blob: 4108a8f5f6c0b954344e029cff7bb33cabe6ba4e [file] [log] [blame]
#include "precompiled.h"
//
// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Texture.cpp: Implements the gl::Texture class and its derived classes
// Texture2D and TextureCubeMap. Implements GL texture objects and related
// functionality. [OpenGL ES 2.0.24] section 3.7 page 63.
#include "libGLESv2/Texture.h"
#include "libGLESv2/main.h"
#include "libGLESv2/mathutil.h"
#include "libGLESv2/utilities.h"
#include "libGLESv2/Renderbuffer.h"
#include "libGLESv2/renderer/Image.h"
#include "libGLESv2/renderer/Renderer.h"
#include "libGLESv2/renderer/TextureStorage.h"
#include "libEGL/Surface.h"
namespace gl
{
#if defined(ANGLE_ENABLE_D3D11_STRICT)
// D3DFMT_UNKNOWN is only available when compiling with D3D9 so we'll
// define the value ourselves
#define D3DFMT_UNKNOWN 0
#endif
Texture::Texture(rx::Renderer *renderer, GLuint id) : RefCountObject(id)
{
mRenderer = renderer;
mSamplerState.minFilter = GL_NEAREST_MIPMAP_LINEAR;
mSamplerState.magFilter = GL_LINEAR;
mSamplerState.wrapS = GL_REPEAT;
mSamplerState.wrapT = GL_REPEAT;
mSamplerState.maxAnisotropy = 1.0f;
mSamplerState.lodOffset = 0;
mUsage = GL_NONE;
mDirtyImages = true;
mImmutable = false;
}
Texture::~Texture()
{
}
// Returns true on successful filter state update (valid enum parameter)
bool Texture::setMinFilter(GLenum filter)
{
switch (filter)
{
case GL_NEAREST:
case GL_LINEAR:
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
mSamplerState.minFilter = filter;
return true;
default:
return false;
}
}
// Returns true on successful filter state update (valid enum parameter)
bool Texture::setMagFilter(GLenum filter)
{
switch (filter)
{
case GL_NEAREST:
case GL_LINEAR:
mSamplerState.magFilter = filter;
return true;
default:
return false;
}
}
// Returns true on successful wrap state update (valid enum parameter)
bool Texture::setWrapS(GLenum wrap)
{
switch (wrap)
{
case GL_REPEAT:
case GL_CLAMP_TO_EDGE:
case GL_MIRRORED_REPEAT:
mSamplerState.wrapS = wrap;
return true;
default:
return false;
}
}
// Returns true on successful wrap state update (valid enum parameter)
bool Texture::setWrapT(GLenum wrap)
{
switch (wrap)
{
case GL_REPEAT:
case GL_CLAMP_TO_EDGE:
case GL_MIRRORED_REPEAT:
mSamplerState.wrapT = wrap;
return true;
default:
return false;
}
}
// Returns true on successful max anisotropy update (valid anisotropy value)
bool Texture::setMaxAnisotropy(float textureMaxAnisotropy, float contextMaxAnisotropy)
{
textureMaxAnisotropy = std::min(textureMaxAnisotropy, contextMaxAnisotropy);
if (textureMaxAnisotropy < 1.0f)
{
return false;
}
mSamplerState.maxAnisotropy = textureMaxAnisotropy;
return true;
}
// Returns true on successful usage state update (valid enum parameter)
bool Texture::setUsage(GLenum usage)
{
switch (usage)
{
case GL_NONE:
case GL_FRAMEBUFFER_ATTACHMENT_ANGLE:
mUsage = usage;
return true;
default:
return false;
}
}
GLenum Texture::getMinFilter() const
{
return mSamplerState.minFilter;
}
GLenum Texture::getMagFilter() const
{
return mSamplerState.magFilter;
}
GLenum Texture::getWrapS() const
{
return mSamplerState.wrapS;
}
GLenum Texture::getWrapT() const
{
return mSamplerState.wrapT;
}
float Texture::getMaxAnisotropy() const
{
return mSamplerState.maxAnisotropy;
}
int Texture::getLodOffset()
{
rx::TextureStorageInterface *texture = getStorage(false);
return texture ? texture->getLodOffset() : 0;
}
void Texture::getSamplerState(SamplerState *sampler)
{
*sampler = mSamplerState;
sampler->lodOffset = getLodOffset();
}
GLenum Texture::getUsage() const
{
return mUsage;
}
bool Texture::isMipmapFiltered() const
{
switch (mSamplerState.minFilter)
{
case GL_NEAREST:
case GL_LINEAR:
return false;
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_NEAREST:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_LINEAR:
return true;
default: UNREACHABLE();
return false;
}
}
void Texture::setImage(GLint unpackAlignment, const void *pixels, rx::Image *image)
{
if (pixels != NULL)
{
image->loadData(0, 0, image->getWidth(), image->getHeight(), unpackAlignment, pixels);
mDirtyImages = true;
}
}
void Texture::setCompressedImage(GLsizei imageSize, const void *pixels, rx::Image *image)
{
if (pixels != NULL)
{
image->loadCompressedData(0, 0, image->getWidth(), image->getHeight(), pixels);
mDirtyImages = true;
}
}
