blob: a058b7df39283145409a2f9599a571693ce336c5 [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_OBJECTS_HASH_TABLE_H_
#define V8_OBJECTS_HASH_TABLE_H_
#include "src/base/compiler-specific.h"
#include "src/globals.h"
#include "src/objects/fixed-array.h"
// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"
namespace v8 {
namespace internal {
// HashTable is a subclass of FixedArray that implements a hash table
// that uses open addressing and quadratic probing.
//
// In order for the quadratic probing to work, elements that have not
// yet been used and elements that have been deleted are
// distinguished. Probing continues when deleted elements are
// encountered and stops when unused elements are encountered.
//
// - Elements with key == undefined have not been used yet.
// - Elements with key == the_hole have been deleted.
//
// The hash table class is parameterized with a Shape.
// Shape must be a class with the following interface:
// class ExampleShape {
// public:
// // Tells whether key matches other.
// static bool IsMatch(Key key, Object* other);
// // Returns the hash value for key.
// static uint32_t Hash(Isolate* isolate, Key key);
// // Returns the hash value for object.
// static uint32_t HashForObject(Isolate* isolate, Object* object);
// // Convert key to an object.
// static inline Handle<Object> AsHandle(Isolate* isolate, Key key);
// // The prefix size indicates number of elements in the beginning
// // of the backing storage.
// static const int kPrefixSize = ..;
// // The Element size indicates number of elements per entry.
// static const int kEntrySize = ..;
// // Indicates whether IsMatch can deal with other being the_hole (a
// // deleted entry).
// static const bool kNeedsHoleCheck = ..;
// };
// The prefix size indicates an amount of memory in the
// beginning of the backing storage that can be used for non-element
// information by subclasses.
template <typename KeyT>
class BaseShape {
public:
typedef KeyT Key;
static inline int GetMapRootIndex();
static const bool kNeedsHoleCheck = true;
static Object* Unwrap(Object* key) { return key; }
static bool IsKey(Isolate* isolate, Object* key) {
return IsLive(isolate, key);
}
static inline bool IsLive(Isolate* isolate, Object* key);
};
class V8_EXPORT_PRIVATE HashTableBase : public NON_EXPORTED_BASE(FixedArray) {
public:
// Returns the number of elements in the hash table.
inline int NumberOfElements() const;
// Returns the number of deleted elements in the hash table.
inline int NumberOfDeletedElements() const;
// Returns the capacity of the hash table.
inline int Capacity() const;
// ElementAdded should be called whenever an element is added to a
// hash table.
inline void ElementAdded();
// ElementRemoved should be called whenever an element is removed from
// a hash table.
inline void ElementRemoved();
inline void ElementsRemoved(int n);
// Computes the required capacity for a table holding the given
// number of elements. May be more than HashTable::kMaxCapacity.
static inline int ComputeCapacity(int at_least_space_for);
// Compute the probe offset (quadratic probing).
INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
return (n + n * n) >> 1;
}
static const int kNumberOfElementsIndex = 0;
static const int kNumberOfDeletedElementsIndex = 1;
static const int kCapacityIndex = 2;
static const int kPrefixStartIndex = 3;
// Constant used for denoting a absent entry.
static const int kNotFound = -1;
// Minimum capacity for newly created hash tables.
static const int kMinCapacity = 4;
protected:
// Update the number of elements in the hash table.
inline void SetNumberOfElements(int nof);
// Update the number of deleted elements in the hash table.
inline void SetNumberOfDeletedElements(int nod);
// Returns probe entry.
static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
DCHECK(base::bits::IsPowerOfTwo(size));
return (hash + GetProbeOffset(number)) & (size - 1);
}
inline static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
return hash & (size - 1);
}
inline static uint32_t NextProbe(uint32_t last, uint32_t number,
uint32_t size) {
return (last + number) & (size - 1);
}
};
template <typename Derived, typename Shape>
class HashTable : public HashTableBase {
public:
typedef Shape ShapeT;
typedef typename Shape::Key Key;
// Returns a new HashTable object.
