| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_REGEXP_JSREGEXP_H_ |
| #define V8_REGEXP_JSREGEXP_H_ |
| |
| #include "src/allocation.h" |
| #include "src/assembler.h" |
| #include "src/objects/js-regexp.h" |
| #include "src/regexp/regexp-ast.h" |
| #include "src/regexp/regexp-macro-assembler.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| class NodeVisitor; |
| class RegExpCompiler; |
| class RegExpMacroAssembler; |
| class RegExpNode; |
| class RegExpTree; |
| class BoyerMooreLookahead; |
| |
| inline bool IgnoreCase(JSRegExp::Flags flags) { |
| return (flags & JSRegExp::kIgnoreCase) != 0; |
| } |
| |
| inline bool IsUnicode(JSRegExp::Flags flags) { |
| return (flags & JSRegExp::kUnicode) != 0; |
| } |
| |
| inline bool IsSticky(JSRegExp::Flags flags) { |
| return (flags & JSRegExp::kSticky) != 0; |
| } |
| |
| inline bool IsGlobal(JSRegExp::Flags flags) { |
| return (flags & JSRegExp::kGlobal) != 0; |
| } |
| |
| inline bool DotAll(JSRegExp::Flags flags) { |
| return (flags & JSRegExp::kDotAll) != 0; |
| } |
| |
| inline bool Multiline(JSRegExp::Flags flags) { |
| return (flags & JSRegExp::kMultiline) != 0; |
| } |
| |
| inline bool NeedsUnicodeCaseEquivalents(JSRegExp::Flags flags) { |
| // Both unicode and ignore_case flags are set. We need to use ICU to find |
| // the closure over case equivalents. |
| return IsUnicode(flags) && IgnoreCase(flags); |
| } |
| |
| class RegExpImpl { |
| public: |
| // Whether V8 is compiled with native regexp support or not. |
| static bool UsesNativeRegExp() { |
| #ifdef V8_INTERPRETED_REGEXP |
| return false; |
| #else |
| return true; |
| #endif |
| } |
| |
| // Returns a string representation of a regular expression. |
| // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4. |
| // This function calls the garbage collector if necessary. |
| static Handle<String> ToString(Handle<Object> value); |
| |
| // Parses the RegExp pattern and prepares the JSRegExp object with |
| // generic data and choice of implementation - as well as what |
| // the implementation wants to store in the data field. |
| // Returns false if compilation fails. |
| MUST_USE_RESULT static MaybeHandle<Object> Compile(Handle<JSRegExp> re, |
| Handle<String> pattern, |
| JSRegExp::Flags flags); |
| |
| // See ECMA-262 section 15.10.6.2. |
| // This function calls the garbage collector if necessary. |
| V8_EXPORT_PRIVATE MUST_USE_RESULT static MaybeHandle<Object> Exec( |
| Handle<JSRegExp> regexp, Handle<String> subject, int index, |
| Handle<RegExpMatchInfo> last_match_info); |
| |
| // Prepares a JSRegExp object with Irregexp-specific data. |
| static void IrregexpInitialize(Handle<JSRegExp> re, |
| Handle<String> pattern, |
| JSRegExp::Flags flags, |
| int capture_register_count); |
| |
| |
| static void AtomCompile(Handle<JSRegExp> re, |
| Handle<String> pattern, |
| JSRegExp::Flags flags, |
| Handle<String> match_pattern); |
| |
| |
| static int AtomExecRaw(Handle<JSRegExp> regexp, |
| Handle<String> subject, |
| int index, |
| int32_t* output, |
| int output_size); |
| |
| static Handle<Object> AtomExec(Handle<JSRegExp> regexp, |
| Handle<String> subject, int index, |
| Handle<RegExpMatchInfo> last_match_info); |
| |
| enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 }; |
| |
| // Prepare a RegExp for being executed one or more times (using |
| // IrregexpExecOnce) on the subject. |
| // This ensures that the regexp is compiled for the subject, and that |
| // the subject is flat. |
| // Returns the number of integer spaces required by IrregexpExecOnce |
| // as its "registers" argument. If the regexp cannot be compiled, |
| // an exception is set as pending, and this function returns negative. |
| static int IrregexpPrepare(Handle<JSRegExp> regexp, |
| Handle<String> subject); |
| |
| // Execute a regular expression on the subject, starting from index. |
| // If matching succeeds, return the number of matches. This can be larger |
| // than one in the case of global regular expressions. |
| // The captures and subcaptures are stored into the registers vector. |
| // If matching fails, returns RE_FAILURE. |
| // If execution fails, sets a pending exception and returns RE_EXCEPTION. |
| static int IrregexpExecRaw(Handle<JSRegExp> regexp, |
| Handle<String> subject, |
| int index, |
| int32_t* output, |
| int output_size); |
| |
| // Execute an Irregexp bytecode pattern. |
| // On a successful match, the result is a JSArray containing |
| // captured positions. On a failure, the result is the null value. |
| // Returns an empty handle in case of an exception. |
| MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec( |
| Handle<JSRegExp> regexp, Handle<String> subject, int index, |
| Handle<RegExpMatchInfo> last_match_info); |
| |
| // Set last match info. If match is nullptr, then setting captures is |
| // omitted. |
| static Handle<RegExpMatchInfo> SetLastMatchInfo( |
| Handle<RegExpMatchInfo> last_match_info, Handle<String> subject, |
| int capture_count, int32_t* match); |
| |
| class GlobalCache { |
| public: |
| GlobalCache(Handle<JSRegExp> regexp, |
| Handle<String> subject, |
| Isolate* isolate); |
| |
| INLINE(~GlobalCache()); |
| |
| // Fetch the next entry in the cache for global regexp match results. |
| // This does not set the last match info. Upon failure, nullptr is |
| // returned. The cause can be checked with Result(). The previous result is |
| // still in available in memory when a failure happens. |
| INLINE(int32_t* FetchNext()); |
| |
| INLINE(int32_t* LastSuccessfulMatch()); |
| |
| INLINE(bool HasException()) { return num_matches_ < 0; } |
| |
| private: |
| int AdvanceZeroLength(int last_index); |
| |
| int num_matches_; |
| int max_matches_; |
| int current_match_index_; |
| int registers_per_match_; |
| // Pointer to the last set of captures. |
| int32_t* register_array_; |
| int register_array_size_; |
| Handle<JSRegExp> regexp_; |
| Handle<String> subject_; |
| }; |
| |
| // For acting on the JSRegExp data FixedArray. |
| static int IrregexpMaxRegisterCount(FixedArray* re); |
| static void SetIrregexpMaxRegisterCount(FixedArray* re, int value); |
| static void SetIrregexpCaptureNameMap(FixedArray* re, |
| Handle<FixedArray> value); |
| static int IrregexpNumberOfCaptures(FixedArray* re); |
| static int IrregexpNumberOfRegisters(FixedArray* re); |
| static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte); |
| static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte); |
| |
| // Limit the space regexps take up on the heap. In order to limit this we |
| // would like to keep track of the amount of regexp code on the heap. This |
| // is not tracked, however. As a conservative approximation we track the |
| // total regexp code compiled including code that has subsequently been freed |
