blob: 0687e6ef3b5c4984068208acf46a7fd45e47039d [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/audio/pulse/pulse_output.h"
#include <pulse/pulseaudio.h>
#include "base/message_loop.h"
#include "media/audio/audio_manager_base.h"
#include "media/audio/audio_parameters.h"
#include "media/audio/audio_util.h"
namespace media {
// A helper class that acquires pa_threaded_mainloop_lock() while in scope.
class AutoPulseLock {
public:
explicit AutoPulseLock(pa_threaded_mainloop* pa_mainloop)
: pa_mainloop_(pa_mainloop) {
pa_threaded_mainloop_lock(pa_mainloop_);
}
~AutoPulseLock() {
pa_threaded_mainloop_unlock(pa_mainloop_);
}
private:
pa_threaded_mainloop* pa_mainloop_;
DISALLOW_COPY_AND_ASSIGN(AutoPulseLock);
};
static pa_sample_format_t BitsToPASampleFormat(int bits_per_sample) {
switch (bits_per_sample) {
case 8:
return PA_SAMPLE_U8;
case 16:
return PA_SAMPLE_S16LE;
case 24:
return PA_SAMPLE_S24LE;
case 32:
return PA_SAMPLE_S32LE;
default:
NOTREACHED() << "Invalid bits per sample: " << bits_per_sample;
return PA_SAMPLE_INVALID;
}
}
static pa_channel_position ChromiumToPAChannelPosition(Channels channel) {
switch (channel) {
// PulseAudio does not differentiate between left/right and
// stereo-left/stereo-right, both translate to front-left/front-right.
case LEFT:
return PA_CHANNEL_POSITION_FRONT_LEFT;
case RIGHT:
return PA_CHANNEL_POSITION_FRONT_RIGHT;
case CENTER:
return PA_CHANNEL_POSITION_FRONT_CENTER;
case LFE:
return PA_CHANNEL_POSITION_LFE;
case BACK_LEFT:
return PA_CHANNEL_POSITION_REAR_LEFT;
case BACK_RIGHT:
return PA_CHANNEL_POSITION_REAR_RIGHT;
case LEFT_OF_CENTER:
return PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER;
case RIGHT_OF_CENTER:
return PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER;
case BACK_CENTER:
return PA_CHANNEL_POSITION_REAR_CENTER;
case SIDE_LEFT:
return PA_CHANNEL_POSITION_SIDE_LEFT;
case SIDE_RIGHT:
return PA_CHANNEL_POSITION_SIDE_RIGHT;
case CHANNELS_MAX:
return PA_CHANNEL_POSITION_INVALID;
default:
NOTREACHED() << "Invalid channel: " << channel;
return PA_CHANNEL_POSITION_INVALID;
}
}
static pa_channel_map ChannelLayoutToPAChannelMap(
ChannelLayout channel_layout) {
pa_channel_map channel_map;
pa_channel_map_init(&channel_map);
channel_map.channels = ChannelLayoutToChannelCount(channel_layout);
for (Channels ch = LEFT; ch < CHANNELS_MAX;
ch = static_cast<Channels>(ch + 1)) {
int channel_index = ChannelOrder(channel_layout, ch);
if (channel_index < 0)
continue;
channel_map.map[channel_index] = ChromiumToPAChannelPosition(ch);
}
return channel_map;
}
// static, pa_context_notify_cb
void PulseAudioOutputStream::ContextNotifyCallback(pa_context* c,
void* p_this) {
PulseAudioOutputStream* stream = static_cast<PulseAudioOutputStream*>(p_this);
// Forward unexpected failures to the AudioSourceCallback if available. All
// these variables are only modified under pa_threaded_mainloop_lock() so this
// should be thread safe.
if (c && stream->source_callback_ &&
pa_context_get_state(c) == PA_CONTEXT_FAILED) {
stream->source_callback_->OnError(stream, pa_context_errno(c));
}
pa_threaded_mainloop_signal(stream->pa_mainloop_, 0);
}
// static, pa_stream_notify_cb
void PulseAudioOutputStream::StreamNotifyCallback(pa_stream* s, void* p_this) {
PulseAudioOutputStream* stream = static_cast<PulseAudioOutputStream*>(p_this);
// Forward unexpected failures to the AudioSourceCallback if available. All
// these variables are only modified under pa_threaded_mainloop_lock() so this
// should be thread safe.
if (s && stream->source_callback_ &&
pa_stream_get_state(s) == PA_STREAM_FAILED) {
stream->source_callback_->OnError(
stream, pa_context_errno(stream->pa_context_));
}
pa_threaded_mainloop_signal(stream->pa_mainloop_, 0);
}
// static, pa_stream_success_cb_t
void PulseAudioOutputStream::StreamSuccessCallback(pa_stream* s, int success,
void* p_this) {
PulseAudioOutputStream* stream = static_cast<PulseAudioOutputStream*>(p_this);
pa_threaded_mainloop_signal(stream->pa_mainloop_, 0);
}
// static, pa_stream_request_cb_t
void PulseAudioOutputStream::StreamRequestCallback(pa_stream* s, size_t len,
void* p_this) {
// Fulfill write request; must always result in a pa_stream_write() call.
