| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/regexp/regexp-macro-assembler.h" |
| |
| #include "src/assembler.h" |
| #include "src/isolate-inl.h" |
| #include "src/regexp/regexp-stack.h" |
| #include "src/simulator.h" |
| #include "src/unicode-inl.h" |
| |
| #ifdef V8_INTL_SUPPORT |
| #include "unicode/uchar.h" |
| #endif // V8_INTL_SUPPORT |
| |
| namespace v8 { |
| namespace internal { |
| |
| RegExpMacroAssembler::RegExpMacroAssembler(Isolate* isolate, Zone* zone) |
| : slow_safe_compiler_(false), |
| global_mode_(NOT_GLOBAL), |
| isolate_(isolate), |
| zone_(zone) {} |
| |
| |
| RegExpMacroAssembler::~RegExpMacroAssembler() { |
| } |
| |
| |
| int RegExpMacroAssembler::CaseInsensitiveCompareUC16(Address byte_offset1, |
| Address byte_offset2, |
| size_t byte_length, |
| Isolate* isolate) { |
| unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize = |
| isolate->regexp_macro_assembler_canonicalize(); |
| // This function is not allowed to cause a garbage collection. |
| // A GC might move the calling generated code and invalidate the |
| // return address on the stack. |
| DCHECK_EQ(0, byte_length % 2); |
| uc16* substring1 = reinterpret_cast<uc16*>(byte_offset1); |
| uc16* substring2 = reinterpret_cast<uc16*>(byte_offset2); |
| size_t length = byte_length >> 1; |
| |
| #ifdef V8_INTL_SUPPORT |
| if (isolate == nullptr) { |
| for (size_t i = 0; i < length; i++) { |
| uc32 c1 = substring1[i]; |
| uc32 c2 = substring2[i]; |
| if (unibrow::Utf16::IsLeadSurrogate(c1)) { |
| // Non-BMP characters do not have case-equivalents in the BMP. |
| // Both have to be non-BMP for them to be able to match. |
| if (!unibrow::Utf16::IsLeadSurrogate(c2)) return 0; |
| if (i + 1 < length) { |
| uc16 c1t = substring1[i + 1]; |
| uc16 c2t = substring2[i + 1]; |
| if (unibrow::Utf16::IsTrailSurrogate(c1t) && |
| unibrow::Utf16::IsTrailSurrogate(c2t)) { |
| c1 = unibrow::Utf16::CombineSurrogatePair(c1, c1t); |
| c2 = unibrow::Utf16::CombineSurrogatePair(c2, c2t); |
| i++; |
| } |
| } |
| } |
| c1 = u_foldCase(c1, U_FOLD_CASE_DEFAULT); |
| c2 = u_foldCase(c2, U_FOLD_CASE_DEFAULT); |
| if (c1 != c2) return 0; |
| } |
| return 1; |
| } |
| #endif // V8_INTL_SUPPORT |
| DCHECK_NOT_NULL(isolate); |
| for (size_t i = 0; i < length; i++) { |
| unibrow::uchar c1 = substring1[i]; |
| unibrow::uchar c2 = substring2[i]; |
| if (c1 != c2) { |
| unibrow::uchar s1[1] = {c1}; |
| canonicalize->get(c1, '\0', s1); |
| if (s1[0] != c2) { |
| unibrow::uchar s2[1] = {c2}; |
| canonicalize->get(c2, '\0', s2); |
| if (s1[0] != s2[0]) { |
| return 0; |
| } |
| } |
| } |
| } |
| return 1; |
| } |
| |
| |
| void RegExpMacroAssembler::CheckNotInSurrogatePair(int cp_offset, |
| Label* on_failure) { |
| Label ok; |
| // Check that current character is not a trail surrogate. |
| LoadCurrentCharacter(cp_offset, &ok); |
| CheckCharacterNotInRange(kTrailSurrogateStart, kTrailSurrogateEnd, &ok); |
| // Check that previous character is not a lead surrogate. |
| LoadCurrentCharacter(cp_offset - 1, &ok); |
| CheckCharacterInRange(kLeadSurrogateStart, kLeadSurrogateEnd, on_failure); |
| Bind(&ok); |
| } |
| |
| void RegExpMacroAssembler::CheckPosition(int cp_offset, |
| Label* on_outside_input) { |
| LoadCurrentCharacter(cp_offset, on_outside_input, true); |
| } |
| |
| bool RegExpMacroAssembler::CheckSpecialCharacterClass(uc16 type, |
| Label* on_no_match) { |
| return false; |
| } |
| |
| #ifndef V8_INTERPRETED_REGEXP // Avoid unused code, e.g., on ARM. |
| |
| NativeRegExpMacroAssembler::NativeRegExpMacroAssembler(Isolate* isolate, |
| Zone* zone) |
| : RegExpMacroAssembler(isolate, zone) {} |
| |
| |
| NativeRegExpMacroAssembler::~NativeRegExpMacroAssembler() { |
| } |
| |
| |
| bool NativeRegExpMacroAssembler::CanReadUnaligned() { |
| return FLAG_enable_regexp_unaligned_accesses && !slow_safe(); |
| } |
| |
| const byte* NativeRegExpMacroAssembler::StringCharacterPosition( |
| String* subject, |
| int start_index) { |
| if (subject->IsConsString()) { |
| subject = ConsString::cast(subject)->first(); |
| } else if (subject->IsSlicedString()) { |
| start_index += SlicedString::cast(subject)->offset(); |