| // and the total executable memory at any point. |
| static const size_t kRegExpExecutableMemoryLimit = 16 * MB; |
| static const size_t kRegExpCompiledLimit = 1 * MB; |
| static const int kRegExpTooLargeToOptimize = 20 * KB; |
| |
| private: |
| static bool CompileIrregexp(Handle<JSRegExp> re, |
| Handle<String> sample_subject, bool is_one_byte); |
| static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, |
| Handle<String> sample_subject, |
| bool is_one_byte); |
| }; |
| |
| |
| // Represents the location of one element relative to the intersection of |
| // two sets. Corresponds to the four areas of a Venn diagram. |
| enum ElementInSetsRelation { |
| kInsideNone = 0, |
| kInsideFirst = 1, |
| kInsideSecond = 2, |
| kInsideBoth = 3 |
| }; |
| |
| |
| // A set of unsigned integers that behaves especially well on small |
| // integers (< 32). May do zone-allocation. |
| class OutSet: public ZoneObject { |
| public: |
| OutSet() : first_(0), remaining_(nullptr), successors_(nullptr) {} |
| OutSet* Extend(unsigned value, Zone* zone); |
| bool Get(unsigned value) const; |
| static const unsigned kFirstLimit = 32; |
| |
| private: |
| // Destructively set a value in this set. In most cases you want |
| // to use Extend instead to ensure that only one instance exists |
| // that contains the same values. |
| void Set(unsigned value, Zone* zone); |
| |
| // The successors are a list of sets that contain the same values |
| // as this set and the one more value that is not present in this |
| // set. |
| ZoneList<OutSet*>* successors(Zone* zone) { return successors_; } |
| |
| OutSet(uint32_t first, ZoneList<unsigned>* remaining) |
| : first_(first), remaining_(remaining), successors_(nullptr) {} |
| uint32_t first_; |
| ZoneList<unsigned>* remaining_; |
| ZoneList<OutSet*>* successors_; |
| friend class Trace; |
| }; |
| |
| |
| // A mapping from integers, specified as ranges, to a set of integers. |
| // Used for mapping character ranges to choices. |
| class DispatchTable : public ZoneObject { |
| public: |
| explicit DispatchTable(Zone* zone) : tree_(zone) { } |
| |
| class Entry { |
| public: |
| Entry() : from_(0), to_(0), out_set_(nullptr) {} |
| Entry(uc32 from, uc32 to, OutSet* out_set) |
| : from_(from), to_(to), out_set_(out_set) { |
| DCHECK(from <= to); |
| } |
| uc32 from() { return from_; } |
| uc32 to() { return to_; } |
| void set_to(uc32 value) { to_ = value; } |
| void AddValue(int value, Zone* zone) { |
| out_set_ = out_set_->Extend(value, zone); |
| } |
| OutSet* out_set() { return out_set_; } |
| private: |
| uc32 from_; |
| uc32 to_; |
| OutSet* out_set_; |
| }; |
| |
| class Config { |
| public: |
| typedef uc32 Key; |
| typedef Entry Value; |
| static const uc32 kNoKey; |
| static const Entry NoValue() { return Value(); } |
| static inline int Compare(uc32 a, uc32 b) { |
| if (a == b) |
| return 0; |
| else if (a < b) |
| return -1; |
| else |
| return 1; |
| } |
| }; |
| |
| void AddRange(CharacterRange range, int value, Zone* zone); |
| OutSet* Get(uc32 value); |
| void Dump(); |
| |
| template <typename Callback> |
| void ForEach(Callback* callback) { |
| return tree()->ForEach(callback); |
| } |
| |
| private: |
| // There can't be a static empty set since it allocates its |
| // successors in a zone and caches them. |
| OutSet* empty() { return &empty_; } |
| OutSet empty_; |
| ZoneSplayTree<Config>* tree() { return &tree_; } |
| ZoneSplayTree<Config> tree_; |
| }; |
| |
| |
| // Categorizes character ranges into BMP, non-BMP, lead, and trail surrogates. |
| class UnicodeRangeSplitter { |
| public: |
| UnicodeRangeSplitter(Zone* zone, ZoneList<CharacterRange>* base); |
| void Call(uc32 from, DispatchTable::Entry entry); |
| |
| ZoneList<CharacterRange>* bmp() { return bmp_; } |
| ZoneList<CharacterRange>* lead_surrogates() { return lead_surrogates_; } |
| ZoneList<CharacterRange>* trail_surrogates() { return trail_surrogates_; } |
| ZoneList<CharacterRange>* non_bmp() const { return non_bmp_; } |
| |
| private: |
| static const int kBase = 0; |
| // Separate ranges into |
| static const int kBmpCodePoints = 1; |
| static const int kLeadSurrogates = 2; |
| static const int kTrailSurrogates = 3; |
| static const int kNonBmpCodePoints = 4; |
| |
| Zone* zone_; |
| DispatchTable table_; |
| ZoneList<CharacterRange>* bmp_; |
| ZoneList<CharacterRange>* lead_surrogates_; |
| ZoneList<CharacterRange>* trail_surrogates_; |
| ZoneList<CharacterRange>* non_bmp_; |
| }; |
| |
| |
| #define FOR_EACH_NODE_TYPE(VISIT) \ |
| VISIT(End) \ |
| VISIT(Action) \ |
| VISIT(Choice) \ |
| VISIT(BackReference) \ |
| VISIT(Assertion) \ |
| VISIT(Text) |
| |
| |
| class Trace; |
| struct PreloadState; |
| class GreedyLoopState; |
| class AlternativeGenerationList; |
| |
| struct NodeInfo { |
| NodeInfo() |
| : being_analyzed(false), |
| been_analyzed(false), |
| follows_word_interest(false), |
| follows_newline_interest(false), |
| follows_start_interest(false), |
| at_end(false), |
| visited(false), |
| replacement_calculated(false) { } |
| |
| // Returns true if the interests and assumptions of this node |
| // matches the given one. |
| bool Matches(NodeInfo* that) { |
| return (at_end == that->at_end) && |
| (follows_word_interest == that->follows_word_interest) && |
| (follows_newline_interest == that->follows_newline_interest) && |
| (follows_start_interest == that->follows_start_interest); |
| } |
| |
| // Updates the interests of this node given the interests of the |
| // node preceding it. |
| void AddFromPreceding(NodeInfo* that) { |
| at_end |= that->at_end; |
| follows_word_interest |= that->follows_word_interest; |
| follows_newline_interest |= that->follows_newline_interest; |
| follows_start_interest |= that->follows_start_interest; |
| } |
| |
| bool HasLookbehind() { |
| return follows_word_interest || |
| follows_newline_interest || |
| follows_start_interest; |
| } |
| |
| // Sets the interests of this node to include the interests of the |
| // following node. |
| void AddFromFollowing(NodeInfo* that) { |
| follows_word_interest |= that->follows_word_interest; |
| follows_newline_interest |= that->follows_newline_interest; |
| follows_start_interest |= that->follows_start_interest; |
| } |
| |
| void ResetCompilationState() { |
| being_analyzed = false; |
| been_analyzed = false; |
| } |
| |
| bool being_analyzed: 1; |
| bool been_analyzed: 1; |
| |
| // These bits are set of this node has to know what the preceding |
| // character was. |
| bool follows_word_interest: 1; |
| bool follows_newline_interest: 1; |
| bool follows_start_interest: 1; |
| |
| bool at_end: 1; |
| bool visited: 1; |
| bool replacement_calculated: 1; |
| }; |
| |
| |
| // Details of a quick mask-compare check that can look ahead in the |