bool Texture::subImage(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels, rx::Image *image)
{
if (pixels != NULL)
{
image->loadData(xoffset, yoffset, width, height, unpackAlignment, pixels);
mDirtyImages = true;
}
return true;
}
bool Texture::subImageCompressed(GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels, rx::Image *image)
{
if (pixels != NULL)
{
image->loadCompressedData(xoffset, yoffset, width, height, pixels);
mDirtyImages = true;
}
return true;
}
rx::TextureStorageInterface *Texture::getNativeTexture()
{
// ensure the underlying texture is created
rx::TextureStorageInterface *storage = getStorage(false);
if (storage)
{
updateTexture();
}
return storage;
}
bool Texture::hasDirtyImages() const
{
return mDirtyImages;
}
void Texture::resetDirty()
{
mDirtyImages = false;
}
unsigned int Texture::getTextureSerial()
{
rx::TextureStorageInterface *texture = getStorage(false);
return texture ? texture->getTextureSerial() : 0;
}
unsigned int Texture::getRenderTargetSerial(GLenum target)
{
rx::TextureStorageInterface *texture = getStorage(true);
return texture ? texture->getRenderTargetSerial(target) : 0;
}
bool Texture::isImmutable() const
{
return mImmutable;
}
GLint Texture::creationLevels(GLsizei width, GLsizei height) const
{
if ((isPow2(width) && isPow2(height)) || mRenderer->getNonPower2TextureSupport())
{
return 0; // Maximum number of levels
}
else
{
// OpenGL ES 2.0 without GL_OES_texture_npot does not permit NPOT mipmaps.
return 1;
}
}
GLint Texture::creationLevels(GLsizei size) const
{
return creationLevels(size, size);
}
Texture2D::Texture2D(rx::Renderer *renderer, GLuint id) : Texture(renderer, id)
{
mTexStorage = NULL;
mSurface = NULL;
mColorbufferProxy = NULL;
mProxyRefs = 0;
for (int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++i)
{
mImageArray[i] = renderer->createImage();
}
}
Texture2D::~Texture2D()
{
mColorbufferProxy = NULL;
delete mTexStorage;
mTexStorage = NULL;
if (mSurface)
{
mSurface->setBoundTexture(NULL);
mSurface = NULL;
}
for (int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++i)
{
delete mImageArray[i];
}
}
// We need to maintain a count of references to renderbuffers acting as
// proxies for this texture, so that we do not attempt to use a pointer
// to a renderbuffer proxy which has been deleted.
void Texture2D::addProxyRef(const Renderbuffer *proxy)
{
mProxyRefs++;
}
void Texture2D::releaseProxy(const Renderbuffer *proxy)
{
if (mProxyRefs > 0)
mProxyRefs--;
if (mProxyRefs == 0)
mColorbufferProxy = NULL;
}
GLenum Texture2D::getTarget() const
{
return GL_TEXTURE_2D;
}
GLsizei Texture2D::getWidth(GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level]->getWidth();
else
return 0;
}
GLsizei Texture2D::getHeight(GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level]->getHeight();
else
return 0;
}
GLenum Texture2D::getInternalFormat(GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level]->getInternalFormat();
else
return GL_NONE;
}
GLenum Texture2D::getActualFormat(GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[level]->getActualFormat();
else
return D3DFMT_UNKNOWN;
}
void Texture2D::redefineImage(GLint level, GLint internalformat, GLsizei width, GLsizei height)
{
releaseTexImage();
// If there currently is a corresponding storage texture image, it has these parameters
const int storageWidth = std::max(1, mImageArray[0]->getWidth() >> level);
const int storageHeight = std::max(1, mImageArray[0]->getHeight() >> level);
const int storageFormat = mImageArray[0]->getInternalFormat();
mImageArray[level]->redefine(mRenderer, internalformat, width, height, false);
if (mTexStorage)
{
const int storageLevels = mTexStorage->levelCount();
if ((level >= storageLevels && storageLevels != 0) ||
width != storageWidth ||
height != storageHeight ||
internalformat != storageFormat) // Discard mismatched storage
{
for (int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
mImageArray[i]->markDirty();
}
delete mTexStorage;
mTexStorage = NULL;
mDirtyImages = true;
}
}
}
#if defined(__LB_XB360__)
void Texture2D::adoptStorage(GLenum internalformat, GLsizei width, GLsizei height, rx::TextureStorage *storage)
{
ASSERT(storage != NULL);
delete mTexStorage;
mTexStorage = new rx::TextureStorageInterface2D(storage);
mImmutable = true;
int levels = mTexStorage->levelCount();
ASSERT(levels == 1);
// TODO: Avoid allocating these images.