MUST_USE_RESULT static Handle<Derived> New(
Isolate* isolate, int at_least_space_for,
PretenureFlag pretenure = NOT_TENURED,
MinimumCapacity capacity_option = USE_DEFAULT_MINIMUM_CAPACITY);
DECL_CAST(HashTable)
// Garbage collection support.
void IteratePrefix(ObjectVisitor* visitor);
void IterateElements(ObjectVisitor* visitor);
// Find entry for key otherwise return kNotFound.
inline int FindEntry(Key key);
inline int FindEntry(Isolate* isolate, Key key, int32_t hash);
int FindEntry(Isolate* isolate, Key key);
// Rehashes the table in-place.
void Rehash();
// Tells whether k is a real key. The hole and undefined are not allowed
// as keys and can be used to indicate missing or deleted elements.
static bool IsKey(Isolate* isolate, Object* k) {
return Shape::IsKey(isolate, k);
}
inline bool ToKey(Isolate* isolate, int entry, Object** out_k) {
Object* k = KeyAt(entry);
if (!IsKey(isolate, k)) return false;
*out_k = Shape::Unwrap(k);
return true;
}
// Returns the key at entry.
Object* KeyAt(int entry) { return get(EntryToIndex(entry) + kEntryKeyIndex); }
static const int kElementsStartIndex = kPrefixStartIndex + Shape::kPrefixSize;
static const int kEntrySize = Shape::kEntrySize;
STATIC_ASSERT(kEntrySize > 0);
static const int kEntryKeyIndex = 0;
static const int kElementsStartOffset =
kHeaderSize + kElementsStartIndex * kPointerSize;
// Maximal capacity of HashTable. Based on maximal length of underlying
// FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
// cannot overflow.
static const int kMaxCapacity =
(FixedArray::kMaxLength - kElementsStartIndex) / kEntrySize;
// Maximum length to create a regular HashTable (aka. non large object).
static const int kMaxRegularCapacity = 16384;
// Returns the index for an entry (of the key)
static constexpr inline int EntryToIndex(int entry) {
return (entry * kEntrySize) + kElementsStartIndex;
}
// Ensure enough space for n additional elements.
MUST_USE_RESULT static Handle<Derived> EnsureCapacity(
Handle<Derived> table, int n, PretenureFlag pretenure = NOT_TENURED);
// Returns true if this table has sufficient capacity for adding n elements.
bool HasSufficientCapacityToAdd(int number_of_additional_elements);
protected:
friend class ObjectHashTable;
MUST_USE_RESULT static Handle<Derived> NewInternal(Isolate* isolate,
int capacity,
PretenureFlag pretenure);
// Find the entry at which to insert element with the given key that
// has the given hash value.
uint32_t FindInsertionEntry(uint32_t hash);
// Attempt to shrink hash table after removal of key.
MUST_USE_RESULT static Handle<Derived> Shrink(Handle<Derived> table);
private:
// Ensure that kMaxRegularCapacity yields a non-large object dictionary.
STATIC_ASSERT(EntryToIndex(kMaxRegularCapacity) < kMaxRegularLength);
STATIC_ASSERT(v8::base::bits::IsPowerOfTwo(kMaxRegularCapacity));
static const int kMaxRegularEntry = kMaxRegularCapacity / kEntrySize;
static const int kMaxRegularIndex = EntryToIndex(kMaxRegularEntry);
STATIC_ASSERT(OffsetOfElementAt(kMaxRegularIndex) <
kMaxRegularHeapObjectSize);
// Sets the capacity of the hash table.
void SetCapacity(int capacity) {
// To scale a computed hash code to fit within the hash table, we
// use bit-wise AND with a mask, so the capacity must be positive
// and non-zero.