| // input stream. |
| class QuickCheckDetails { |
| public: |
| QuickCheckDetails() |
| : characters_(0), |
| mask_(0), |
| value_(0), |
| cannot_match_(false) { } |
| explicit QuickCheckDetails(int characters) |
| : characters_(characters), |
| mask_(0), |
| value_(0), |
| cannot_match_(false) { } |
| bool Rationalize(bool one_byte); |
| // Merge in the information from another branch of an alternation. |
| void Merge(QuickCheckDetails* other, int from_index); |
| // Advance the current position by some amount. |
| void Advance(int by, bool one_byte); |
| void Clear(); |
| bool cannot_match() { return cannot_match_; } |
| void set_cannot_match() { cannot_match_ = true; } |
| struct Position { |
| Position() : mask(0), value(0), determines_perfectly(false) { } |
| uc16 mask; |
| uc16 value; |
| bool determines_perfectly; |
| }; |
| int characters() { return characters_; } |
| void set_characters(int characters) { characters_ = characters; } |
| Position* positions(int index) { |
| DCHECK_LE(0, index); |
| DCHECK_GT(characters_, index); |
| return positions_ + index; |
| } |
| uint32_t mask() { return mask_; } |
| uint32_t value() { return value_; } |
| |
| private: |
| // How many characters do we have quick check information from. This is |
| // the same for all branches of a choice node. |
| int characters_; |
| Position positions_[4]; |
| // These values are the condensate of the above array after Rationalize(). |
| uint32_t mask_; |
| uint32_t value_; |
| // If set to true, there is no way this quick check can match at all. |
| // E.g., if it requires to be at the start of the input, and isn't. |
| bool cannot_match_; |
| }; |
| |
| |
| extern int kUninitializedRegExpNodePlaceHolder; |
| |
| |
| class RegExpNode: public ZoneObject { |
| public: |
| explicit RegExpNode(Zone* zone) |
| : replacement_(nullptr), |
| on_work_list_(false), |
| trace_count_(0), |
| zone_(zone) { |
| bm_info_[0] = bm_info_[1] = nullptr; |
| } |
| virtual ~RegExpNode(); |
| virtual void Accept(NodeVisitor* visitor) = 0; |
| // Generates a goto to this node or actually generates the code at this point. |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0; |
| // How many characters must this node consume at a minimum in order to |
| // succeed. If we have found at least 'still_to_find' characters that |
| // must be consumed there is no need to ask any following nodes whether |
| // they are sure to eat any more characters. The not_at_start argument is |
| // used to indicate that we know we are not at the start of the input. In |
| // this case anchored branches will always fail and can be ignored when |
| // determining how many characters are consumed on success. |
| virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0; |
| // Emits some quick code that checks whether the preloaded characters match. |
| // Falls through on certain failure, jumps to the label on possible success. |
| // If the node cannot make a quick check it does nothing and returns false. |
| bool EmitQuickCheck(RegExpCompiler* compiler, |
| Trace* bounds_check_trace, |
| Trace* trace, |
| bool preload_has_checked_bounds, |
| Label* on_possible_success, |
| QuickCheckDetails* details_return, |
| bool fall_through_on_failure); |
| // For a given number of characters this returns a mask and a value. The |
| // next n characters are anded with the mask and compared with the value. |
| // A comparison failure indicates the node cannot match the next n characters. |
| // A comparison success indicates the node may match. |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int characters_filled_in, |
| bool not_at_start) = 0; |
| static const int kNodeIsTooComplexForGreedyLoops = kMinInt; |
| virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } |
| // Only returns the successor for a text node of length 1 that matches any |
| // character and that has no guards on it. |
| virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( |
| RegExpCompiler* compiler) { |
| return nullptr; |
| } |
| |
| // Collects information on the possible code units (mod 128) that can match if |
| // we look forward. This is used for a Boyer-Moore-like string searching |
| // implementation. TODO(erikcorry): This should share more code with |
| // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit |
| // the number of nodes we are willing to look at in order to create this data. |
| static const int kRecursionBudget = 200; |
| bool KeepRecursing(RegExpCompiler* compiler); |
| virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
| BoyerMooreLookahead* bm, bool not_at_start) { |
| UNREACHABLE(); |
| } |
| |
| // If we know that the input is one-byte then there are some nodes that can |
| // never match. This method returns a node that can be substituted for |
| // itself, or nullptr if the node can never match. |
| virtual RegExpNode* FilterOneByte(int depth) { return this; } |
| // Helper for FilterOneByte. |
| RegExpNode* replacement() { |
| DCHECK(info()->replacement_calculated); |
| return replacement_; |
| } |
| RegExpNode* set_replacement(RegExpNode* replacement) { |
| info()->replacement_calculated = true; |
| replacement_ = replacement; |
| return replacement; // For convenience. |
| } |
| |
| // We want to avoid recalculating the lookahead info, so we store it on the |
| // node. Only info that is for this node is stored. We can tell that the |
| // info is for this node when offset == 0, so the information is calculated |
| // relative to this node. |
| void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) { |
| if (offset == 0) set_bm_info(not_at_start, bm); |
| } |
| |
| Label* label() { return &label_; } |
| // If non-generic code is generated for a node (i.e. the node is not at the |
| // start of the trace) then it cannot be reused. This variable sets a limit |
| // on how often we allow that to happen before we insist on starting a new |
| // trace and generating generic code for a node that can be reused by flushing |
| // the deferred actions in the current trace and generating a goto. |
| static const int kMaxCopiesCodeGenerated = 10; |
| |
| bool on_work_list() { return on_work_list_; } |
| void set_on_work_list(bool value) { on_work_list_ = value; } |
| |
| NodeInfo* info() { return &info_; } |
| |
| BoyerMooreLookahead* bm_info(bool not_at_start) { |
| return bm_info_[not_at_start ? 1 : 0]; |
| } |
| |
| Zone* zone() const { return zone_; } |
| |
| protected: |
| enum LimitResult { DONE, CONTINUE }; |
| RegExpNode* replacement_; |
| |
| LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace); |
| |
| void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) { |
| bm_info_[not_at_start ? 1 : 0] = bm; |
| } |
| |
| private: |
| static const int kFirstCharBudget = 10; |