for (int level = 0; level < levels; level++)
{
mImageArray[level]->redefine(mRenderer, internalformat, width, height, true);
width = std::max(1, width >> 1);
height = std::max(1, height >> 1);
}
for (int level = levels; level < IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
mImageArray[level]->redefine(mRenderer, GL_NONE, 0, 0, true);
}
if (mTexStorage->isManaged())
{
int levels = levelCount();
for (int level = 0; level < levels; level++)
{
mImageArray[level]->setManagedSurface(mTexStorage, level);
}
}
}
#endif
void Texture2D::setImage(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
GLint internalformat = ConvertSizedInternalFormat(format, type);
redefineImage(level, internalformat, width, height);
Texture::setImage(unpackAlignment, pixels, mImageArray[level]);
}
void Texture2D::bindTexImage(egl::Surface *surface)
{
releaseTexImage();
GLint internalformat = surface->getFormat();
mImageArray[0]->redefine(mRenderer, internalformat, surface->getWidth(), surface->getHeight(), true);
delete mTexStorage;
mTexStorage = new rx::TextureStorageInterface2D(mRenderer, surface->getSwapChain());
mDirtyImages = true;
mSurface = surface;
mSurface->setBoundTexture(this);
}
void Texture2D::releaseTexImage()
{
if (mSurface)
{
mSurface->setBoundTexture(NULL);
mSurface = NULL;
if (mTexStorage)
{
delete mTexStorage;
mTexStorage = NULL;
}
for (int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
mImageArray[i]->redefine(mRenderer, GL_NONE, 0, 0, true);
}
}
}
void Texture2D::setCompressedImage(GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei imageSize, const void *pixels)
{
// compressed formats don't have separate sized internal formats-- we can just use the compressed format directly
redefineImage(level, format, width, height);
Texture::setCompressedImage(imageSize, pixels, mImageArray[level]);
}
void Texture2D::commitRect(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height)
{
if (level < levelCount())
{
rx::Image *image = mImageArray[level];
if (image->updateSurface(mTexStorage, level, xoffset, yoffset, width, height))
{
image->markClean();
}
}
}
void Texture2D::subImage(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
if (Texture::subImage(xoffset, yoffset, width, height, format, type, unpackAlignment, pixels, mImageArray[level]))
{
commitRect(level, xoffset, yoffset, width, height);
}
}
void Texture2D::subImageCompressed(GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels)
{
if (Texture::subImageCompressed(xoffset, yoffset, width, height, format, imageSize, pixels, mImageArray[level]))
{
commitRect(level, xoffset, yoffset, width, height);
}
}
void Texture2D::copyImage(GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source)
{
GLint internalformat = ConvertSizedInternalFormat(format, GL_UNSIGNED_BYTE);
redefineImage(level, internalformat, width, height);
if (!mImageArray[level]->isRenderableFormat())
{
mImageArray[level]->copy(0, 0, x, y, width, height, source);
mDirtyImages = true;
}
else
{
if (!mTexStorage || !mTexStorage->isRenderTarget())
{
convertToRenderTarget();
}
mImageArray[level]->markClean();
if (width != 0 && height != 0 && level < levelCount())
{
gl::Rectangle sourceRect;
sourceRect.x = x;
sourceRect.width = width;
sourceRect.y = y;
sourceRect.height = height;
mRenderer->copyImage(source, sourceRect, format, 0, 0, mTexStorage, level);
}
}
}
void Texture2D::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source)
{
if (xoffset + width > mImageArray[level]->getWidth() || yoffset + height > mImageArray[level]->getHeight())
{
return gl::error(GL_INVALID_VALUE);
}
if (!mImageArray[level]->isRenderableFormat() || (!mTexStorage && !isSamplerComplete()))
{
mImageArray[level]->copy(xoffset, yoffset, x, y, width, height, source);
mDirtyImages = true;
}
else
{
if (!mTexStorage || !mTexStorage->isRenderTarget())
{
convertToRenderTarget();
}
updateTexture();
if (level < levelCount())
{
gl::Rectangle sourceRect;
sourceRect.x = x;
sourceRect.width = width;
sourceRect.y = y;
sourceRect.height = height;
mRenderer->copyImage(source, sourceRect,
gl::ExtractFormat(mImageArray[0]->getInternalFormat()),
xoffset, yoffset, mTexStorage, level);
}
}
}
void Texture2D::storage(GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height)
{
delete mTexStorage;
mTexStorage = new rx::TextureStorageInterface2D(mRenderer, levels, internalformat, mUsage, false, width, height);
mImmutable = true;
for (int level = 0; level < levels; level++)
{
mImageArray[level]->redefine(mRenderer, internalformat, width, height, true);
width = std::max(1, width >> 1);
height = std::max(1, height >> 1);
}
for (int level = levels; level < IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
mImageArray[level]->redefine(mRenderer, GL_NONE, 0, 0, true);
}
if (mTexStorage->isManaged())
{
int levels = levelCount();
for (int level = 0; level < levels; level++)
{
mImageArray[level]->setManagedSurface(mTexStorage, level);
}
}
}
// Tests for 2D texture sampling completeness. [OpenGL ES 2.0.24] section 3.8.2 page 85.