DCHECK_GT(capacity, 0);
DCHECK_LE(capacity, kMaxCapacity);
set(kCapacityIndex, Smi::FromInt(capacity));
}
// Returns _expected_ if one of entries given by the first _probe_ probes is
// equal to _expected_. Otherwise, returns the entry given by the probe
// number _probe_.
uint32_t EntryForProbe(Object* k, int probe, uint32_t expected);
void Swap(uint32_t entry1, uint32_t entry2, WriteBarrierMode mode);
// Rehashes this hash-table into the new table.
void Rehash(Derived* new_table);
};
// HashTableKey is an abstract superclass for virtual key behavior.
class HashTableKey {
public:
explicit HashTableKey(uint32_t hash) : hash_(hash) {}
// Returns whether the other object matches this key.
virtual bool IsMatch(Object* other) = 0;
// Returns the hash value for this key.
// Required.
virtual ~HashTableKey() {}
uint32_t Hash() const { return hash_; }
protected:
void set_hash(uint32_t hash) {
DCHECK_EQ(0, hash_);
hash_ = hash;
}
private:
uint32_t hash_ = 0;
};
class ObjectHashTableShape : public BaseShape<Handle<Object>> {
public:
static inline bool IsMatch(Handle<Object> key, Object* other);
static inline uint32_t Hash(Isolate* isolate, Handle<Object> key);
static inline uint32_t HashForObject(Isolate* isolate, Object* object);
static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
static const int kPrefixSize = 0;
static const int kEntryValueIndex = 1;
static const int kEntrySize = 2;
static const bool kNeedsHoleCheck = false;
};
// ObjectHashTable maps keys that are arbitrary objects to object values by
// using the identity hash of the key for hashing purposes.
class ObjectHashTable
: public HashTable<ObjectHashTable, ObjectHashTableShape> {
typedef HashTable<ObjectHashTable, ObjectHashTableShape> DerivedHashTable;
public:
DECL_CAST(ObjectHashTable)
// Attempt to shrink hash table after removal of key.
MUST_USE_RESULT static inline Handle<ObjectHashTable> Shrink(
Handle<ObjectHashTable> table);
// Looks up the value associated with the given key. The hole value is
// returned in case the key is not present.
Object* Lookup(Handle<Object> key);
Object* Lookup(Handle<Object> key, int32_t hash);
Object* Lookup(Isolate* isolate, Handle<Object> key, int32_t hash);
// Returns the value at entry.
Object* ValueAt(int entry);
// Adds (or overwrites) the value associated with the given key.
static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table,
Handle<Object> key, Handle<Object> value);
static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table,
Handle<Object> key, Handle<Object> value,
int32_t hash);
// Returns an ObjectHashTable (possibly |table|) where |key| has been removed.
static Handle<ObjectHashTable> Remove(Handle<ObjectHashTable> table,
Handle<Object> key, bool* was_present);
static Handle<ObjectHashTable> Remove(Handle<ObjectHashTable> table,
Handle<Object> key, bool* was_present,
int32_t hash);
// Returns the index to the value of an entry.
static inline int EntryToValueIndex(int entry) {
return EntryToIndex(entry) + ObjectHashTableShape::kEntryValueIndex;
}
protected:
friend class MarkCompactCollector;
void AddEntry(int entry, Object* key, Object* value);
void RemoveEntry(int entry);
};
class ObjectHashSetShape : public ObjectHashTableShape {
public:
static const int kPrefixSize = 0;
static const int kEntrySize = 1;
};
class ObjectHashSet : public HashTable<ObjectHashSet, ObjectHashSetShape> {
public:
static Handle<ObjectHashSet> Add(Handle<ObjectHashSet> set,
Handle<Object> key);
inline bool Has(Isolate* isolate, Handle<Object> key, int32_t hash);
inline bool Has(Isolate* isolate, Handle<Object> key);
DECL_CAST(ObjectHashSet)
};
// Non-templatized base class for {OrderedHashTable}s.