| Label label_; |
| bool on_work_list_; |
| NodeInfo info_; |
| // This variable keeps track of how many times code has been generated for |
| // this node (in different traces). We don't keep track of where the |
| // generated code is located unless the code is generated at the start of |
| // a trace, in which case it is generic and can be reused by flushing the |
| // deferred operations in the current trace and generating a goto. |
| int trace_count_; |
| BoyerMooreLookahead* bm_info_[2]; |
| |
| Zone* zone_; |
| }; |
| |
| |
| class SeqRegExpNode: public RegExpNode { |
| public: |
| explicit SeqRegExpNode(RegExpNode* on_success) |
| : RegExpNode(on_success->zone()), on_success_(on_success) { } |
| RegExpNode* on_success() { return on_success_; } |
| void set_on_success(RegExpNode* node) { on_success_ = node; } |
| virtual RegExpNode* FilterOneByte(int depth); |
| virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
| BoyerMooreLookahead* bm, bool not_at_start) { |
| on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); |
| if (offset == 0) set_bm_info(not_at_start, bm); |
| } |
| |
| protected: |
| RegExpNode* FilterSuccessor(int depth); |
| |
| private: |
| RegExpNode* on_success_; |
| }; |
| |
| |
| class ActionNode: public SeqRegExpNode { |
| public: |
| enum ActionType { |
| SET_REGISTER, |
| INCREMENT_REGISTER, |
| STORE_POSITION, |
| BEGIN_SUBMATCH, |
| POSITIVE_SUBMATCH_SUCCESS, |
| EMPTY_MATCH_CHECK, |
| CLEAR_CAPTURES |
| }; |
| static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success); |
| static ActionNode* IncrementRegister(int reg, RegExpNode* on_success); |
| static ActionNode* StorePosition(int reg, |
| bool is_capture, |
| RegExpNode* on_success); |
| static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success); |
| static ActionNode* BeginSubmatch(int stack_pointer_reg, |
| int position_reg, |
| RegExpNode* on_success); |
| static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg, |
| int restore_reg, |
| int clear_capture_count, |
| int clear_capture_from, |
| RegExpNode* on_success); |
| static ActionNode* EmptyMatchCheck(int start_register, |
| int repetition_register, |
| int repetition_limit, |
| RegExpNode* on_success); |
| virtual void Accept(NodeVisitor* visitor); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int filled_in, |
| bool not_at_start) { |
| return on_success()->GetQuickCheckDetails( |
| details, compiler, filled_in, not_at_start); |
| } |
| virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
| BoyerMooreLookahead* bm, bool not_at_start); |
| ActionType action_type() { return action_type_; } |
| // TODO(erikcorry): We should allow some action nodes in greedy loops. |
| virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } |
| |
| private: |
| union { |
| struct { |
| int reg; |
| int value; |
| } u_store_register; |
| struct { |
| int reg; |
| } u_increment_register; |
| struct { |
| int reg; |
| bool is_capture; |
| } u_position_register; |
| struct { |
| int stack_pointer_register; |
| int current_position_register; |
| int clear_register_count; |
| int clear_register_from; |
| } u_submatch; |
| struct { |
| int start_register; |
| int repetition_register; |
| int repetition_limit; |
| } u_empty_match_check; |
| struct { |
| int range_from; |
| int range_to; |
| } u_clear_captures; |
| } data_; |
| ActionNode(ActionType action_type, RegExpNode* on_success) |
| : SeqRegExpNode(on_success), |
| action_type_(action_type) { } |
| ActionType action_type_; |
| friend class DotPrinter; |
| }; |
| |
| |
| class TextNode: public SeqRegExpNode { |
| public: |
| TextNode(ZoneList<TextElement>* elms, bool read_backward, |
| RegExpNode* on_success) |
| : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {} |
| TextNode(RegExpCharacterClass* that, bool read_backward, |
| RegExpNode* on_success) |
| : SeqRegExpNode(on_success), |
| elms_(new (zone()) ZoneList<TextElement>(1, zone())), |
| read_backward_(read_backward) { |
| elms_->Add(TextElement::CharClass(that), zone()); |
| } |
| // Create TextNode for a single character class for the given ranges. |
| static TextNode* CreateForCharacterRanges(Zone* zone, |
| ZoneList<CharacterRange>* ranges, |
| bool read_backward, |
| RegExpNode* on_success, |
| JSRegExp::Flags flags); |
| // Create TextNode for a surrogate pair with a range given for the |
| // lead and the trail surrogate each. |
| static TextNode* CreateForSurrogatePair(Zone* zone, CharacterRange lead, |
| CharacterRange trail, |
| bool read_backward, |
| RegExpNode* on_success, |
| JSRegExp::Flags flags); |
| virtual void Accept(NodeVisitor* visitor); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int characters_filled_in, |
| bool not_at_start); |
| ZoneList<TextElement>* elements() { return elms_; } |
| bool read_backward() { return read_backward_; } |
| void MakeCaseIndependent(Isolate* isolate, bool is_one_byte); |
| virtual int GreedyLoopTextLength(); |
| virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( |
| RegExpCompiler* compiler); |
| virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
| BoyerMooreLookahead* bm, bool not_at_start); |
| void CalculateOffsets(); |
| virtual RegExpNode* FilterOneByte(int depth); |
| |
| private: |
| enum TextEmitPassType { |
| NON_LATIN1_MATCH, // Check for characters that can't match. |
| SIMPLE_CHARACTER_MATCH, // Case-dependent single character check. |
| NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs. |
| CASE_CHARACTER_MATCH, // Case-independent single character check. |
| CHARACTER_CLASS_MATCH // Character class. |
| }; |
| static bool SkipPass(TextEmitPassType pass, bool ignore_case); |
| static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH; |
| static const int kLastPass = CHARACTER_CLASS_MATCH; |
| void TextEmitPass(RegExpCompiler* compiler, |
| TextEmitPassType pass, |
| bool preloaded, |
| Trace* trace, |
| bool first_element_checked, |
| int* checked_up_to); |
| int Length(); |
| ZoneList<TextElement>* elms_; |
| bool read_backward_; |
| }; |
| |
| |
| class AssertionNode: public SeqRegExpNode { |
| public: |
| enum AssertionType { |
| AT_END, |
| AT_START, |
| AT_BOUNDARY, |
| AT_NON_BOUNDARY, |
| AFTER_NEWLINE |
| }; |
| static AssertionNode* AtEnd(RegExpNode* on_success) { |
| return new(on_success->zone()) AssertionNode(AT_END, on_success); |
| } |
| static AssertionNode* AtStart(RegExpNode* on_success) { |
| return new(on_success->zone()) AssertionNode(AT_START, on_success); |
| } |
| static AssertionNode* AtBoundary(RegExpNode* on_success) { |
| return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success); |
| } |
| static AssertionNode* AtNonBoundary(RegExpNode* on_success) { |
| return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success); |
| } |
