blob: edca36c92e0b4f3059d53c056e5b4e4875f4b0ad [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_OBJECTS_FIXED_ARRAY_INL_H_
#define V8_OBJECTS_FIXED_ARRAY_INL_H_
#include "src/objects.h"
// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"
namespace v8 {
namespace internal {
TYPE_CHECKER(ByteArray, BYTE_ARRAY_TYPE)
TYPE_CHECKER(FixedArrayExact, FIXED_ARRAY_TYPE)
TYPE_CHECKER(FixedDoubleArray, FIXED_DOUBLE_ARRAY_TYPE)
TYPE_CHECKER(WeakFixedArray, FIXED_ARRAY_TYPE)
CAST_ACCESSOR(ArrayList)
CAST_ACCESSOR(ByteArray)
CAST_ACCESSOR(FixedArray)
CAST_ACCESSOR(FixedArrayBase)
CAST_ACCESSOR(FixedDoubleArray)
CAST_ACCESSOR(FixedTypedArrayBase)
CAST_ACCESSOR(TemplateList)
CAST_ACCESSOR(WeakFixedArray)
SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset)
SYNCHRONIZED_SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset)
Object* FixedArrayBase::unchecked_synchronized_length() const {
return ACQUIRE_READ_FIELD(this, kLengthOffset);
}
ACCESSORS(FixedTypedArrayBase, base_pointer, Object, kBasePointerOffset)
Object** FixedArray::GetFirstElementAddress() {
return reinterpret_cast<Object**>(FIELD_ADDR(this, OffsetOfElementAt(0)));
}
bool FixedArray::ContainsOnlySmisOrHoles() {
Object* the_hole = GetHeap()->the_hole_value();
Object** current = GetFirstElementAddress();
for (int i = 0; i < length(); ++i) {
Object* candidate = *current++;
if (!candidate->IsSmi() && candidate != the_hole) return false;
}
return true;
}
Object* FixedArray::get(int index) const {
SLOW_DCHECK(index >= 0 && index < this->length());
return RELAXED_READ_FIELD(this, kHeaderSize + index * kPointerSize);
}
Handle<Object> FixedArray::get(FixedArray* array, int index, Isolate* isolate) {
return handle(array->get(index), isolate);
}
template <class T>
MaybeHandle<T> FixedArray::GetValue(Isolate* isolate, int index) const {
Object* obj = get(index);
if (obj->IsUndefined(isolate)) return MaybeHandle<T>();
return Handle<T>(T::cast(obj), isolate);
}
template <class T>
Handle<T> FixedArray::GetValueChecked(Isolate* isolate, int index) const {
Object* obj = get(index);
CHECK(!obj->IsUndefined(isolate));
return Handle<T>(T::cast(obj), isolate);
}
bool FixedArray::is_the_hole(Isolate* isolate, int index) {
return get(index)->IsTheHole(isolate);
}
void FixedArray::set(int index, Smi* value) {
DCHECK_NE(map(), GetHeap()->fixed_cow_array_map());
DCHECK_LT(index, this->length());
DCHECK(reinterpret_cast<Object*>(value)->IsSmi());
int offset = kHeaderSize + index * kPointerSize;
RELAXED_WRITE_FIELD(this, offset, value);
}
void FixedArray::set(int index, Object* value) {
DCHECK_NE(GetHeap()->fixed_cow_array_map(), map());
DCHECK(IsFixedArray());
DCHECK_GE(index, 0);
DCHECK_LT(index, this->length());
int offset = kHeaderSize + index * kPointerSize;
RELAXED_WRITE_FIELD(this, offset, value);
WRITE_BARRIER(GetHeap(), this, offset, value);
}
void FixedArray::set(int index, Object* value, WriteBarrierMode mode) {
DCHECK_NE(map(), GetHeap()->fixed_cow_array_map());
DCHECK_GE(index, 0);
DCHECK_LT(index, this->length());
int offset = kHeaderSize + index * kPointerSize;
RELAXED_WRITE_FIELD(this, offset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode);
}
void FixedArray::NoWriteBarrierSet(FixedArray* array, int index,
Object* value) {
DCHECK_NE(array->map(), array->GetHeap()->fixed_cow_array_map());
DCHECK_GE(index, 0);
DCHECK_LT(index, array->length());
DCHECK(!array->GetHeap()->InNewSpace(value));
RELAXED_WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value);
}
void FixedArray::set_undefined(int index) {
set_undefined(GetIsolate(), index);
}
void FixedArray::set_undefined(Isolate* isolate, int index) {
FixedArray::NoWriteBarrierSet(this, index,
