blob: fef21550ec1b7ab14eb7b2f0f44a23bc0c9029ef [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/profiler/sampling-heap-profiler.h"
#include <stdint.h>
#include <memory>
#include "src/api.h"
#include "src/base/ieee754.h"
#include "src/base/utils/random-number-generator.h"
#include "src/frames-inl.h"
#include "src/heap/heap.h"
#include "src/isolate.h"
#include "src/profiler/strings-storage.h"
namespace v8 {
namespace internal {
// We sample with a Poisson process, with constant average sampling interval.
// This follows the exponential probability distribution with parameter
// λ = 1/rate where rate is the average number of bytes between samples.
//
// Let u be a uniformly distributed random number between 0 and 1, then
// next_sample = (- ln u) / λ
intptr_t SamplingAllocationObserver::GetNextSampleInterval(uint64_t rate) {
if (FLAG_sampling_heap_profiler_suppress_randomness) {
return static_cast<intptr_t>(rate);
}
double u = random_->NextDouble();
double next = (-base::ieee754::log(u)) * rate;
return next < kPointerSize
? kPointerSize
: (next > INT_MAX ? INT_MAX : static_cast<intptr_t>(next));
}
// Samples were collected according to a poisson process. Since we have not
// recorded all allocations, we must approximate the shape of the underlying
// space of allocations based on the samples we have collected. Given that
// we sample at rate R, the probability that an allocation of size S will be
// sampled is 1-exp(-S/R). This function uses the above probability to
// approximate the true number of allocations with size *size* given that
// *count* samples were observed.
v8::AllocationProfile::Allocation SamplingHeapProfiler::ScaleSample(
size_t size, unsigned int count) {
double scale = 1.0 / (1.0 - std::exp(-static_cast<double>(size) / rate_));
// Round count instead of truncating.
return {size, static_cast<unsigned int>(count * scale + 0.5)};
}
SamplingHeapProfiler::SamplingHeapProfiler(
Heap* heap, StringsStorage* names, uint64_t rate, int stack_depth,
v8::HeapProfiler::SamplingFlags flags)
: isolate_(heap->isolate()),
heap_(heap),
new_space_observer_(new SamplingAllocationObserver(
heap_, static_cast<intptr_t>(rate), rate, this,
heap->isolate()->random_number_generator())),
other_spaces_observer_(new SamplingAllocationObserver(
heap_, static_cast<intptr_t>(rate), rate, this,
heap->isolate()->random_number_generator())),
names_(names),
profile_root_(nullptr, "(root)", v8::UnboundScript::kNoScriptId, 0),
samples_(),
stack_depth_(stack_depth),
rate_(rate),
flags_(flags) {
CHECK_GT(rate_, 0u);
heap_->AddAllocationObserversToAllSpaces(other_spaces_observer_.get(),
new_space_observer_.get());
}
SamplingHeapProfiler::~SamplingHeapProfiler() {
heap_->RemoveAllocationObserversFromAllSpaces(other_spaces_observer_.get(),
new_space_observer_.get());
for (auto sample : samples_) {
delete sample;
}
std::set<Sample*> empty;
samples_.swap(empty);
}
void SamplingHeapProfiler::SampleObject(Address soon_object, size_t size) {
DisallowHeapAllocation no_allocation;
HandleScope scope(isolate_);
HeapObject* heap_object = HeapObject::FromAddress(soon_object);
Handle<Object> obj(heap_object, isolate_);
// Mark the new block as FreeSpace to make sure the heap is iterable while we
// are taking the sample.
heap()->CreateFillerObjectAt(soon_object, static_cast<int>(size),
ClearRecordedSlots::kNo);
Local<v8::Value> loc = v8::Utils::ToLocal(obj);
AllocationNode* node = AddStack();
node->allocations_[size]++;
Sample* sample = new Sample(size, node, loc, this);
samples_.insert(sample);
sample->global.SetWeak(sample, OnWeakCallback, WeakCallbackType::kParameter);
}
void SamplingHeapProfiler::OnWeakCallback(
const WeakCallbackInfo<Sample>& data) {
Sample* sample = data.GetParameter();
AllocationNode* node = sample->owner;
DCHECK_GT(node->allocations_[sample->size], 0);
node->allocations_[sample->size]--;
if (node->allocations_[sample->size] == 0) {
node->allocations_.erase(sample->size);
while (node->allocations_.empty() && node->children_.empty() &&
node->parent_ && !node->parent_->pinned_) {
AllocationNode* parent = node->parent_;
AllocationNode::FunctionId id = AllocationNode::function_id(
node->script_id_, node->script_position_, node->name_);
parent->children_.erase(id);
delete node;
node = parent;
}
}
sample->profiler->samples_.erase(sample);
delete sample;
}
SamplingHeapProfiler::AllocationNode*
SamplingHeapProfiler::AllocationNode::FindOrAddChildNode(const char* name,
int script_id,
int start_position) {
FunctionId id = function_id(script_id, start_position, name);
auto it = children_.find(id);
if (it != children_.end()) {
DCHECK_EQ(strcmp(it->second->name_, name), 0);
return it->second;
}
auto child = new AllocationNode(this, name, script_id, start_position);
children_.insert(std::make_pair(id, child));
return child;
}
SamplingHeapProfiler::AllocationNode* SamplingHeapProfiler::AddStack() {
AllocationNode* node = &profile_root_;
std::vector<SharedFunctionInfo*> stack;
JavaScriptFrameIterator it(isolate_);
int frames_captured = 0;
bool found_arguments_marker_frames = false;
while (!it.done() && frames_captured < stack_depth_) {
JavaScriptFrame* frame = it.frame();
// If we are materializing objects during deoptimization, inlined
// closures may not yet be materialized, and this includes the
// closure on the stack. Skip over any such frames (they'll be
// in the top frames of the stack). The allocations made in this
// sensitive moment belong to the formerly optimized frame anyway.