bool Texture2D::isSamplerComplete() const
{
GLsizei width = mImageArray[0]->getWidth();
GLsizei height = mImageArray[0]->getHeight();
if (width <= 0 || height <= 0)
{
return false;
}
bool mipmapping = isMipmapFiltered();
bool filtering, renderable;
if ((IsFloat32Format(getInternalFormat(0)) && !mRenderer->getFloat32TextureSupport(&filtering, &renderable)) ||
(IsFloat16Format(getInternalFormat(0)) && !mRenderer->getFloat16TextureSupport(&filtering, &renderable)))
{
if (mSamplerState.magFilter != GL_NEAREST ||
(mSamplerState.minFilter != GL_NEAREST && mSamplerState.minFilter != GL_NEAREST_MIPMAP_NEAREST))
{
return false;
}
}
bool npotSupport = mRenderer->getNonPower2TextureSupport();
if (!npotSupport)
{
if ((mSamplerState.wrapS != GL_CLAMP_TO_EDGE && !isPow2(width)) ||
(mSamplerState.wrapT != GL_CLAMP_TO_EDGE && !isPow2(height)))
{
return false;
}
}
if (mipmapping)
{
if (!npotSupport)
{
if (!isPow2(width) || !isPow2(height))
{
return false;
}
}
if (!isMipmapComplete())
{
return false;
}
}
return true;
}
// Tests for 2D texture (mipmap) completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81.
bool Texture2D::isMipmapComplete() const
{
if (isImmutable())
{
return true;
}
GLsizei width = mImageArray[0]->getWidth();
GLsizei height = mImageArray[0]->getHeight();
if (width <= 0 || height <= 0)
{
return false;
}
int q = log2(std::max(width, height));
for (int level = 1; level <= q; level++)
{
if (mImageArray[level]->getInternalFormat() != mImageArray[0]->getInternalFormat())
{
return false;
}
if (mImageArray[level]->getWidth() != std::max(1, width >> level))
{
return false;
}
if (mImageArray[level]->getHeight() != std::max(1, height >> level))
{
return false;
}
}
return true;
}
bool Texture2D::isCompressed(GLint level) const
{
return IsCompressed(getInternalFormat(level));
}
bool Texture2D::isDepth(GLint level) const
{
return IsDepthTexture(getInternalFormat(level));
}
// Constructs a native texture resource from the texture images
void Texture2D::createTexture()
{
GLsizei width = mImageArray[0]->getWidth();
GLsizei height = mImageArray[0]->getHeight();
if (!(width > 0 && height > 0))
return; // do not attempt to create native textures for nonexistant data
GLint levels = creationLevels(width, height);
GLenum internalformat = mImageArray[0]->getInternalFormat();
delete mTexStorage;
mTexStorage = new rx::TextureStorageInterface2D(mRenderer, levels, internalformat, mUsage, false, width, height);
if (mTexStorage->isManaged())
{
int levels = levelCount();
for (int level = 0; level < levels; level++)
{
mImageArray[level]->setManagedSurface(mTexStorage, level);
}
}
mDirtyImages = true;
}
void Texture2D::updateTexture()
{
bool mipmapping = (isMipmapFiltered() && isMipmapComplete());
int levels = (mipmapping ? levelCount() : 1);
for (int level = 0; level < levels; level++)
{
rx::Image *image = mImageArray[level];
if (image->isDirty())
{
commitRect(level, 0, 0, mImageArray[level]->getWidth(), mImageArray[level]->getHeight());
}
}
}
void Texture2D::convertToRenderTarget()
{
rx::TextureStorageInterface2D *newTexStorage = NULL;
if (mImageArray[0]->getWidth() != 0 && mImageArray[0]->getHeight() != 0)
{
GLsizei width = mImageArray[0]->getWidth();
GLsizei height = mImageArray[0]->getHeight();
GLint levels = mTexStorage != NULL ? mTexStorage->levelCount() : creationLevels(width, height);
GLenum internalformat = mImageArray[0]->getInternalFormat();
newTexStorage = new rx::TextureStorageInterface2D(mRenderer, levels, internalformat, GL_FRAMEBUFFER_ATTACHMENT_ANGLE, true, width, height);
if (mTexStorage != NULL)
{
if (!mRenderer->copyToRenderTarget(newTexStorage, mTexStorage))
{
delete newTexStorage;
return gl::error(GL_OUT_OF_MEMORY);
}
}
}
delete mTexStorage;
mTexStorage = newTexStorage;
mDirtyImages = true;
}
void Texture2D::generateMipmaps()
{
if (!mRenderer->getNonPower2TextureSupport())
{
if (!isPow2(mImageArray[0]->getWidth()) || !isPow2(mImageArray[0]->getHeight()))
{
return gl::error(GL_INVALID_OPERATION);
}
}
// Purge array levels 1 through q and reset them to represent the generated mipmap levels.
