b_high; |
| digit_t r_mid2 = a_high * b_low; |
| digit_t r_high = a_high * b_high; |
| |
| digit_t carry = 0; |
| digit_t low = digit_add(r_low, r_mid1 << kHalfDigitBits, &carry); |
| low = digit_add(low, r_mid2 << kHalfDigitBits, &carry); |
| *high = |
| (r_mid1 >> kHalfDigitBits) + (r_mid2 >> kHalfDigitBits) + r_high + carry; |
| return low; |
| #endif |
| } |
| |
| // Returns the quotient. |
| // quotient = (high << kDigitBits + low - remainder) / divisor |
| BigInt::digit_t MutableBigInt::digit_div(digit_t high, digit_t low, |
| digit_t divisor, digit_t* remainder) { |
| DCHECK(high < divisor); |
| #if V8_TARGET_ARCH_X64 && (__GNUC__ || __clang__) |
| digit_t quotient; |
| digit_t rem; |
| __asm__("divq %[divisor]" |
| // Outputs: {quotient} will be in rax, {rem} in rdx. |
| : "=a"(quotient), "=d"(rem) |
| // Inputs: put {high} into rdx, {low} into rax, and {divisor} into |
| // any register or stack slot. |
| : "d"(high), "a"(low), [divisor] "rm"(divisor)); |
| *remainder = rem; |
| return quotient; |
| #elif V8_TARGET_ARCH_IA32 && (__GNUC__ || __clang__) |
| digit_t quotient; |
| digit_t rem; |
| __asm__("divl %[divisor]" |
| // Outputs: {quotient} will be in eax, {rem} in edx. |
| : "=a"(quotient), "=d"(rem) |
| // Inputs: put {high} into edx, {low} into eax, and {divisor} into |
| // any register or stack slot. |
| : "d"(high), "a"(low), [divisor] "rm"(divisor)); |
| *remainder = rem; |
| return quotient; |
| #else |
| static const digit_t kHalfDigitBase = 1ull << kHalfDigitBits; |
| // Adapted from Warren, Hacker's Delight, p. 152. |
| int s = base::bits::CountLeadingZeros(divisor); |
| divisor <<= s; |
| |
| digit_t vn1 = divisor >> kHalfDigitBits; |
| digit_t vn0 = divisor & kHalfDigitMask; |
| // {s} can be 0. "low >> kDigitBits == low" on x86, so we "&" it with |
| // {s_zero_mask} which is 0 if s == 0 and all 1-bits otherwise. |
| STATIC_ASSERT(sizeof(intptr_t) == sizeof(digit_t)); |
| digit_t s_zero_mask = |
| static_cast<digit_t>(static_cast<intptr_t>(-s) >> (kDigitBits - 1)); |
| digit_t un32 = (high << s) | ((low >> (kDigitBits - s)) & s_zero_mask); |
| digit_t un10 = low << s; |
| digit_t un1 = un10 >> kHalfDigitBits; |
| digit_t un0 = un10 & kHalfDigitMask; |
| digit_t q1 = un32 / vn1; |
| digit_t rhat = un32 - q1 * vn1; |
| |
| while (q1 >= kHalfDigitBase || q1 * vn0 > rhat * kHalfDigitBase + un1) { |
| q1--; |
| rhat += vn1; |
| if (rhat >= kHalfDigitBase) break; |
| } |
| |
| digit_t un21 = un32 * kHalfDigitBase + un1 - q1 * divisor; |
| digit_t q0 = un21 / vn1; |
| rhat = un21 - q0 * vn1; |
| |
| while (q0 >= kHalfDigitBase || q0 * vn0 > rhat * kHalfDigitBase + un0) { |
| q0--; |
| rhat += vn1; |
| if (rhat >= kHalfDigitBase) break; |
| } |
| |
| *remainder = (un21 * kHalfDigitBase + un0 - q0 * divisor) >> s; |
| return q1 * kHalfDigitBase + q0; |
| #endif |
| } |
| |
| // Raises {base} to the power of {exponent}. Does not check for overflow. |
| BigInt::digit_t MutableBigInt::digit_pow(digit_t base, digit_t exponent) { |
| digit_t result = 1ull; |
| while (exponent > 0) { |
| if (exponent & 1) { |
| result *= base; |
| } |
| exponent >>= 1; |
| base *= base; |
| } |
| return result; |
| } |
| |
| #undef HAVE_TWODIGIT_T |
| |
| #ifdef OBJECT_PRINT |
| void BigInt::BigIntPrint(std::ostream& os) { |
| DisallowHeapAllocation no_gc; |
| HeapObject::PrintHeader(os, "BigInt"); |
| int len = length(); |
| os << "- length: " << len << "\n"; |
| os << "- sign: " << sign() << "\n"; |
| if (len > 0) { |
| os << "- digits:"; |
| for (int i = 0; i < len; i++) { |
| os << "\n 0x" << std::hex << digit(i); |
| } |
| os << std::dec << "\n"; |
| } |
| } |
| #endif // OBJECT_PRINT |
| |
| } // namespace internal |
| } // namespace v8 |