static_cast<PulseAudioOutputStream*>(p_this)->FulfillWriteRequest(len);
}
PulseAudioOutputStream::PulseAudioOutputStream(const AudioParameters& params,
AudioManagerBase* manager)
: params_(params),
manager_(manager),
pa_context_(NULL),
pa_mainloop_(NULL),
pa_stream_(NULL),
volume_(1.0f),
source_callback_(NULL) {
DCHECK(manager_->GetMessageLoop()->BelongsToCurrentThread());
CHECK(params_.IsValid());
audio_bus_ = AudioBus::Create(params_);
}
PulseAudioOutputStream::~PulseAudioOutputStream() {
// All internal structures should already have been freed in Close(), which
// calls AudioManagerBase::ReleaseOutputStream() which deletes this object.
DCHECK(!pa_stream_);
DCHECK(!pa_context_);
DCHECK(!pa_mainloop_);
}
// Helper macro for Open() to avoid code spam and string bloat.
#define RETURN_ON_FAILURE(expression, message) do { \
if (!(expression)) { \
if (pa_context_) { \
DLOG(ERROR) << message << " Error: " \
<< pa_strerror(pa_context_errno(pa_context_)); \
} else { \
DLOG(ERROR) << message; \
} \
return false; \
} \
} while(0)
bool PulseAudioOutputStream::Open() {
DCHECK(manager_->GetMessageLoop()->BelongsToCurrentThread());
pa_mainloop_ = pa_threaded_mainloop_new();
RETURN_ON_FAILURE(pa_mainloop_, "Failed to create PulseAudio main loop.");
pa_mainloop_api* pa_mainloop_api = pa_threaded_mainloop_get_api(pa_mainloop_);
pa_context_ = pa_context_new(pa_mainloop_api, "Chromium");
RETURN_ON_FAILURE(pa_context_, "Failed to create PulseAudio context.");
// A state callback must be set before calling pa_threaded_mainloop_lock() or
// pa_threaded_mainloop_wait() calls may lead to dead lock.
pa_context_set_state_callback(pa_context_, &ContextNotifyCallback, this);
// Lock the main loop while setting up the context. Failure to do so may lead
// to crashes as the PulseAudio thread tries to run before things are ready.
AutoPulseLock auto_lock(pa_mainloop_);
RETURN_ON_FAILURE(
pa_threaded_mainloop_start(pa_mainloop_) == 0,
"Failed to start PulseAudio main loop.");
RETURN_ON_FAILURE(
pa_context_connect(pa_context_, NULL, PA_CONTEXT_NOAUTOSPAWN, NULL) == 0,
"Failed to connect PulseAudio context.");
// Wait until |pa_context_| is ready. pa_threaded_mainloop_wait() must be
// called after pa_context_get_state() in case the context is already ready,
// otherwise pa_threaded_mainloop_wait() will hang indefinitely.
while (true) {
pa_context_state_t context_state = pa_context_get_state(pa_context_);
RETURN_ON_FAILURE(
PA_CONTEXT_IS_GOOD(context_state), "Invalid PulseAudio context state.");
if (context_state == PA_CONTEXT_READY)
break;
pa_threaded_mainloop_wait(pa_mainloop_);
}
// Set sample specifications.
pa_sample_spec pa_sample_specifications;
pa_sample_specifications.format = BitsToPASampleFormat(
params_.bits_per_sample());
pa_sample_specifications.rate = params_.sample_rate();
pa_sample_specifications.channels = params_.channels();
// Get channel mapping and open playback stream.
pa_channel_map* map = NULL;
pa_channel_map source_channel_map = ChannelLayoutToPAChannelMap(
params_.channel_layout());
if (source_channel_map.channels != 0) {
// The source data uses a supported channel map so we will use it rather
// than the default channel map (NULL).
map = &source_channel_map;
}
pa_stream_ = pa_stream_new(
pa_context_, "Playback", &pa_sample_specifications, map);
RETURN_ON_FAILURE(pa_stream_, "Failed to create PulseAudio stream.");
pa_stream_set_state_callback(pa_stream_, &StreamNotifyCallback, this);
// Even though we start the stream corked below, PulseAudio will issue one
// stream request after setup. FulfillWriteRequest() must fulfill the write.
pa_stream_set_write_callback(pa_stream_, &StreamRequestCallback, this);
// Tell pulse audio we only want callbacks of a certain size.
pa_buffer_attr pa_buffer_attributes;
pa_buffer_attributes.maxlength = params_.GetBytesPerBuffer();
pa_buffer_attributes.minreq = params_.GetBytesPerBuffer();
pa_buffer_attributes.prebuf = params_.GetBytesPerBuffer();
pa_buffer_attributes.tlength = params_.GetBytesPerBuffer();
pa_buffer_attributes.fragsize = static_cast<uint32_t>(-1);
// Connect playback stream.