| static AssertionNode* AfterNewline(RegExpNode* on_success) { |
| return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success); |
| } |
| virtual void Accept(NodeVisitor* visitor); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int filled_in, |
| bool not_at_start); |
| virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
| BoyerMooreLookahead* bm, bool not_at_start); |
| AssertionType assertion_type() { return assertion_type_; } |
| |
| private: |
| void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace); |
| enum IfPrevious { kIsNonWord, kIsWord }; |
| void BacktrackIfPrevious(RegExpCompiler* compiler, |
| Trace* trace, |
| IfPrevious backtrack_if_previous); |
| AssertionNode(AssertionType t, RegExpNode* on_success) |
| : SeqRegExpNode(on_success), assertion_type_(t) { } |
| AssertionType assertion_type_; |
| }; |
| |
| |
| class BackReferenceNode: public SeqRegExpNode { |
| public: |
| BackReferenceNode(int start_reg, int end_reg, JSRegExp::Flags flags, |
| bool read_backward, RegExpNode* on_success) |
| : SeqRegExpNode(on_success), |
| start_reg_(start_reg), |
| end_reg_(end_reg), |
| flags_(flags), |
| read_backward_(read_backward) {} |
| virtual void Accept(NodeVisitor* visitor); |
| int start_register() { return start_reg_; } |
| int end_register() { return end_reg_; } |
| bool read_backward() { return read_backward_; } |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual int EatsAtLeast(int still_to_find, |
| int recursion_depth, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int characters_filled_in, |
| bool not_at_start) { |
| return; |
| } |
| virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
| BoyerMooreLookahead* bm, bool not_at_start); |
| |
| private: |
| int start_reg_; |
| int end_reg_; |
| JSRegExp::Flags flags_; |
| bool read_backward_; |
| }; |
| |
| |
| class EndNode: public RegExpNode { |
| public: |
| enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS }; |
| EndNode(Action action, Zone* zone) : RegExpNode(zone), action_(action) {} |
| virtual void Accept(NodeVisitor* visitor); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual int EatsAtLeast(int still_to_find, |
| int recursion_depth, |
| bool not_at_start) { return 0; } |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int characters_filled_in, |
| bool not_at_start) { |
| // Returning 0 from EatsAtLeast should ensure we never get here. |
| UNREACHABLE(); |
| } |
| virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
| BoyerMooreLookahead* bm, bool not_at_start) { |
| // Returning 0 from EatsAtLeast should ensure we never get here. |
| UNREACHABLE(); |
| } |
| |
| private: |
| Action action_; |
| }; |
| |
| |
| class NegativeSubmatchSuccess: public EndNode { |
| public: |
| NegativeSubmatchSuccess(int stack_pointer_reg, |
| int position_reg, |
| int clear_capture_count, |
| int clear_capture_start, |
| Zone* zone) |
| : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone), |
| stack_pointer_register_(stack_pointer_reg), |
| current_position_register_(position_reg), |
| clear_capture_count_(clear_capture_count), |
| clear_capture_start_(clear_capture_start) { } |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| |
| private: |
| int stack_pointer_register_; |
| int current_position_register_; |
| int clear_capture_count_; |
| int clear_capture_start_; |
| }; |
| |
| |
| class Guard: public ZoneObject { |
| public: |
| enum Relation { LT, GEQ }; |
| Guard(int reg, Relation op, int value) |
| : reg_(reg), |
| op_(op), |
| value_(value) { } |
| int reg() { return reg_; } |
| Relation op() { return op_; } |
| int value() { return value_; } |
| |
| private: |
| int reg_; |
| Relation op_; |
| int value_; |
| }; |
| |
| |
| class GuardedAlternative { |
| public: |
| explicit GuardedAlternative(RegExpNode* node) |
| : node_(node), guards_(nullptr) {} |
| void AddGuard(Guard* guard, Zone* zone); |
| RegExpNode* node() { return node_; } |
| void set_node(RegExpNode* node) { node_ = node; } |
| ZoneList<Guard*>* guards() { return guards_; } |
| |
| private: |
| RegExpNode* node_; |
| ZoneList<Guard*>* guards_; |
| }; |
| |
| |
| class AlternativeGeneration; |
| |
| |
| class ChoiceNode: public RegExpNode { |
| public: |
| explicit ChoiceNode(int expected_size, Zone* zone) |
| : RegExpNode(zone), |
| alternatives_(new (zone) |
| ZoneList<GuardedAlternative>(expected_size, zone)), |
| table_(nullptr), |
| not_at_start_(false), |
| being_calculated_(false) {} |
| virtual void Accept(NodeVisitor* visitor); |
| void AddAlternative(GuardedAlternative node) { |
| alternatives()->Add(node, zone()); |
| } |
| ZoneList<GuardedAlternative>* alternatives() { return alternatives_; } |
| DispatchTable* GetTable(bool ignore_case); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
| int EatsAtLeastHelper(int still_to_find, |
| int budget, |
| RegExpNode* ignore_this_node, |
| bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int characters_filled_in, |
| bool not_at_start); |
| virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
| BoyerMooreLookahead* bm, bool not_at_start); |
| |
| bool being_calculated() { return being_calculated_; } |
| bool not_at_start() { return not_at_start_; } |
| void set_not_at_start() { not_at_start_ = true; } |
| void set_being_calculated(bool b) { being_calculated_ = b; } |
| virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { |
| return true; |
| } |
| virtual RegExpNode* FilterOneByte(int depth); |
| virtual bool read_backward() { return false; } |
| |
| protected: |
| int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative); |
| ZoneList<GuardedAlternative>* alternatives_; |
| |
| private: |
| friend class DispatchTableConstructor; |
| friend class Analysis; |
| void GenerateGuard(RegExpMacroAssembler* macro_assembler, |
| Guard* guard, |
| Trace* trace); |
| int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least); |
| void EmitOutOfLineContinuation(RegExpCompiler* compiler, |
| Trace* trace, |
| GuardedAlternative alternative, |
| AlternativeGeneration* alt_gen, |
| int preload_characters, |
| bool next_expects_preload); |
| void SetUpPreLoad(RegExpCompiler* compiler, |
| Trace* current_trace, |
| PreloadState* preloads); |
| void AssertGuardsMentionRegisters(Trace* trace); |
| int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace); |
| Trace* EmitGreedyLoop(RegExpCompiler* compiler, |
| Trace* trace, |
| AlternativeGenerationList* alt_gens, |
| PreloadState* preloads, |
| GreedyLoopState* greedy_loop_state, |
| int text_length); |
| void EmitChoices(RegExpCompiler* compiler, |
| AlternativeGenerationList* alt_gens, |
| int first_choice, |
| Trace* trace, |
| PreloadState* preloads); |
| DispatchTable* table_; |
| // If true, this node is never checked at the start of the input. |