// TODO(hash): Unify this with the HashTableBase above.
class OrderedHashTableBase : public FixedArray {
public:
static const int kNotFound = -1;
static const int kMinCapacity = 4;
static const int kNumberOfElementsIndex = 0;
// The next table is stored at the same index as the nof elements.
static const int kNextTableIndex = kNumberOfElementsIndex;
static const int kNumberOfDeletedElementsIndex = kNumberOfElementsIndex + 1;
static const int kNumberOfBucketsIndex = kNumberOfDeletedElementsIndex + 1;
static const int kHashTableStartIndex = kNumberOfBucketsIndex + 1;
static const int kRemovedHolesIndex = kHashTableStartIndex;
static constexpr const int kNumberOfElementsOffset =
FixedArray::OffsetOfElementAt(kNumberOfElementsIndex);
static constexpr const int kNextTableOffset =
FixedArray::OffsetOfElementAt(kNextTableIndex);
static constexpr const int kNumberOfDeletedElementsOffset =
FixedArray::OffsetOfElementAt(kNumberOfDeletedElementsIndex);
static constexpr const int kNumberOfBucketsOffset =
FixedArray::OffsetOfElementAt(kNumberOfBucketsIndex);
static constexpr const int kHashTableStartOffset =
FixedArray::OffsetOfElementAt(kHashTableStartIndex);
static const int kLoadFactor = 2;
// NumberOfDeletedElements is set to kClearedTableSentinel when
// the table is cleared, which allows iterator transitions to
// optimize that case.
static const int kClearedTableSentinel = -1;
};
// OrderedHashTable is a HashTable with Object keys that preserves
// insertion order. There are Map and Set interfaces (OrderedHashMap
// and OrderedHashTable, below). It is meant to be used by JSMap/JSSet.
//
// Only Object* keys are supported, with Object::SameValueZero() used as the
// equality operator and Object::GetHash() for the hash function.
//
// Based on the "Deterministic Hash Table" as described by Jason Orendorff at
// https://wiki.mozilla.org/User:Jorend/Deterministic_hash_tables
// Originally attributed to Tyler Close.
//
// Memory layout:
// [0]: element count
// [1]: deleted element count
// [2]: bucket count
// [3..(3 + NumberOfBuckets() - 1)]: "hash table", where each item is an
// offset into the data table (see below) where the
// first item in this bucket is stored.
// [3 + NumberOfBuckets()..length]: "data table", an array of length
// Capacity() * kEntrySize, where the first entrysize
// items are handled by the derived class and the
// item at kChainOffset is another entry into the
// data table indicating the next entry in this hash
// bucket.
//
// When we transition the table to a new version we obsolete it and reuse parts
// of the memory to store information how to transition an iterator to the new
// table:
//
// Memory layout for obsolete table:
// [0]: bucket count
// [1]: Next newer table
// [2]: Number of removed holes or -1 when the table was cleared.
// [3..(3 + NumberOfRemovedHoles() - 1)]: The indexes of the removed holes.
// [3 + NumberOfRemovedHoles()..length]: Not used
//
template <class Derived, int entrysize>
class OrderedHashTable : public OrderedHashTableBase {
public:
// Returns an OrderedHashTable with a capacity of at least |capacity|.
static Handle<Derived> Allocate(Isolate* isolate, int capacity,
PretenureFlag pretenure = NOT_TENURED);
// Returns an OrderedHashTable (possibly |table|) with enough space
// to add at least one new element.
static Handle<Derived> EnsureGrowable(Handle<Derived> table);
// Returns an OrderedHashTable (possibly |table|) that's shrunken
// if possible.
static Handle<Derived> Shrink(Handle<Derived> table);
// Returns a new empty OrderedHashTable and records the clearing so that
// existing iterators can be updated.
static Handle<Derived> Clear(Handle<Derived> table);
// Returns true if the OrderedHashTable contains the key
static bool HasKey(Isolate* isolate, Derived* table, Object* key);
// Returns a true value if the OrderedHashTable contains the key and
// the key has been deleted. This does not shrink the table.
static bool Delete(Isolate* isolate, Derived* table, Object* key);
int NumberOfElements() const {
return Smi::ToInt(get(kNumberOfElementsIndex));
}
int NumberOfDeletedElements() const {
return Smi::ToInt(get(kNumberOfDeletedElementsIndex));
}
// Returns the number of contiguous entries in the data table, starting at 0,
// that either are real entries or have been deleted.