unsigned int q = log2(std::max(mImageArray[0]->getWidth(), mImageArray[0]->getHeight()));
for (unsigned int i = 1; i <= q; i++)
{
redefineImage(i, mImageArray[0]->getInternalFormat(),
std::max(mImageArray[0]->getWidth() >> i, 1),
std::max(mImageArray[0]->getHeight() >> i, 1));
}
if (mTexStorage && mTexStorage->isRenderTarget())
{
for (unsigned int i = 1; i <= q; i++)
{
mTexStorage->generateMipmap(i);
mImageArray[i]->markClean();
}
}
else
{
for (unsigned int i = 1; i <= q; i++)
{
mRenderer->generateMipmap(mImageArray[i], mImageArray[i - 1]);
}
}
}
Renderbuffer *Texture2D::getRenderbuffer(GLenum target)
{
if (target != GL_TEXTURE_2D)
{
return gl::error(GL_INVALID_OPERATION, (Renderbuffer *)NULL);
}
if (mColorbufferProxy == NULL)
{
mColorbufferProxy = new Renderbuffer(mRenderer, id(), new RenderbufferTexture2D(this, target));
}
return mColorbufferProxy;
}
rx::RenderTarget *Texture2D::getRenderTarget(GLenum target)
{
ASSERT(target == GL_TEXTURE_2D);
// ensure the underlying texture is created
if (getStorage(true) == NULL)
{
return NULL;
}
updateTexture();
// ensure this is NOT a depth texture
if (isDepth(0))
{
return NULL;
}
return mTexStorage->getRenderTarget();
}
rx::RenderTarget *Texture2D::getDepthStencil(GLenum target)
{
ASSERT(target == GL_TEXTURE_2D);
// ensure the underlying texture is created
if (getStorage(true) == NULL)
{
return NULL;
}
updateTexture();
// ensure this is actually a depth texture
if (!isDepth(0))
{
return NULL;
}
return mTexStorage->getRenderTarget();
}
int Texture2D::levelCount()
{
return mTexStorage ? mTexStorage->levelCount() : 0;
}
rx::TextureStorageInterface *Texture2D::getStorage(bool renderTarget)
{
if (!mTexStorage || (renderTarget && !mTexStorage->isRenderTarget()))
{
if (renderTarget)
{
convertToRenderTarget();
}
else
{
createTexture();
}
}
return mTexStorage;
}
TextureCubeMap::TextureCubeMap(rx::Renderer *renderer, GLuint id) : Texture(renderer, id)
{
mTexStorage = NULL;
for (int i = 0; i < 6; i++)
{
mFaceProxies[i] = NULL;
mFaceProxyRefs[i] = 0;
for (int j = 0; j < IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++j)
{
mImageArray[i][j] = renderer->createImage();
}
}
}
TextureCubeMap::~TextureCubeMap()
{
for (int i = 0; i < 6; i++)
{
mFaceProxies[i] = NULL;
for (int j = 0; j < IMPLEMENTATION_MAX_TEXTURE_LEVELS; ++j)
{
delete mImageArray[i][j];
}
}
delete mTexStorage;
mTexStorage = NULL;
}
// We need to maintain a count of references to renderbuffers acting as
// proxies for this texture, so that the texture is not deleted while
// proxy references still exist. If the reference count drops to zero,
// we set our proxy pointer NULL, so that a new attempt at referencing
// will cause recreation.