| // Allows a new trace to start with at_start() set to false. |
| bool not_at_start_; |
| bool being_calculated_; |
| }; |
| |
| |
| class NegativeLookaroundChoiceNode : public ChoiceNode { |
| public: |
| explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail, |
| GuardedAlternative then_do_this, |
| Zone* zone) |
| : ChoiceNode(2, zone) { |
| AddAlternative(this_must_fail); |
| AddAlternative(then_do_this); |
| } |
| virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int characters_filled_in, |
| bool not_at_start); |
| virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
| BoyerMooreLookahead* bm, bool not_at_start) { |
| alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm, |
| not_at_start); |
| if (offset == 0) set_bm_info(not_at_start, bm); |
| } |
| // For a negative lookahead we don't emit the quick check for the |
| // alternative that is expected to fail. This is because quick check code |
| // starts by loading enough characters for the alternative that takes fewest |
| // characters, but on a negative lookahead the negative branch did not take |
| // part in that calculation (EatsAtLeast) so the assumptions don't hold. |
| virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { |
| return !is_first; |
| } |
| virtual RegExpNode* FilterOneByte(int depth); |
| }; |
| |
| |
| class LoopChoiceNode: public ChoiceNode { |
| public: |
| LoopChoiceNode(bool body_can_be_zero_length, bool read_backward, Zone* zone) |
| : ChoiceNode(2, zone), |
| loop_node_(nullptr), |
| continue_node_(nullptr), |
| body_can_be_zero_length_(body_can_be_zero_length), |
| read_backward_(read_backward) {} |
| void AddLoopAlternative(GuardedAlternative alt); |
| void AddContinueAlternative(GuardedAlternative alt); |
| virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
| virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
| virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
| RegExpCompiler* compiler, |
| int characters_filled_in, |
| bool not_at_start); |
| virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, |
| BoyerMooreLookahead* bm, bool not_at_start); |
| RegExpNode* loop_node() { return loop_node_; } |
| RegExpNode* continue_node() { return continue_node_; } |
| bool body_can_be_zero_length() { return body_can_be_zero_length_; } |
| virtual bool read_backward() { return read_backward_; } |
| virtual void Accept(NodeVisitor* visitor); |
| virtual RegExpNode* FilterOneByte(int depth); |
| |
| private: |
| // AddAlternative is made private for loop nodes because alternatives |
| // should not be added freely, we need to keep track of which node |
| // goes back to the node itself. |
| void AddAlternative(GuardedAlternative node) { |
| ChoiceNode::AddAlternative(node); |
| } |
| |
| RegExpNode* loop_node_; |
| RegExpNode* continue_node_; |
| bool body_can_be_zero_length_; |
| bool read_backward_; |
| }; |
| |
| |
| // Improve the speed that we scan for an initial point where a non-anchored |
| // regexp can match by using a Boyer-Moore-like table. This is done by |
| // identifying non-greedy non-capturing loops in the nodes that eat any |
| // character one at a time. For example in the middle of the regexp |
| // /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly |
| // inserted at the start of any non-anchored regexp. |
| // |
| // When we have found such a loop we look ahead in the nodes to find the set of |
| // characters that can come at given distances. For example for the regexp |
| // /.?foo/ we know that there are at least 3 characters ahead of us, and the |
| // sets of characters that can occur are [any, [f, o], [o]]. We find a range in |
| // the lookahead info where the set of characters is reasonably constrained. In |
| // our example this is from index 1 to 2 (0 is not constrained). We can now |
| // look 3 characters ahead and if we don't find one of [f, o] (the union of |
| // [f, o] and [o]) then we can skip forwards by the range size (in this case 2). |
| // |
| // For Unicode input strings we do the same, but modulo 128. |
| // |
| // We also look at the first string fed to the regexp and use that to get a hint |
| // of the character frequencies in the inputs. This affects the assessment of |
| // whether the set of characters is 'reasonably constrained'. |
| // |
| // We also have another lookahead mechanism (called quick check in the code), |
| // which uses a wide load of multiple characters followed by a mask and compare |
| // to determine whether a match is possible at this point. |
| enum ContainedInLattice { |
| kNotYet = 0, |
| kLatticeIn = 1, |
| kLatticeOut = 2, |
| kLatticeUnknown = 3 // Can also mean both in and out. |
| }; |
| |
| |
| inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) { |
| return static_cast<ContainedInLattice>(a | b); |
| } |
| |
| |
| ContainedInLattice AddRange(ContainedInLattice a, |
| const int* ranges, |
| int ranges_size, |
| Interval new_range); |
| |
| |
| class BoyerMoorePositionInfo : public ZoneObject { |
| public: |
| explicit BoyerMoorePositionInfo(Zone* zone) |
| : map_(new(zone) ZoneList<bool>(kMapSize, zone)), |
| map_count_(0), |
| w_(kNotYet), |
| s_(kNotYet), |
| d_(kNotYet), |
| surrogate_(kNotYet) { |
| for (int i = 0; i < kMapSize; i++) { |
| map_->Add(false, zone); |
| } |
| } |
| |
| bool& at(int i) { return map_->at(i); } |
| |
| static const int kMapSize = 128; |
| static const int kMask = kMapSize - 1; |
| |
| int map_count() const { return map_count_; } |
| |
| void Set(int character); |
| void SetInterval(const Interval& interval); |
| void SetAll(); |
| bool is_non_word() { return w_ == kLatticeOut; } |
| bool is_word() { return w_ == kLatticeIn; } |
| |
| private: |
| ZoneList<bool>* map_; |
| int map_count_; // Number of set bits in the map. |
| ContainedInLattice w_; // The \w character class. |
| ContainedInLattice s_; // The \s character class. |
| ContainedInLattice d_; // The \d character class. |
| ContainedInLattice surrogate_; // Surrogate UTF-16 code units. |
| }; |
| |
| |
| class BoyerMooreLookahead : public ZoneObject { |
| public: |
| BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone); |
| |
| int length() { return length_; } |
| int max_char() { return max_char_; } |
| RegExpCompiler* compiler() { return compiler_; } |
| |
| int Count(int map_number) { |
| return bitmaps_->at(map_number)->map_count(); |
| } |
| |
| BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); } |
| |
| void Set(int map_number, int character) { |
| if (character > max_char_) return; |
| BoyerMoorePositionInfo* info = bitmaps_->at(map_number); |
| info->Set(character); |
| } |
| |
| void SetInterval(int map_number, const Interval& interval) { |
| if (interval.from() > max_char_) return; |