int UsedCapacity() const {
return NumberOfElements() + NumberOfDeletedElements();
}
int NumberOfBuckets() const { return Smi::ToInt(get(kNumberOfBucketsIndex)); }
// Returns an index into |this| for the given entry.
int EntryToIndex(int entry) {
return kHashTableStartIndex + NumberOfBuckets() + (entry * kEntrySize);
}
int HashToBucket(int hash) { return hash & (NumberOfBuckets() - 1); }
int HashToEntry(int hash) {
int bucket = HashToBucket(hash);
Object* entry = this->get(kHashTableStartIndex + bucket);
return Smi::ToInt(entry);
}
int KeyToFirstEntry(Isolate* isolate, Object* key) {
// This special cases for Smi, so that we avoid the HandleScope
// creation below.
if (key->IsSmi()) {
uint32_t hash = ComputeIntegerHash(Smi::ToInt(key));
return HashToEntry(hash & Smi::kMaxValue);
}
HandleScope scope(isolate);
Object* hash = key->GetHash();
// If the object does not have an identity hash, it was never used as a key
if (hash->IsUndefined(isolate)) return kNotFound;
return HashToEntry(Smi::ToInt(hash));
}
int FindEntry(Isolate* isolate, Object* key) {
int entry = KeyToFirstEntry(isolate, key);
// Walk the chain in the bucket to find the key.
while (entry != kNotFound) {
Object* candidate_key = KeyAt(entry);
if (candidate_key->SameValueZero(key)) break;
entry = NextChainEntry(entry);
}
return entry;
}
int NextChainEntry(int entry) {
Object* next_entry = get(EntryToIndex(entry) + kChainOffset);
return Smi::ToInt(next_entry);
}
// use KeyAt(i)->IsTheHole(isolate) to determine if this is a deleted entry.
Object* KeyAt(int entry) {
DCHECK_LT(entry, this->UsedCapacity());
return get(EntryToIndex(entry));
}
bool IsObsolete() { return !get(kNextTableIndex)->IsSmi(); }
// The next newer table. This is only valid if the table is obsolete.
Derived* NextTable() { return Derived::cast(get(kNextTableIndex)); }
// When the table is obsolete we store the indexes of the removed holes.
int RemovedIndexAt(int index) {
return Smi::ToInt(get(kRemovedHolesIndex + index));
}
static const int kEntrySize = entrysize + 1;
static const int kChainOffset = entrysize;
static const int kMaxCapacity =
(FixedArray::kMaxLength - kHashTableStartIndex) /
(1 + (kEntrySize * kLoadFactor));
protected:
static Handle<Derived> Rehash(Handle<Derived> table, int new_capacity);
void SetNumberOfBuckets(int num) {
set(kNumberOfBucketsIndex, Smi::FromInt(num));
}
void SetNumberOfElements(int num) {
set(kNumberOfElementsIndex, Smi::FromInt(num));
}
void SetNumberOfDeletedElements(int num) {
set(kNumberOfDeletedElementsIndex, Smi::FromInt(num));
}
// Returns the number elements that can fit into the allocated buffer.
int Capacity() { return NumberOfBuckets() * kLoadFactor; }
void SetNextTable(Derived* next_table) { set(kNextTableIndex, next_table); }
void SetRemovedIndexAt(int index, int removed_index) {
return set(kRemovedHolesIndex + index, Smi::FromInt(removed_index));
}
};
class OrderedHashSet : public OrderedHashTable<OrderedHashSet, 1> {
public:
DECL_CAST(OrderedHashSet)
static Handle<OrderedHashSet> Add(Handle<OrderedHashSet> table,
Handle<Object> value);
static Handle<FixedArray> ConvertToKeysArray(Handle<OrderedHashSet> table,
GetKeysConversion convert);
static HeapObject* GetEmpty(Isolate* isolate);
static inline int GetMapRootIndex();
};
class OrderedHashMap : public OrderedHashTable<OrderedHashMap, 2> {
public:
DECL_CAST(OrderedHashMap)
// Returns a value if the OrderedHashMap contains the key, otherwise
// returns undefined.