void TextureCubeMap::addProxyRef(const Renderbuffer *proxy)
{
for (int i = 0; i < 6; i++)
{
if (mFaceProxies[i] == proxy)
mFaceProxyRefs[i]++;
}
}
void TextureCubeMap::releaseProxy(const Renderbuffer *proxy)
{
for (int i = 0; i < 6; i++)
{
if (mFaceProxies[i] == proxy)
{
if (mFaceProxyRefs[i] > 0)
mFaceProxyRefs[i]--;
if (mFaceProxyRefs[i] == 0)
mFaceProxies[i] = NULL;
}
}
}
GLenum TextureCubeMap::getTarget() const
{
return GL_TEXTURE_CUBE_MAP;
}
GLsizei TextureCubeMap::getWidth(GLenum target, GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[faceIndex(target)][level]->getWidth();
else
return 0;
}
GLsizei TextureCubeMap::getHeight(GLenum target, GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[faceIndex(target)][level]->getHeight();
else
return 0;
}
GLenum TextureCubeMap::getInternalFormat(GLenum target, GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[faceIndex(target)][level]->getInternalFormat();
else
return GL_NONE;
}
GLenum TextureCubeMap::getActualFormat(GLenum target, GLint level) const
{
if (level < IMPLEMENTATION_MAX_TEXTURE_LEVELS)
return mImageArray[faceIndex(target)][level]->getActualFormat();
else
return D3DFMT_UNKNOWN;
}
void TextureCubeMap::setImagePosX(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(0, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setImageNegX(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(1, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setImagePosY(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(2, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setImageNegY(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(3, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setImagePosZ(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(4, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setImageNegZ(GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
setImage(5, level, width, height, format, type, unpackAlignment, pixels);
}
void TextureCubeMap::setCompressedImage(GLenum face, GLint level, GLenum format, GLsizei width, GLsizei height, GLsizei imageSize, const void *pixels)
{
// compressed formats don't have separate sized internal formats-- we can just use the compressed format directly
redefineImage(faceIndex(face), level, format, width, height);
Texture::setCompressedImage(imageSize, pixels, mImageArray[faceIndex(face)][level]);
}
void TextureCubeMap::commitRect(int face, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height)
{
if (level < levelCount())
{
rx::Image *image = mImageArray[face][level];
if (image->updateSurface(mTexStorage, face, level, xoffset, yoffset, width, height))
image->markClean();
}
}
void TextureCubeMap::subImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
if (Texture::subImage(xoffset, yoffset, width, height, format, type, unpackAlignment, pixels, mImageArray[faceIndex(target)][level]))
{
commitRect(faceIndex(target), level, xoffset, yoffset, width, height);
}
}
void TextureCubeMap::subImageCompressed(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLsizei imageSize, const void *pixels)
{
if (Texture::subImageCompressed(xoffset, yoffset, width, height, format, imageSize, pixels, mImageArray[faceIndex(target)][level]))
{
commitRect(faceIndex(target), level, xoffset, yoffset, width, height);
}
}
// Tests for cube map sampling completeness. [OpenGL ES 2.0.24] section 3.8.2 page 86.
bool TextureCubeMap::isSamplerComplete() const
{
int size = mImageArray[0][0]->getWidth();
bool mipmapping = isMipmapFiltered();
bool filtering, renderable;
if ((gl::ExtractType(getInternalFormat(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0)) == GL_FLOAT && !mRenderer->getFloat32TextureSupport(&filtering, &renderable)) ||
(gl::ExtractType(getInternalFormat(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0) == GL_HALF_FLOAT_OES) && !mRenderer->getFloat16TextureSupport(&filtering, &renderable)))
{
if (mSamplerState.magFilter != GL_NEAREST ||
(mSamplerState.minFilter != GL_NEAREST && mSamplerState.minFilter != GL_NEAREST_MIPMAP_NEAREST))
{
return false;
}
}
if (!isPow2(size) && !mRenderer->getNonPower2TextureSupport())
{
if (mSamplerState.wrapS != GL_CLAMP_TO_EDGE || mSamplerState.wrapT != GL_CLAMP_TO_EDGE || mipmapping)
{
return false;
}
}
if (!mipmapping)
{
if (!isCubeComplete())
{
return false;
}
}
else
{
if (!isMipmapCubeComplete()) // Also tests for isCubeComplete()
{
return false;
}
}
return true;
}
// Tests for cube texture completeness. [OpenGL ES 2.0.24] section 3.7.10 page 81.
bool TextureCubeMap::isCubeComplete() const
{
if (mImageArray[0][0]->getWidth() <= 0 || mImageArray[0][0]->getHeight() != mImageArray[0][0]->getWidth())
{
return false;
}