| BoyerMoorePositionInfo* info = bitmaps_->at(map_number); |
| if (interval.to() > max_char_) { |
| info->SetInterval(Interval(interval.from(), max_char_)); |
| } else { |
| info->SetInterval(interval); |
| } |
| } |
| |
| void SetAll(int map_number) { |
| bitmaps_->at(map_number)->SetAll(); |
| } |
| |
| void SetRest(int from_map) { |
| for (int i = from_map; i < length_; i++) SetAll(i); |
| } |
| void EmitSkipInstructions(RegExpMacroAssembler* masm); |
| |
| private: |
| // This is the value obtained by EatsAtLeast. If we do not have at least this |
| // many characters left in the sample string then the match is bound to fail. |
| // Therefore it is OK to read a character this far ahead of the current match |
| // point. |
| int length_; |
| RegExpCompiler* compiler_; |
| // 0xff for Latin1, 0xffff for UTF-16. |
| int max_char_; |
| ZoneList<BoyerMoorePositionInfo*>* bitmaps_; |
| |
| int GetSkipTable(int min_lookahead, |
| int max_lookahead, |
| Handle<ByteArray> boolean_skip_table); |
| bool FindWorthwhileInterval(int* from, int* to); |
| int FindBestInterval( |
| int max_number_of_chars, int old_biggest_points, int* from, int* to); |
| }; |
| |
| |
| // There are many ways to generate code for a node. This class encapsulates |
| // the current way we should be generating. In other words it encapsulates |
| // the current state of the code generator. The effect of this is that we |
| // generate code for paths that the matcher can take through the regular |
| // expression. A given node in the regexp can be code-generated several times |
| // as it can be part of several traces. For example for the regexp: |
| // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part |
| // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code |
| // to match foo is generated only once (the traces have a common prefix). The |
| // code to store the capture is deferred and generated (twice) after the places |
| // where baz has been matched. |
| class Trace { |
| public: |
| // A value for a property that is either known to be true, know to be false, |
| // or not known. |
| enum TriBool { |
| UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1 |
| }; |
| |
| class DeferredAction { |
| public: |
| DeferredAction(ActionNode::ActionType action_type, int reg) |
| : action_type_(action_type), reg_(reg), next_(nullptr) {} |
| DeferredAction* next() { return next_; } |
| bool Mentions(int reg); |
| int reg() { return reg_; } |
| ActionNode::ActionType action_type() { return action_type_; } |
| private: |
| ActionNode::ActionType action_type_; |
| int reg_; |
| DeferredAction* next_; |
| friend class Trace; |
| }; |
| |
| class DeferredCapture : public DeferredAction { |
| public: |
| DeferredCapture(int reg, bool is_capture, Trace* trace) |
| : DeferredAction(ActionNode::STORE_POSITION, reg), |
| cp_offset_(trace->cp_offset()), |
| is_capture_(is_capture) { } |
| int cp_offset() { return cp_offset_; } |
| bool is_capture() { return is_capture_; } |
| private: |
| int cp_offset_; |
| bool is_capture_; |
| void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } |
| }; |
| |
| class DeferredSetRegister : public DeferredAction { |
| public: |
| DeferredSetRegister(int reg, int value) |
| : DeferredAction(ActionNode::SET_REGISTER, reg), |
| value_(value) { } |
| int value() { return value_; } |
| private: |
| int value_; |
| }; |
| |
| class DeferredClearCaptures : public DeferredAction { |
| public: |
| explicit DeferredClearCaptures(Interval range) |
| : DeferredAction(ActionNode::CLEAR_CAPTURES, -1), |
| range_(range) { } |
| Interval range() { return range_; } |
| private: |
| Interval range_; |
| }; |
| |
| class DeferredIncrementRegister : public DeferredAction { |
| public: |
| explicit DeferredIncrementRegister(int reg) |
| : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { } |
| }; |
| |
| Trace() |
| : cp_offset_(0), |
| actions_(nullptr), |
| backtrack_(nullptr), |
| stop_node_(nullptr), |
| loop_label_(nullptr), |
| characters_preloaded_(0), |
| bound_checked_up_to_(0), |
| flush_budget_(100), |
| at_start_(UNKNOWN) {} |
| |
| // End the trace. This involves flushing the deferred actions in the trace |
| // and pushing a backtrack location onto the backtrack stack. Once this is |
| // done we can start a new trace or go to one that has already been |
| // generated. |
| void Flush(RegExpCompiler* compiler, RegExpNode* successor); |
| int cp_offset() { return cp_offset_; } |
| DeferredAction* actions() { return actions_; } |
| // A trivial trace is one that has no deferred actions or other state that |
| // affects the assumptions used when generating code. There is no recorded |
| // backtrack location in a trivial trace, so with a trivial trace we will |
| // generate code that, on a failure to match, gets the backtrack location |
| // from the backtrack stack rather than using a direct jump instruction. We |
| // always start code generation with a trivial trace and non-trivial traces |
| // are created as we emit code for nodes or add to the list of deferred |
| // actions in the trace. The location of the code generated for a node using |
| // a trivial trace is recorded in a label in the node so that gotos can be |
| // generated to that code. |
| bool is_trivial() { |
| return backtrack_ == nullptr && actions_ == nullptr && cp_offset_ == 0 && |
| characters_preloaded_ == 0 && bound_checked_up_to_ == 0 && |
| quick_check_performed_.characters() == 0 && at_start_ == UNKNOWN; |
| } |
| TriBool at_start() { return at_start_; } |
| void set_at_start(TriBool at_start) { at_start_ = at_start; } |
| Label* backtrack() { return backtrack_; } |
| Label* loop_label() { return loop_label_; } |
| RegExpNode* stop_node() { return stop_node_; } |
| int characters_preloaded() { return characters_preloaded_; } |
| int bound_checked_up_to() { return bound_checked_up_to_; } |
| int flush_budget() { return flush_budget_; } |
| QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; } |
| bool mentions_reg(int reg); |
| // Returns true if a deferred position store exists to the specified |
| // register and stores the offset in the out-parameter. Otherwise |
| // returns false. |
| bool GetStoredPosition(int reg, int* cp_offset); |
| // These set methods and AdvanceCurrentPositionInTrace should be used only on |
| // new traces - the intention is that traces are immutable after creation. |
| void add_action(DeferredAction* new_action) { |
| DCHECK(new_action->next_ == nullptr); |
| new_action->next_ = actions_; |
| actions_ = new_action; |
| } |
| void set_backtrack(Label* backtrack) { backtrack_ = backtrack; } |
| void set_stop_node(RegExpNode* node) { stop_node_ = node; } |
| void set_loop_label(Label* label) { loop_label_ = label; } |
| void set_characters_preloaded(int count) { characters_preloaded_ = count; } |