static Handle<OrderedHashMap> Add(Handle<OrderedHashMap> table,
Handle<Object> key, Handle<Object> value);
Object* ValueAt(int entry);
static Object* GetHash(Isolate* isolate, Object* key);
static HeapObject* GetEmpty(Isolate* isolate);
static inline int GetMapRootIndex();
static const int kValueOffset = 1;
};
class WeakHashTableShape : public BaseShape<Handle<Object>> {
public:
static inline bool IsMatch(Handle<Object> key, Object* other);
static inline uint32_t Hash(Isolate* isolate, Handle<Object> key);
static inline uint32_t HashForObject(Isolate* isolate, Object* object);
static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
static inline int GetMapRootIndex();
static const int kPrefixSize = 0;
static const int kEntrySize = 2;
static const bool kNeedsHoleCheck = false;
};
// WeakHashTable maps keys that are arbitrary heap objects to heap object
// values. The table wraps the keys in weak cells and store values directly.
// Thus it references keys weakly and values strongly.
class WeakHashTable : public HashTable<WeakHashTable, WeakHashTableShape> {
typedef HashTable<WeakHashTable, WeakHashTableShape> DerivedHashTable;
public:
DECL_CAST(WeakHashTable)
// Looks up the value associated with the given key. The hole value is
// returned in case the key is not present.
Object* Lookup(Handle<HeapObject> key);
// Adds (or overwrites) the value associated with the given key. Mapping a
// key to the hole value causes removal of the whole entry.
MUST_USE_RESULT static Handle<WeakHashTable> Put(Handle<WeakHashTable> table,
Handle<HeapObject> key,
Handle<HeapObject> value);
private:
friend class MarkCompactCollector;
void AddEntry(int entry, Handle<WeakCell> key, Handle<HeapObject> value);
// Returns the index to the value of an entry.
static inline int EntryToValueIndex(int entry) {
return EntryToIndex(entry) + 1;
}
};
// This is similar to the OrderedHashTable, except for the memory
// layout where we use byte instead of Smi. The max capacity of this
// is only 254, we transition to an OrderedHashTable beyond that
// limit.
//
// Each bucket and chain value is a byte long. The padding exists so
// that the DataTable entries start aligned. A bucket or chain value
// of 255 is used to denote an unknown entry.
//
// Memory layout: [ Header ] [ HashTable ] [ Chains ] [ Padding ] [ DataTable ]
//
// On a 64 bit machine with capacity = 4 and 2 entries,
//
// [ Header ] :
// [0 .. 7] : Number of elements
// [8 .. 15] : Number of deleted elements
// [16 .. 23] : Number of buckets
//
// [ HashTable ] :
// [24 .. 31] : First chain-link for bucket 1
// [32 .. 40] : First chain-link for bucket 2
//
// [ Chains ] :
// [40 .. 47] : Next chain link for entry 1
// [48 .. 55] : Next chain link for entry 2
// [56 .. 63] : Next chain link for entry 3
// [64 .. 71] : Next chain link for entry 4
//
// [ Padding ] :
// [72 .. 127] : Padding
//
// [ DataTable ] :
// [128 .. 128 + kEntrySize - 1] : Entry 1
// [128 + kEntrySize .. 128 + kEntrySize + kEntrySize - 1] : Entry 2
//
template <class Derived>
class SmallOrderedHashTable : public HeapObject {
public:
void Initialize(Isolate* isolate, int capacity);
static Handle<Derived> Allocate(Isolate* isolate, int capacity,
PretenureFlag pretenure = NOT_TENURED);
// Returns a true if the OrderedHashTable contains the key
bool HasKey(Isolate* isolate, Handle<Object> key);
// Iterates only fields in the DataTable.