isolate->heap()->undefined_value());
}
void FixedArray::set_null(int index) { set_null(GetIsolate(), index); }
void FixedArray::set_null(Isolate* isolate, int index) {
FixedArray::NoWriteBarrierSet(this, index, isolate->heap()->null_value());
}
void FixedArray::set_the_hole(int index) { set_the_hole(GetIsolate(), index); }
void FixedArray::set_the_hole(Isolate* isolate, int index) {
FixedArray::NoWriteBarrierSet(this, index, isolate->heap()->the_hole_value());
}
void FixedArray::FillWithHoles(int from, int to) {
Isolate* isolate = GetIsolate();
for (int i = from; i < to; i++) {
set_the_hole(isolate, i);
}
}
Object** FixedArray::data_start() {
return HeapObject::RawField(this, kHeaderSize);
}
Object** FixedArray::RawFieldOfElementAt(int index) {
return HeapObject::RawField(this, OffsetOfElementAt(index));
}
double FixedDoubleArray::get_scalar(int index) {
DCHECK(map() != GetHeap()->fixed_cow_array_map() &&
map() != GetHeap()->fixed_array_map());
DCHECK(index >= 0 && index < this->length());
DCHECK(!is_the_hole(index));
return READ_DOUBLE_FIELD(this, kHeaderSize + index * kDoubleSize);
}
uint64_t FixedDoubleArray::get_representation(int index) {
DCHECK(map() != GetHeap()->fixed_cow_array_map() &&
map() != GetHeap()->fixed_array_map());
DCHECK(index >= 0 && index < this->length());
int offset = kHeaderSize + index * kDoubleSize;
return READ_UINT64_FIELD(this, offset);
}
Handle<Object> FixedDoubleArray::get(FixedDoubleArray* array, int index,
Isolate* isolate) {
if (array->is_the_hole(index)) {
return isolate->factory()->the_hole_value();
} else {
return isolate->factory()->NewNumber(array->get_scalar(index));
}
}
void FixedDoubleArray::set(int index, double value) {
DCHECK(map() != GetHeap()->fixed_cow_array_map() &&
map() != GetHeap()->fixed_array_map());
int offset = kHeaderSize + index * kDoubleSize;
if (std::isnan(value)) {
WRITE_DOUBLE_FIELD(this, offset, std::numeric_limits<double>::quiet_NaN());
} else {
WRITE_DOUBLE_FIELD(this, offset, value);
}
DCHECK(!is_the_hole(index));
}
void FixedDoubleArray::set_the_hole(Isolate* isolate, int index) {
set_the_hole(index);
}
void FixedDoubleArray::set_the_hole(int index) {
DCHECK(map() != GetHeap()->fixed_cow_array_map() &&
map() != GetHeap()->fixed_array_map());
int offset = kHeaderSize + index * kDoubleSize;
WRITE_UINT64_FIELD(this, offset, kHoleNanInt64);
}
bool FixedDoubleArray::is_the_hole(Isolate* isolate, int index) {
return is_the_hole(index);
}
bool FixedDoubleArray::is_the_hole(int index) {
return get_representation(index) == kHoleNanInt64;
}
double* FixedDoubleArray::data_start() {
return reinterpret_cast<double*>(FIELD_ADDR(this, kHeaderSize));
}
void FixedDoubleArray::FillWithHoles(int from, int to) {
for (int i = from; i < to; i++) {
set_the_hole(i);
}
}
Object* WeakFixedArray::Get(int index) const {
Object* raw = FixedArray::cast(this)->get(index + kFirstIndex);
if (raw->IsSmi()) return raw;
DCHECK(raw->IsWeakCell());
return WeakCell::cast(raw)->value();
}
bool WeakFixedArray::IsEmptySlot(int index) const {
DCHECK(index < Length());
return Get(index)->IsSmi();
}
void WeakFixedArray::Clear(int index) {
FixedArray::cast(this)->set(index + kFirstIndex, Smi::kZero);
}
int WeakFixedArray::Length() const {
return FixedArray::cast(this)->length() - kFirstIndex;
}
int WeakFixedArray::last_used_index() const {
return Smi::ToInt(FixedArray::cast(this)->get(kLastUsedIndexIndex));
}
void WeakFixedArray::set_last_used_index(int index) {
FixedArray::cast(this)->set(kLastUsedIndexIndex, Smi::FromInt(index));
}
template <class T>
T* WeakFixedArray::Iterator::Next() {
if (list_ != nullptr) {
// Assert that list did not change during iteration.