| void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; } |
| void set_flush_budget(int to) { flush_budget_ = to; } |
| void set_quick_check_performed(QuickCheckDetails* d) { |
| quick_check_performed_ = *d; |
| } |
| void InvalidateCurrentCharacter(); |
| void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler); |
| |
| private: |
| int FindAffectedRegisters(OutSet* affected_registers, Zone* zone); |
| void PerformDeferredActions(RegExpMacroAssembler* macro, |
| int max_register, |
| const OutSet& affected_registers, |
| OutSet* registers_to_pop, |
| OutSet* registers_to_clear, |
| Zone* zone); |
| void RestoreAffectedRegisters(RegExpMacroAssembler* macro, |
| int max_register, |
| const OutSet& registers_to_pop, |
| const OutSet& registers_to_clear); |
| int cp_offset_; |
| DeferredAction* actions_; |
| Label* backtrack_; |
| RegExpNode* stop_node_; |
| Label* loop_label_; |
| int characters_preloaded_; |
| int bound_checked_up_to_; |
| QuickCheckDetails quick_check_performed_; |
| int flush_budget_; |
| TriBool at_start_; |
| }; |
| |
| |
| class GreedyLoopState { |
| public: |
| explicit GreedyLoopState(bool not_at_start); |
| |
| Label* label() { return &label_; } |
| Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; } |
| |
| private: |
| Label label_; |
| Trace counter_backtrack_trace_; |
| }; |
| |
| |
| struct PreloadState { |
| static const int kEatsAtLeastNotYetInitialized = -1; |
| bool preload_is_current_; |
| bool preload_has_checked_bounds_; |
| int preload_characters_; |
| int eats_at_least_; |
| void init() { |
| eats_at_least_ = kEatsAtLeastNotYetInitialized; |
| } |
| }; |
| |
| |
| class NodeVisitor { |
| public: |
| virtual ~NodeVisitor() { } |
| #define DECLARE_VISIT(Type) \ |
| virtual void Visit##Type(Type##Node* that) = 0; |
| FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
| #undef DECLARE_VISIT |
| virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); } |
| }; |
| |
| |
| // Node visitor used to add the start set of the alternatives to the |
| // dispatch table of a choice node. |
| class DispatchTableConstructor: public NodeVisitor { |
| public: |
| DispatchTableConstructor(DispatchTable* table, bool ignore_case, |
| Zone* zone) |
| : table_(table), |
| choice_index_(-1), |
| ignore_case_(ignore_case), |
| zone_(zone) { } |
| |
| void BuildTable(ChoiceNode* node); |
| |
| void AddRange(CharacterRange range) { |
| table()->AddRange(range, choice_index_, zone_); |
| } |
| |
| void AddInverse(ZoneList<CharacterRange>* ranges); |
| |
| #define DECLARE_VISIT(Type) \ |
| virtual void Visit##Type(Type##Node* that); |
| FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
| #undef DECLARE_VISIT |
| |
| DispatchTable* table() { return table_; } |
| void set_choice_index(int value) { choice_index_ = value; } |
| |
| protected: |
| DispatchTable* table_; |
| int choice_index_; |
| bool ignore_case_; |
| Zone* zone_; |
| }; |
| |
| |
| // Assertion propagation moves information about assertions such as |
| // \b to the affected nodes. For instance, in /.\b./ information must |
| // be propagated to the first '.' that whatever follows needs to know |
| // if it matched a word or a non-word, and to the second '.' that it |
| // has to check if it succeeds a word or non-word. In this case the |
| // result will be something like: |
| // |
| // +-------+ +------------+ |
| // | . | | . | |
| // +-------+ ---> +------------+ |
| // | word? | | check word | |
| // +-------+ +------------+ |
| class Analysis: public NodeVisitor { |
| public: |
| Analysis(Isolate* isolate, bool is_one_byte) |
| : isolate_(isolate), is_one_byte_(is_one_byte), error_message_(nullptr) {} |
| void EnsureAnalyzed(RegExpNode* node); |
| |
| #define DECLARE_VISIT(Type) \ |
| virtual void Visit##Type(Type##Node* that); |
| FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
| #undef DECLARE_VISIT |
| virtual void VisitLoopChoice(LoopChoiceNode* that); |
| |
| bool has_failed() { return error_message_ != nullptr; } |
| const char* error_message() { |
| DCHECK(error_message_ != nullptr); |
| return error_message_; |
| } |
| void fail(const char* error_message) { |
| error_message_ = error_message; |
| } |
| |
| Isolate* isolate() const { return isolate_; } |
| |
| private: |
| Isolate* isolate_; |
| bool is_one_byte_; |
| const char* error_message_; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis); |
| }; |
| |
| |
| struct RegExpCompileData { |
| RegExpCompileData() |
| : tree(nullptr), |
| node(nullptr), |
| simple(true), |
| contains_anchor(false), |
| capture_count(0) {} |
| RegExpTree* tree; |
| RegExpNode* node; |
| bool simple; |
| bool contains_anchor; |
| Handle<FixedArray> capture_name_map; |
| Handle<String> error; |
| int capture_count; |
| }; |
| |
| |
| class RegExpEngine: public AllStatic { |
| public: |
| struct CompilationResult { |
| CompilationResult(Isolate* isolate, const char* error_message) |
| : error_message(error_message), |
| code(isolate->heap()->the_hole_value()), |
| num_registers(0) {} |
| CompilationResult(Object* code, int registers) |
| : error_message(nullptr), code(code), num_registers(registers) {} |
| const char* error_message; |
| Object* code; |
| int num_registers; |
| }; |
| |
| static CompilationResult Compile(Isolate* isolate, Zone* zone, |
| RegExpCompileData* input, |
| JSRegExp::Flags flags, |
| Handle<String> pattern, |
| Handle<String> sample_subject, |
| bool is_one_byte); |
| |
| static bool TooMuchRegExpCode(Handle<String> pattern); |
| |
| static void DotPrint(const char* label, RegExpNode* node, bool ignore_case); |
| }; |
| |
| |
| class RegExpResultsCache : public AllStatic { |
| public: |
| enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS }; |
| |
| // Attempt to retrieve a cached result. On failure, 0 is returned as a Smi. |
| // On success, the returned result is guaranteed to be a COW-array. |
| static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern, |
| FixedArray** last_match_out, ResultsCacheType type); |
| // Attempt to add value_array to the cache specified by type. On success, |
| // value_array is turned into a COW-array. |
| static void Enter(Isolate* isolate, Handle<String> key_string, |
| Handle<Object> key_pattern, Handle<FixedArray> value_array, |
| Handle<FixedArray> last_match_cache, ResultsCacheType type); |
| static void Clear(FixedArray* cache); |
| static const int kRegExpResultsCacheSize = 0x100; |
| |
| private: |
| static const int kArrayEntriesPerCacheEntry = 4; |
| static const int kStringOffset = 0; |
| static const int kPatternOffset = 1; |
| static const int kArrayOffset = 2; |
| static const int kLastMatchOffset = 3; |
| }; |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_REGEXP_JSREGEXP_H_ |