class BodyDescriptor;
// No weak fields.
typedef BodyDescriptor BodyDescriptorWeak;
// Returns an SmallOrderedHashTable (possibly |table|) with enough
// space to add at least one new element.
static Handle<Derived> Grow(Handle<Derived> table);
static Handle<Derived> Rehash(Handle<Derived> table, int new_capacity);
void SetDataEntry(int entry, int relative_index, Object* value);
static int GetDataTableStartOffset(int capacity) {
int nof_buckets = capacity / kLoadFactor;
int nof_chain_entries = capacity;
int padding_index = kBucketsStartOffset + nof_buckets + nof_chain_entries;
int padding_offset = padding_index * kBitsPerByte;
return ((padding_offset + kPointerSize - 1) / kPointerSize) * kPointerSize;
}
int GetDataTableStartOffset() const {
return GetDataTableStartOffset(Capacity());
}
static int Size(int capacity) {
int data_table_start = GetDataTableStartOffset(capacity);
int data_table_size = capacity * Derived::kEntrySize * kBitsPerPointer;
return data_table_start + data_table_size;
}
int Size() const { return Size(Capacity()); }
void SetFirstEntry(int bucket, byte value) {
set(kBucketsStartOffset + bucket, value);
}
int GetFirstEntry(int bucket) const {
return get(kBucketsStartOffset + bucket);
}
void SetNextEntry(int entry, int next_entry) {
set(GetChainTableOffset() + entry, next_entry);
}
int GetNextEntry(int entry) const {
return get(GetChainTableOffset() + entry);
}
Object* GetDataEntry(int entry, int relative_index) {
int entry_offset = GetDataEntryOffset(entry, relative_index);
return READ_FIELD(this, entry_offset);
}
Object* KeyAt(int entry) const {
int entry_offset = GetDataEntryOffset(entry, Derived::kKeyIndex);
return READ_FIELD(this, entry_offset);
}
int HashToBucket(int hash) const { return hash & (NumberOfBuckets() - 1); }
int HashToFirstEntry(int hash) const {
int bucket = HashToBucket(hash);
int entry = GetFirstEntry(bucket);
return entry;
}
int GetChainTableOffset() const {
return kBucketsStartOffset + NumberOfBuckets();
}
void SetNumberOfBuckets(int num) { set(kNumberOfBucketsOffset, num); }
void SetNumberOfElements(int num) { set(kNumberOfElementsOffset, num); }
void SetNumberOfDeletedElements(int num) {
set(kNumberOfDeletedElementsOffset, num);
}
int NumberOfElements() const { return get(kNumberOfElementsOffset); }
int NumberOfDeletedElements() const {
return get(kNumberOfDeletedElementsOffset);
}
int NumberOfBuckets() const { return get(kNumberOfBucketsOffset); }
static const byte kNotFound = 0xFF;
static const int kMinCapacity = 4;
// We use the value 255 to indicate kNotFound for chain and bucket
// values, which means that this value can't be used a valid
// index.
static const int kMaxCapacity = 254;
STATIC_ASSERT(kMaxCapacity < kNotFound);
static const int kNumberOfElementsOffset = 0;
static const int kNumberOfDeletedElementsOffset = 1;
static const int kNumberOfBucketsOffset = 2;
static const int kBucketsStartOffset = 3;
// The load factor is used to derive the number of buckets from
// capacity during Allocation. We also depend on this to calaculate
// the capacity from number of buckets after allocation. If we
// decide to change kLoadFactor to something other than 2, capacity
// should be stored as another field of this object.
static const int kLoadFactor = 2;
static const int kBitsPerPointer = kPointerSize * kBitsPerByte;
// Our growth strategy involves doubling the capacity until we reach
// kMaxCapacity, but since the kMaxCapacity is always less than 256,
// we will never fully utilize this table. We special case for 256,
// by changing the new capacity to be kMaxCapacity in
// SmallOrderedHashTable::Grow.
static const int kGrowthHack = 256;
DECL_VERIFIER(SmallOrderedHashTable)
protected:
// This is used for accessing the non |DataTable| part of the
// structure.