DCHECK_EQ(last_used_index_, list_->last_used_index());
while (index_ < list_->Length()) {
Object* item = list_->Get(index_++);
if (item != Empty()) return T::cast(item);
}
list_ = nullptr;
}
return nullptr;
}
int ArrayList::Length() const {
if (FixedArray::cast(this)->length() == 0) return 0;
return Smi::ToInt(FixedArray::cast(this)->get(kLengthIndex));
}
void ArrayList::SetLength(int length) {
return FixedArray::cast(this)->set(kLengthIndex, Smi::FromInt(length));
}
Object* ArrayList::Get(int index) const {
return FixedArray::cast(this)->get(kFirstIndex + index);
}
Object** ArrayList::Slot(int index) {
return data_start() + kFirstIndex + index;
}
void ArrayList::Set(int index, Object* obj, WriteBarrierMode mode) {
FixedArray::cast(this)->set(kFirstIndex + index, obj, mode);
}
void ArrayList::Clear(int index, Object* undefined) {
DCHECK(undefined->IsUndefined(GetIsolate()));
FixedArray::cast(this)->set(kFirstIndex + index, undefined,
SKIP_WRITE_BARRIER);
}
int ByteArray::Size() { return RoundUp(length() + kHeaderSize, kPointerSize); }
byte ByteArray::get(int index) const {
DCHECK(index >= 0 && index < this->length());
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
}
void ByteArray::set(int index, byte value) {
DCHECK(index >= 0 && index < this->length());
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value);
}
void ByteArray::copy_in(int index, const byte* buffer, int length) {
DCHECK(index >= 0 && length >= 0 && length <= kMaxInt - index &&
index + length <= this->length());
byte* dst_addr = FIELD_ADDR(this, kHeaderSize + index * kCharSize);
memcpy(dst_addr, buffer, length);
}
void ByteArray::copy_out(int index, byte* buffer, int length) {
DCHECK(index >= 0 && length >= 0 && length <= kMaxInt - index &&
index + length <= this->length());
const byte* src_addr = FIELD_ADDR(this, kHeaderSize + index * kCharSize);
memcpy(buffer, src_addr, length);
}
int ByteArray::get_int(int index) const {
DCHECK(index >= 0 && index < this->length() / kIntSize);
return READ_INT_FIELD(this, kHeaderSize + index * kIntSize);
}
void ByteArray::set_int(int index, int value) {
DCHECK(index >= 0 && index < this->length() / kIntSize);
WRITE_INT_FIELD(this, kHeaderSize + index * kIntSize, value);
}
uint32_t ByteArray::get_uint32(int index) const {
DCHECK(index >= 0 && index < this->length() / kUInt32Size);
return READ_UINT32_FIELD(this, kHeaderSize + index * kUInt32Size);
}
void ByteArray::set_uint32(int index, uint32_t value) {
DCHECK(index >= 0 && index < this->length() / kUInt32Size);
WRITE_UINT32_FIELD(this, kHeaderSize + index * kUInt32Size, value);
}
void ByteArray::clear_padding() {
int data_size = length() + kHeaderSize;
memset(address() + data_size, 0, Size() - data_size);
}
ByteArray* ByteArray::FromDataStartAddress(Address address) {
DCHECK_TAG_ALIGNED(address);
return reinterpret_cast<ByteArray*>(address - kHeaderSize + kHeapObjectTag);
}
int ByteArray::DataSize() const { return RoundUp(length(), kPointerSize); }
int ByteArray::ByteArraySize() { return SizeFor(this->length()); }
Address ByteArray::GetDataStartAddress() {
return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize;
}
template <class T>
PodArray<T>* PodArray<T>::cast(Object* object) {
SLOW_DCHECK(object->IsByteArray());
return reinterpret_cast<PodArray<T>*>(object);
}
template <class T>
const PodArray<T>* PodArray<T>::cast(const Object* object) {
SLOW_DCHECK(object->IsByteArray());
return reinterpret_cast<const PodArray<T>*>(object);
}
// static
template <class T>
Handle<PodArray<T>> PodArray<T>::New(Isolate* isolate, int length,
PretenureFlag pretenure) {
return Handle<PodArray<T>>::cast(
isolate->factory()->NewByteArray(length * sizeof(T), pretenure));
}
void* FixedTypedArrayBase::external_pointer() const {
intptr_t ptr = READ_INTPTR_FIELD(this, kExternalPointerOffset);
return reinterpret_cast<void*>(ptr);
}
void FixedTypedArrayBase::set_external_pointer(void* value,
WriteBarrierMode mode) {