if (frame->unchecked_function()->IsJSFunction()) {
SharedFunctionInfo* shared = frame->function()->shared();
stack.push_back(shared);
frames_captured++;
} else {
found_arguments_marker_frames = true;
}
it.Advance();
}
if (frames_captured == 0) {
const char* name = nullptr;
switch (isolate_->current_vm_state()) {
case GC:
name = "(GC)";
break;
case PARSER:
name = "(PARSER)";
break;
case COMPILER:
name = "(COMPILER)";
break;
case BYTECODE_COMPILER:
name = "(BYTECODE_COMPILER)";
break;
case OTHER:
name = "(V8 API)";
break;
case EXTERNAL:
name = "(EXTERNAL)";
break;
case IDLE:
name = "(IDLE)";
break;
case JS:
name = "(JS)";
break;
}
return node->FindOrAddChildNode(name, v8::UnboundScript::kNoScriptId, 0);
}
// We need to process the stack in reverse order as the top of the stack is
// the first element in the list.
for (auto it = stack.rbegin(); it != stack.rend(); ++it) {
SharedFunctionInfo* shared = *it;
const char* name = this->names()->GetFunctionName(shared->DebugName());
int script_id = v8::UnboundScript::kNoScriptId;
if (shared->script()->IsScript()) {
Script* script = Script::cast(shared->script());
script_id = script->id();
}
node = node->FindOrAddChildNode(name, script_id, shared->start_position());
}
if (found_arguments_marker_frames) {
node =
node->FindOrAddChildNode("(deopt)", v8::UnboundScript::kNoScriptId, 0);
}
return node;
}
v8::AllocationProfile::Node* SamplingHeapProfiler::TranslateAllocationNode(
AllocationProfile* profile, SamplingHeapProfiler::AllocationNode* node,
const std::map<int, Handle<Script>>& scripts) {
// By pinning the node we make sure its children won't get disposed if
// a GC kicks in during the tree retrieval.
node->pinned_ = true;
Local<v8::String> script_name =
ToApiHandle<v8::String>(isolate_->factory()->InternalizeUtf8String(""));
int line = v8::AllocationProfile::kNoLineNumberInfo;
int column = v8::AllocationProfile::kNoColumnNumberInfo;
std::vector<v8::AllocationProfile::Allocation> allocations;
allocations.reserve(node->allocations_.size());
if (node->script_id_ != v8::UnboundScript::kNoScriptId &&
scripts.find(node->script_id_) != scripts.end()) {
// Cannot use std::map<T>::at because it is not available on android.
auto non_const_scripts =
const_cast<std::map<int, Handle<Script>>&>(scripts);
Handle<Script> script = non_const_scripts[node->script_id_];
if (!script.is_null()) {
if (script->name()->IsName()) {
Name* name = Name::cast(script->name());
script_name = ToApiHandle<v8::String>(
isolate_->factory()->InternalizeUtf8String(names_->GetName(name)));
}
line = 1 + Script::GetLineNumber(script, node->script_position_);
column = 1 + Script::GetColumnNumber(script, node->script_position_);
}
}
for (auto alloc : node->allocations_) {
allocations.push_back(ScaleSample(alloc.first, alloc.second));
}
profile->nodes().push_back(v8::AllocationProfile::Node(
{ToApiHandle<v8::String>(
isolate_->factory()->InternalizeUtf8String(node->name_)),
script_name, node->script_id_, node->script_position_, line, column,
std::vector<v8::AllocationProfile::Node*>(), allocations}));
v8::AllocationProfile::Node* current = &profile->nodes().back();
// The children map may have nodes inserted into it during translation
// because the translation may allocate strings on the JS heap that have
// the potential to be sampled. That's ok since map iterators are not
// invalidated upon std::map insertion.
for (auto it : node->children_) {
current->children.push_back(
TranslateAllocationNode(profile, it.second, scripts));
}
node->pinned_ = false;
return current;
}
v8::AllocationProfile* SamplingHeapProfiler::GetAllocationProfile() {
if (flags_ & v8::HeapProfiler::kSamplingForceGC) {
isolate_->heap()->CollectAllGarbage(
Heap::kNoGCFlags, GarbageCollectionReason::kSamplingProfiler);
}
// To resolve positions to line/column numbers, we will need to look up
// scripts. Build a map to allow fast mapping from script id to script.
std::map<int, Handle<Script>> scripts;
{
Script::Iterator iterator(isolate_);
while (Script* script = iterator.Next()) {
scripts[script->id()] = handle(script);
}
}
auto profile = new v8::internal::AllocationProfile();
TranslateAllocationNode(profile, &profile_root_, scripts);
return profile;
}
} // namespace internal
} // namespace v8