| subject = SlicedString::cast(subject)->parent(); |
| } |
| if (subject->IsThinString()) { |
| subject = ThinString::cast(subject)->actual(); |
| } |
| DCHECK_LE(0, start_index); |
| DCHECK_LE(start_index, subject->length()); |
| if (subject->IsSeqOneByteString()) { |
| return reinterpret_cast<const byte*>( |
| SeqOneByteString::cast(subject)->GetChars() + start_index); |
| } else if (subject->IsSeqTwoByteString()) { |
| return reinterpret_cast<const byte*>( |
| SeqTwoByteString::cast(subject)->GetChars() + start_index); |
| } else if (subject->IsExternalOneByteString()) { |
| return reinterpret_cast<const byte*>( |
| ExternalOneByteString::cast(subject)->GetChars() + start_index); |
| } else { |
| DCHECK(subject->IsExternalTwoByteString()); |
| return reinterpret_cast<const byte*>( |
| ExternalTwoByteString::cast(subject)->GetChars() + start_index); |
| } |
| } |
| |
| |
| int NativeRegExpMacroAssembler::CheckStackGuardState( |
| Isolate* isolate, int start_index, bool is_direct_call, |
| Address* return_address, Code* re_code, String** subject, |
| const byte** input_start, const byte** input_end) { |
| DCHECK(re_code->instruction_start() <= *return_address); |
| DCHECK(*return_address <= re_code->instruction_end()); |
| int return_value = 0; |
| // Prepare for possible GC. |
| HandleScope handles(isolate); |
| Handle<Code> code_handle(re_code); |
| Handle<String> subject_handle(*subject); |
| bool is_one_byte = subject_handle->IsOneByteRepresentationUnderneath(); |
| |
| StackLimitCheck check(isolate); |
| bool js_has_overflowed = check.JsHasOverflowed(); |
| |
| if (is_direct_call) { |
| // Direct calls from JavaScript can be interrupted in two ways: |
| // 1. A real stack overflow, in which case we let the caller throw the |
| // exception. |
| // 2. The stack guard was used to interrupt execution for another purpose, |
| // forcing the call through the runtime system. |
| return_value = js_has_overflowed ? EXCEPTION : RETRY; |
| } else if (js_has_overflowed) { |
| isolate->StackOverflow(); |
| return_value = EXCEPTION; |
| } else { |
| Object* result = isolate->stack_guard()->HandleInterrupts(); |
| if (result->IsException(isolate)) return_value = EXCEPTION; |
| } |
| |
| DisallowHeapAllocation no_gc; |
| |
| if (*code_handle != re_code) { // Return address no longer valid |
| intptr_t delta = code_handle->address() - re_code->address(); |
| // Overwrite the return address on the stack. |
| *return_address += delta; |
| } |
| |
| // If we continue, we need to update the subject string addresses. |
| if (return_value == 0) { |
| // String encoding might have changed. |
| if (subject_handle->IsOneByteRepresentationUnderneath() != is_one_byte) { |
| // If we changed between an LATIN1 and an UC16 string, the specialized |
| // code cannot be used, and we need to restart regexp matching from |
| // scratch (including, potentially, compiling a new version of the code). |
| return_value = RETRY; |
| } else { |
| *subject = *subject_handle; |
| intptr_t byte_length = *input_end - *input_start; |
| *input_start = StringCharacterPosition(*subject, start_index); |
| *input_end = *input_start + byte_length; |
| } |
| } |
| return return_value; |
| } |
| |
| |
| NativeRegExpMacroAssembler::Result NativeRegExpMacroAssembler::Match( |
| Handle<Code> regexp_code, |
| Handle<String> subject, |
| int* offsets_vector, |
| int offsets_vector_length, |
| int previous_index, |
| Isolate* isolate) { |
| |
| DCHECK(subject->IsFlat()); |
| DCHECK_LE(0, previous_index); |
| DCHECK_LE(previous_index, subject->length()); |
| |
| // No allocations before calling the regexp, but we can't use |
| // DisallowHeapAllocation, since regexps might be preempted, and another |
| // thread might do allocation anyway. |
| |
| String* subject_ptr = *subject; |
| // Character offsets into string. |
| int start_offset = previous_index; |
| int char_length = subject_ptr->length() - start_offset; |
| int slice_offset = 0; |
| |
| // The string has been flattened, so if it is a cons string it contains the |
| // full string in the first part. |
| if (StringShape(subject_ptr).IsCons()) { |
| DCHECK_EQ(0, ConsString::cast(subject_ptr)->second()->length()); |