intptr_t ptr = reinterpret_cast<intptr_t>(value);
WRITE_INTPTR_FIELD(this, kExternalPointerOffset, ptr);
}
void* FixedTypedArrayBase::DataPtr() {
return reinterpret_cast<void*>(
reinterpret_cast<intptr_t>(base_pointer()) +
reinterpret_cast<intptr_t>(external_pointer()));
}
int FixedTypedArrayBase::ElementSize(InstanceType type) {
int element_size;
switch (type) {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
case FIXED_##TYPE##_ARRAY_TYPE: \
element_size = size; \
break;
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
default:
UNREACHABLE();
}
return element_size;
}
int FixedTypedArrayBase::DataSize(InstanceType type) const {
if (base_pointer() == Smi::kZero) return 0;
return length() * ElementSize(type);
}
int FixedTypedArrayBase::DataSize() const {
return DataSize(map()->instance_type());
}
size_t FixedTypedArrayBase::ByteLength() const {
return static_cast<size_t>(length()) *
static_cast<size_t>(ElementSize(map()->instance_type()));
}
int FixedTypedArrayBase::size() const {
return OBJECT_POINTER_ALIGN(kDataOffset + DataSize());
}
int FixedTypedArrayBase::TypedArraySize(InstanceType type) const {
return OBJECT_POINTER_ALIGN(kDataOffset + DataSize(type));
}
// static
int FixedTypedArrayBase::TypedArraySize(InstanceType type, int length) {
return OBJECT_POINTER_ALIGN(kDataOffset + length * ElementSize(type));
}
uint8_t Uint8ArrayTraits::defaultValue() { return 0; }
uint8_t Uint8ClampedArrayTraits::defaultValue() { return 0; }
int8_t Int8ArrayTraits::defaultValue() { return 0; }
uint16_t Uint16ArrayTraits::defaultValue() { return 0; }
int16_t Int16ArrayTraits::defaultValue() { return 0; }
uint32_t Uint32ArrayTraits::defaultValue() { return 0; }
int32_t Int32ArrayTraits::defaultValue() { return 0; }
float Float32ArrayTraits::defaultValue() {
return std::numeric_limits<float>::quiet_NaN();
}
double Float64ArrayTraits::defaultValue() {
return std::numeric_limits<double>::quiet_NaN();
}
template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::get_scalar(int index) {
DCHECK((index >= 0) && (index < this->length()));
return FixedTypedArray<Traits>::get_scalar_from_data_ptr(DataPtr(), index);
}
// static
template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::get_scalar_from_data_ptr(
void* data_ptr, int index) {
typename Traits::ElementType* ptr = reinterpret_cast<ElementType*>(data_ptr);
// The JavaScript memory model allows for racy reads and writes to a
// SharedArrayBuffer's backing store, which will always be a FixedTypedArray.
// ThreadSanitizer will catch these racy accesses and warn about them, so we
// disable TSAN for these reads and writes using annotations.
//
// We don't use relaxed atomics here, as it is not a requirement of the
// JavaScript memory model to have tear-free reads of overlapping accesses,
// and using relaxed atomics may introduce overhead.
TSAN_ANNOTATE_IGNORE_READS_BEGIN;
auto result = ptr[index];
TSAN_ANNOTATE_IGNORE_READS_END;
return result;
}
template <class Traits>
void FixedTypedArray<Traits>::set(int index, ElementType value) {
CHECK((index >= 0) && (index < this->length()));
// See the comment in FixedTypedArray<Traits>::get_scalar.
auto* ptr = reinterpret_cast<ElementType*>(DataPtr());
TSAN_ANNOTATE_IGNORE_WRITES_BEGIN;
ptr[index] = value;
TSAN_ANNOTATE_IGNORE_WRITES_END;
}
template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::from(int value) {
return static_cast<ElementType>(value);
}
template <>
inline uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from(int value) {
if (value < 0) return 0;
if (value > 0xFF) return 0xFF;
return static_cast<uint8_t>(value);
}
template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::from(uint32_t value) {
return static_cast<ElementType>(value);
}
template <>
inline uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from(uint32_t value) {
// We need this special case for Uint32 -> Uint8Clamped, because the highest
// Uint32 values will be negative as an int, clamping to 0, rather than 255.