byte get(int index) const {
return READ_BYTE_FIELD(this, kHeaderSize + (index * kOneByteSize));
}
void set(int index, byte value) {
WRITE_BYTE_FIELD(this, kHeaderSize + (index * kOneByteSize), value);
}
int GetDataEntryOffset(int entry, int relative_index) const {
int datatable_start = GetDataTableStartOffset();
int offset_in_datatable = entry * Derived::kEntrySize * kPointerSize;
int offset_in_entry = relative_index * kPointerSize;
return datatable_start + offset_in_datatable + offset_in_entry;
}
// Returns the number elements that can fit into the allocated buffer.
int Capacity() const { return NumberOfBuckets() * kLoadFactor; }
int UsedCapacity() const {
return NumberOfElements() + NumberOfDeletedElements();
}
};
class SmallOrderedHashSet : public SmallOrderedHashTable<SmallOrderedHashSet> {
public:
DECL_CAST(SmallOrderedHashSet)
DECL_PRINTER(SmallOrderedHashSet)
static const int kKeyIndex = 0;
static const int kEntrySize = 1;
// Adds |value| to |table|, if the capacity isn't enough, a new
// table is created. The original |table| is returned if there is
// capacity to store |value| otherwise the new table is returned.
static Handle<SmallOrderedHashSet> Add(Handle<SmallOrderedHashSet> table,
Handle<Object> key);
};
class SmallOrderedHashMap : public SmallOrderedHashTable<SmallOrderedHashMap> {
public:
DECL_CAST(SmallOrderedHashMap)
DECL_PRINTER(SmallOrderedHashMap)
static const int kKeyIndex = 0;
static const int kValueIndex = 1;
static const int kEntrySize = 2;
// Adds |value| to |table|, if the capacity isn't enough, a new
// table is created. The original |table| is returned if there is
// capacity to store |value| otherwise the new table is returned.
static Handle<SmallOrderedHashMap> Add(Handle<SmallOrderedHashMap> table,
Handle<Object> key,
Handle<Object> value);
};
class JSCollectionIterator : public JSObject {
public:
// [table]: the backing hash table mapping keys to values.
DECL_ACCESSORS(table, Object)
// [index]: The index into the data table.
DECL_ACCESSORS(index, Object)
// Dispatched behavior.
DECL_PRINTER(JSCollectionIterator)
static const int kTableOffset = JSObject::kHeaderSize;
static const int kIndexOffset = kTableOffset + kPointerSize;
static const int kSize = kIndexOffset + kPointerSize;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(JSCollectionIterator);
};
// OrderedHashTableIterator is an iterator that iterates over the keys and
// values of an OrderedHashTable.
//
// The iterator has a reference to the underlying OrderedHashTable data,
// [table], as well as the current [index] the iterator is at.
//
// When the OrderedHashTable is rehashed it adds a reference from the old table
// to the new table as well as storing enough data about the changes so that the
// iterator [index] can be adjusted accordingly.
//
// When the [Next] result from the iterator is requested, the iterator checks if
// there is a newer table that it needs to transition to.
template <class Derived, class TableType>
class OrderedHashTableIterator : public JSCollectionIterator {
public:
// Whether the iterator has more elements. This needs to be called before
// calling |CurrentKey| and/or |CurrentValue|.
bool HasMore();
// Move the index forward one.
void MoveNext() { set_index(Smi::FromInt(Smi::ToInt(index()) + 1)); }
// Returns the current key of the iterator. This should only be called when
// |HasMore| returns true.
inline Object* CurrentKey();
private:
// Transitions the iterator to the non obsolete backing store. This is a NOP
// if the [table] is not obsolete.
void Transition();
DISALLOW_IMPLICIT_CONSTRUCTORS(OrderedHashTableIterator);
};
} // namespace internal
} // namespace v8
#include "src/objects/object-macros-undef.h"
#endif // V8_OBJECTS_HASH_TABLE_H_