for (unsigned int face = 1; face < 6; face++)
{
if (mImageArray[face][0]->getWidth() != mImageArray[0][0]->getWidth() ||
mImageArray[face][0]->getWidth() != mImageArray[0][0]->getHeight() ||
mImageArray[face][0]->getInternalFormat() != mImageArray[0][0]->getInternalFormat())
{
return false;
}
}
return true;
}
bool TextureCubeMap::isMipmapCubeComplete() const
{
if (isImmutable())
{
return true;
}
if (!isCubeComplete())
{
return false;
}
GLsizei size = mImageArray[0][0]->getWidth();
int q = log2(size);
for (int face = 0; face < 6; face++)
{
for (int level = 1; level <= q; level++)
{
if (mImageArray[face][level]->getInternalFormat() != mImageArray[0][0]->getInternalFormat())
{
return false;
}
if (mImageArray[face][level]->getWidth() != std::max(1, size >> level))
{
return false;
}
}
}
return true;
}
bool TextureCubeMap::isCompressed(GLenum target, GLint level) const
{
return IsCompressed(getInternalFormat(target, level));
}
// Constructs a native texture resource from the texture images, or returns an existing one
void TextureCubeMap::createTexture()
{
GLsizei size = mImageArray[0][0]->getWidth();
if (!(size > 0))
return; // do not attempt to create native textures for nonexistant data
GLint levels = creationLevels(size);
GLenum internalformat = mImageArray[0][0]->getInternalFormat();
delete mTexStorage;
mTexStorage = new rx::TextureStorageInterfaceCube(mRenderer, levels, internalformat, mUsage, false, size);
if (mTexStorage->isManaged())
{
int levels = levelCount();
for (int face = 0; face < 6; face++)
{
for (int level = 0; level < levels; level++)
{
mImageArray[face][level]->setManagedSurface(mTexStorage, face, level);
}
}
}
mDirtyImages = true;
}
void TextureCubeMap::updateTexture()
{
bool mipmapping = isMipmapFiltered() && isMipmapCubeComplete();
for (int face = 0; face < 6; face++)
{
int levels = (mipmapping ? levelCount() : 1);
for (int level = 0; level < levels; level++)
{
rx::Image *image = mImageArray[face][level];
if (image->isDirty())
{
commitRect(face, level, 0, 0, image->getWidth(), image->getHeight());
}
}
}
}
void TextureCubeMap::convertToRenderTarget()
{
rx::TextureStorageInterfaceCube *newTexStorage = NULL;
if (mImageArray[0][0]->getWidth() != 0)
{
GLsizei size = mImageArray[0][0]->getWidth();
GLint levels = mTexStorage != NULL ? mTexStorage->levelCount() : creationLevels(size);
GLenum internalformat = mImageArray[0][0]->getInternalFormat();
newTexStorage = new rx::TextureStorageInterfaceCube(mRenderer, levels, internalformat, GL_FRAMEBUFFER_ATTACHMENT_ANGLE, true, size);
if (mTexStorage != NULL)
{
if (!mRenderer->copyToRenderTarget(newTexStorage, mTexStorage))
{
delete newTexStorage;
return gl::error(GL_OUT_OF_MEMORY);
}
}
}
delete mTexStorage;
mTexStorage = newTexStorage;
mDirtyImages = true;
}
void TextureCubeMap::setImage(int faceIndex, GLint level, GLsizei width, GLsizei height, GLenum format, GLenum type, GLint unpackAlignment, const void *pixels)
{
GLint internalformat = ConvertSizedInternalFormat(format, type);
redefineImage(faceIndex, level, internalformat, width, height);
Texture::setImage(unpackAlignment, pixels, mImageArray[faceIndex][level]);
}
unsigned int TextureCubeMap::faceIndex(GLenum face)
{
META_ASSERT(GL_TEXTURE_CUBE_MAP_NEGATIVE_X - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 1);
META_ASSERT(GL_TEXTURE_CUBE_MAP_POSITIVE_Y - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 2);
META_ASSERT(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 3);
META_ASSERT(GL_TEXTURE_CUBE_MAP_POSITIVE_Z - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 4);
META_ASSERT(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z - GL_TEXTURE_CUBE_MAP_POSITIVE_X == 5);
return face - GL_TEXTURE_CUBE_MAP_POSITIVE_X;
}
void TextureCubeMap::redefineImage(int face, GLint level, GLint internalformat, GLsizei width, GLsizei height)
{
// If there currently is a corresponding storage texture image, it has these parameters
const int storageWidth = std::max(1, mImageArray[0][0]->getWidth() >> level);
const int storageHeight = std::max(1, mImageArray[0][0]->getHeight() >> level);
const int storageFormat = mImageArray[0][0]->getInternalFormat();
mImageArray[face][level]->redefine(mRenderer, internalformat, width, height, false);
if (mTexStorage)
{
const int storageLevels = mTexStorage->levelCount();
if ((level >= storageLevels && storageLevels != 0) ||
width != storageWidth ||
height != storageHeight ||
internalformat != storageFormat) // Discard mismatched storage
{
for (int i = 0; i < IMPLEMENTATION_MAX_TEXTURE_LEVELS; i++)
{
for (int f = 0; f < 6; f++)
{
mImageArray[f][i]->markDirty();
}
}
delete mTexStorage;
mTexStorage = NULL;
mDirtyImages = true;
}
}
}