if (value > 0xFF) return 0xFF;
return static_cast<uint8_t>(value);
}
template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::from(double value) {
return static_cast<ElementType>(DoubleToInt32(value));
}
template <>
inline uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from(double value) {
// Handle NaNs and less than zero values which clamp to zero.
if (!(value > 0)) return 0;
if (value > 0xFF) return 0xFF;
return static_cast<uint8_t>(lrint(value));
}
template <>
inline float FixedTypedArray<Float32ArrayTraits>::from(double value) {
return static_cast<float>(value);
}
template <>
inline double FixedTypedArray<Float64ArrayTraits>::from(double value) {
return value;
}
template <class Traits>
Handle<Object> FixedTypedArray<Traits>::get(FixedTypedArray<Traits>* array,
int index) {
return Traits::ToHandle(array->GetIsolate(), array->get_scalar(index));
}
template <class Traits>
void FixedTypedArray<Traits>::SetValue(uint32_t index, Object* value) {
ElementType cast_value = Traits::defaultValue();
if (value->IsSmi()) {
int int_value = Smi::ToInt(value);
cast_value = from(int_value);
} else if (value->IsHeapNumber()) {
double double_value = HeapNumber::cast(value)->value();
cast_value = from(double_value);
} else {
// Clamp undefined to the default value. All other types have been
// converted to a number type further up in the call chain.
DCHECK(value->IsUndefined(GetIsolate()));
}
set(index, cast_value);
}
Handle<Object> Uint8ArrayTraits::ToHandle(Isolate* isolate, uint8_t scalar) {
return handle(Smi::FromInt(scalar), isolate);
}
Handle<Object> Uint8ClampedArrayTraits::ToHandle(Isolate* isolate,
uint8_t scalar) {
return handle(Smi::FromInt(scalar), isolate);
}
Handle<Object> Int8ArrayTraits::ToHandle(Isolate* isolate, int8_t scalar) {
return handle(Smi::FromInt(scalar), isolate);
}
Handle<Object> Uint16ArrayTraits::ToHandle(Isolate* isolate, uint16_t scalar) {
return handle(Smi::FromInt(scalar), isolate);
}
Handle<Object> Int16ArrayTraits::ToHandle(Isolate* isolate, int16_t scalar) {
return handle(Smi::FromInt(scalar), isolate);
}
Handle<Object> Uint32ArrayTraits::ToHandle(Isolate* isolate, uint32_t scalar) {
return isolate->factory()->NewNumberFromUint(scalar);
}
Handle<Object> Int32ArrayTraits::ToHandle(Isolate* isolate, int32_t scalar) {
return isolate->factory()->NewNumberFromInt(scalar);
}
Handle<Object> Float32ArrayTraits::ToHandle(Isolate* isolate, float scalar) {
return isolate->factory()->NewNumber(scalar);
}
Handle<Object> Float64ArrayTraits::ToHandle(Isolate* isolate, double scalar) {
return isolate->factory()->NewNumber(scalar);
}
// static
template <class Traits>
STATIC_CONST_MEMBER_DEFINITION const InstanceType
FixedTypedArray<Traits>::kInstanceType;
template <class Traits>
FixedTypedArray<Traits>* FixedTypedArray<Traits>::cast(Object* object) {
SLOW_DCHECK(object->IsHeapObject() &&
HeapObject::cast(object)->map()->instance_type() ==
Traits::kInstanceType);
return reinterpret_cast<FixedTypedArray<Traits>*>(object);
}
template <class Traits>
const FixedTypedArray<Traits>* FixedTypedArray<Traits>::cast(
const Object* object) {
SLOW_DCHECK(object->IsHeapObject() &&
HeapObject::cast(object)->map()->instance_type() ==
Traits::kInstanceType);
return reinterpret_cast<FixedTypedArray<Traits>*>(object);
}
int TemplateList::length() const {
return Smi::ToInt(FixedArray::cast(this)->get(kLengthIndex));
}
Object* TemplateList::get(int index) const {
return FixedArray::cast(this)->get(kFirstElementIndex + index);
}
void TemplateList::set(int index, Object* value) {
FixedArray::cast(this)->set(kFirstElementIndex + index, value);
}
} // namespace internal
} // namespace v8
#include "src/objects/object-macros-undef.h"
#endif // V8_OBJECTS_FIXED_ARRAY_INL_H_