| subject_ptr = ConsString::cast(subject_ptr)->first(); |
| } else if (StringShape(subject_ptr).IsSliced()) { |
| SlicedString* slice = SlicedString::cast(subject_ptr); |
| subject_ptr = slice->parent(); |
| slice_offset = slice->offset(); |
| } |
| if (StringShape(subject_ptr).IsThin()) { |
| subject_ptr = ThinString::cast(subject_ptr)->actual(); |
| } |
| // Ensure that an underlying string has the same representation. |
| bool is_one_byte = subject_ptr->IsOneByteRepresentation(); |
| DCHECK(subject_ptr->IsExternalString() || subject_ptr->IsSeqString()); |
| // String is now either Sequential or External |
| int char_size_shift = is_one_byte ? 0 : 1; |
| |
| const byte* input_start = |
| StringCharacterPosition(subject_ptr, start_offset + slice_offset); |
| int byte_length = char_length << char_size_shift; |
| const byte* input_end = input_start + byte_length; |
| Result res = Execute(*regexp_code, |
| *subject, |
| start_offset, |
| input_start, |
| input_end, |
| offsets_vector, |
| offsets_vector_length, |
| isolate); |
| return res; |
| } |
| |
| |
| NativeRegExpMacroAssembler::Result NativeRegExpMacroAssembler::Execute( |
| Code* code, |
| String* input, // This needs to be the unpacked (sliced, cons) string. |
| int start_offset, |
| const byte* input_start, |
| const byte* input_end, |
| int* output, |
| int output_size, |
| Isolate* isolate) { |
| // Ensure that the minimum stack has been allocated. |
| RegExpStackScope stack_scope(isolate); |
| Address stack_base = stack_scope.stack()->stack_base(); |
| |
| int direct_call = 0; |
| |
| using RegexpMatcherSig = int( |
| String * input, int start_offset, // NOLINT(readability/casting) |
| const byte* input_start, const byte* input_end, int* output, |
| int output_size, Address stack_base, int direct_call, Isolate* isolate); |
| |
| auto fn = GeneratedCode<RegexpMatcherSig>::FromCode(code); |
| int result = fn.Call(input, start_offset, input_start, input_end, output, |
| output_size, stack_base, direct_call, isolate); |
| DCHECK(result >= RETRY); |
| |
| if (result == EXCEPTION && !isolate->has_pending_exception()) { |
| // We detected a stack overflow (on the backtrack stack) in RegExp code, |
| // but haven't created the exception yet. |
| isolate->StackOverflow(); |
| } |
| return static_cast<Result>(result); |
| } |
| |
| // clang-format off |
| const byte NativeRegExpMacroAssembler::word_character_map[] = { |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, // '0' - '7' |
| 0xFFu, 0xFFu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, // '8' - '9' |
| |
| 0x00u, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, // 'A' - 'G' |
| 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, // 'H' - 'O' |
| 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, // 'P' - 'W' |
| 0xFFu, 0xFFu, 0xFFu, 0x00u, 0x00u, 0x00u, 0x00u, 0xFFu, // 'X' - 'Z', '_' |
| |
| 0x00u, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, // 'a' - 'g' |
| 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, // 'h' - 'o' |
| 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, 0xFFu, // 'p' - 'w' |
| 0xFFu, 0xFFu, 0xFFu, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, // 'x' - 'z' |
| // Latin-1 range |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, 0x00u, |
| }; |
| // clang-format on |
| |
| Address NativeRegExpMacroAssembler::GrowStack(Address stack_pointer, |
| Address* stack_base, |
| Isolate* isolate) { |
| RegExpStack* regexp_stack = isolate->regexp_stack(); |
| size_t size = regexp_stack->stack_capacity(); |
| Address old_stack_base = regexp_stack->stack_base(); |
| DCHECK(old_stack_base == *stack_base); |
| DCHECK(stack_pointer <= old_stack_base); |
| DCHECK(static_cast<size_t>(old_stack_base - stack_pointer) <= size); |
| Address new_stack_base = regexp_stack->EnsureCapacity(size * 2); |
| if (new_stack_base == nullptr) { |
| return nullptr; |
| } |
| *stack_base = new_stack_base; |
| intptr_t stack_content_size = old_stack_base - stack_pointer; |
| return new_stack_base - stack_content_size; |
| } |
| |
| #endif // V8_INTERPRETED_REGEXP |
| |
| } // namespace internal |
| } // namespace v8 |