void TextureCubeMap::copyImage(GLenum target, GLint level, GLenum format, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source)
{
unsigned int faceindex = faceIndex(target);
GLint internalformat = gl::ConvertSizedInternalFormat(format, GL_UNSIGNED_BYTE);
redefineImage(faceindex, level, internalformat, width, height);
if (!mImageArray[faceindex][level]->isRenderableFormat())
{
mImageArray[faceindex][level]->copy(0, 0, x, y, width, height, source);
mDirtyImages = true;
}
else
{
if (!mTexStorage || !mTexStorage->isRenderTarget())
{
convertToRenderTarget();
}
mImageArray[faceindex][level]->markClean();
ASSERT(width == height);
if (width > 0 && level < levelCount())
{
gl::Rectangle sourceRect;
sourceRect.x = x;
sourceRect.width = width;
sourceRect.y = y;
sourceRect.height = height;
mRenderer->copyImage(source, sourceRect, format, 0, 0, mTexStorage, target, level);
}
}
}
void TextureCubeMap::copySubImage(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint x, GLint y, GLsizei width, GLsizei height, Framebuffer *source)
{
GLsizei size = mImageArray[faceIndex(target)][level]->getWidth();
if (xoffset + width > size || yoffset + height > size)
{
return gl::error(GL_INVALID_VALUE);
}
unsigned int faceindex = faceIndex(target);
if (!mImageArray[faceindex][level]->isRenderableFormat() || (!mTexStorage && !isSamplerComplete()))
{
mImageArray[faceindex][level]->copy(0, 0, x, y, width, height, source);
mDirtyImages = true;
}
else
{
if (!mTexStorage || !mTexStorage->isRenderTarget())
{
convertToRenderTarget();
}
updateTexture();
if (level < levelCount())
{
gl::Rectangle sourceRect;
sourceRect.x = x;
sourceRect.width = width;
sourceRect.y = y;
sourceRect.height = height;
mRenderer->copyImage(source, sourceRect, gl::ExtractFormat(mImageArray[0][0]->getInternalFormat()),
xoffset, yoffset, mTexStorage, target, level);
}
}
}
void TextureCubeMap::storage(GLsizei levels, GLenum internalformat, GLsizei size)
{
delete mTexStorage;
mTexStorage = new rx::TextureStorageInterfaceCube(mRenderer, levels, internalformat, mUsage, false, size);
mImmutable = true;
for (int level = 0; level < levels; level++)
{
for (int face = 0; face < 6; face++)
{
mImageArray[face][level]->redefine(mRenderer, internalformat, size, size, true);
size = std::max(1, size >> 1);
}
}
for (int level = levels; level < IMPLEMENTATION_MAX_TEXTURE_LEVELS; level++)
{
for (int face = 0; face < 6; face++)
{
mImageArray[face][level]->redefine(mRenderer, GL_NONE, 0, 0, true);
}
}
if (mTexStorage->isManaged())
{
int levels = levelCount();
for (int face = 0; face < 6; face++)
{
for (int level = 0; level < levels; level++)
{
mImageArray[face][level]->setManagedSurface(mTexStorage, face, level);
}
}
}
}
void TextureCubeMap::generateMipmaps()
{
if (!isCubeComplete())
{
return gl::error(GL_INVALID_OPERATION);
}
if (!mRenderer->getNonPower2TextureSupport())
{
if (!isPow2(mImageArray[0][0]->getWidth()))
{
return gl::error(GL_INVALID_OPERATION);
}
}
// Purge array levels 1 through q and reset them to represent the generated mipmap levels.
unsigned int q = log2(mImageArray[0][0]->getWidth());
for (unsigned int f = 0; f < 6; f++)
{
for (unsigned int i = 1; i <= q; i++)
{
redefineImage(f, i, mImageArray[f][0]->getInternalFormat(),
std::max(mImageArray[f][0]->getWidth() >> i, 1),
std::max(mImageArray[f][0]->getWidth() >> i, 1));
}
}
if (mTexStorage && mTexStorage->isRenderTarget())
{
for (unsigned int f = 0; f < 6; f++)
{
for (unsigned int i = 1; i <= q; i++)
{
mTexStorage->generateMipmap(f, i);
mImageArray[f][i]->markClean();
}
}
}
else
{
for (unsigned int f = 0; f < 6; f++)
{
for (unsigned int i = 1; i <= q; i++)
{
mRenderer->generateMipmap(mImageArray[f][i], mImageArray[f][i - 1]);
}
}
}
}
Renderbuffer *TextureCubeMap::getRenderbuffer(GLenum target)
{
if (!IsCubemapTextureTarget(target))
{
return gl::error(GL_INVALID_OPERATION, (Renderbuffer *)NULL);
}
unsigned int face = faceIndex(target);
if (mFaceProxies[face] == NULL)
{
mFaceProxies[face] = new Renderbuffer(mRenderer, id(), new RenderbufferTextureCubeMap(this, target));
}
return mFaceProxies[face];
}
rx::RenderTarget *TextureCubeMap::getRenderTarget(GLenum target)
{
ASSERT(IsCubemapTextureTarget(target));
// ensure the underlying texture is created
if (getStorage(true) == NULL)
{
return NULL;
}
updateTexture();
return mTexStorage->getRenderTarget(target);
}
int TextureCubeMap::levelCount()
{
return mTexStorage ? mTexStorage->levelCount() - getLodOffset() : 0;
}
rx::TextureStorageInterface *TextureCubeMap::getStorage(bool renderTarget)
{
if (!mTexStorage || (renderTarget && !mTexStorage->isRenderTarget()))
{
if (renderTarget)
{
convertToRenderTarget();
}
else
{
createTexture();
}
}
return mTexStorage;
}
}