// TODO(dalecurtis): Pulse tends to want really large buffer sizes if we are
// not using the native sample rate. We should always open the stream with
// PA_STREAM_FIX_RATE and ensure this is true.
RETURN_ON_FAILURE(
pa_stream_connect_playback(
pa_stream_, NULL, &pa_buffer_attributes,
static_cast<pa_stream_flags_t>(
PA_STREAM_ADJUST_LATENCY | PA_STREAM_AUTO_TIMING_UPDATE |
PA_STREAM_NOT_MONOTONIC | PA_STREAM_START_CORKED),
NULL, NULL) == 0,
"Failed to connect PulseAudio stream.");
// Wait for the stream to be ready.
while (true) {
pa_stream_state_t stream_state = pa_stream_get_state(pa_stream_);
RETURN_ON_FAILURE(
PA_STREAM_IS_GOOD(stream_state), "Invalid PulseAudio stream state.");
if (stream_state == PA_STREAM_READY)
break;
pa_threaded_mainloop_wait(pa_mainloop_);
}
return true;
}
#undef RETURN_ON_FAILURE
void PulseAudioOutputStream::Reset() {
if (!pa_mainloop_) {
DCHECK(!pa_stream_);
DCHECK(!pa_context_);
return;
}
{
AutoPulseLock auto_lock(pa_mainloop_);
// Close the stream.
if (pa_stream_) {
// Ensure all samples are played out before shutdown.
WaitForPulseOperation(pa_stream_flush(
pa_stream_, &StreamSuccessCallback, this));
// Release PulseAudio structures.
pa_stream_disconnect(pa_stream_);
pa_stream_set_write_callback(pa_stream_, NULL, NULL);
pa_stream_set_state_callback(pa_stream_, NULL, NULL);
pa_stream_unref(pa_stream_);
pa_stream_ = NULL;
}
if (pa_context_) {
pa_context_disconnect(pa_context_);
pa_context_set_state_callback(pa_context_, NULL, NULL);
pa_context_unref(pa_context_);
pa_context_ = NULL;
}
}
pa_threaded_mainloop_stop(pa_mainloop_);
pa_threaded_mainloop_free(pa_mainloop_);
pa_mainloop_ = NULL;
}
void PulseAudioOutputStream::Close() {
DCHECK(manager_->GetMessageLoop()->BelongsToCurrentThread());
Reset();
// Signal to the manager that we're closed and can be removed.
// This should be the last call in the function as it deletes "this".
manager_->ReleaseOutputStream(this);
}
int PulseAudioOutputStream::GetHardwareLatencyInBytes() {
int negative = 0;
pa_usec_t pa_latency_micros = 0;
if (pa_stream_get_latency(pa_stream_, &pa_latency_micros, &negative) != 0)
return 0;
if (negative)
return 0;
return (pa_latency_micros * params_.sample_rate() *
params_.GetBytesPerFrame()) / base::Time::kMicrosecondsPerSecond;
}
void PulseAudioOutputStream::FulfillWriteRequest(size_t requested_bytes) {
CHECK_EQ(requested_bytes, static_cast<size_t>(params_.GetBytesPerBuffer()));
int frames_filled = 0;
if (source_callback_) {
frames_filled = source_callback_->OnMoreData(
audio_bus_.get(), AudioBuffersState(0, GetHardwareLatencyInBytes()));
}
// Zero any unfilled data so it plays back as silence.
if (frames_filled < audio_bus_->frames()) {
audio_bus_->ZeroFramesPartial(
frames_filled, audio_bus_->frames() - frames_filled);
}
// PulseAudio won't always be able to provide a buffer large enough, so we may
// need to request multiple buffers and fill them individually.
int current_frame = 0;
size_t bytes_remaining = requested_bytes;
while (bytes_remaining > 0) {
void* buffer = NULL;
size_t bytes_to_fill = bytes_remaining;
CHECK_GE(pa_stream_begin_write(pa_stream_, &buffer, &bytes_to_fill), 0);
// In case PulseAudio gives us a bigger buffer than we want, cap our size.
bytes_to_fill = std::min(
std::min(bytes_remaining, bytes_to_fill),
static_cast<size_t>(params_.GetBytesPerBuffer()));
int frames_to_fill = bytes_to_fill / params_.GetBytesPerFrame();;
// Note: If this ever changes to output raw float the data must be clipped
// and sanitized since it may come from an untrusted source such as NaCl.
audio_bus_->ToInterleavedPartial(
current_frame, frames_to_fill, params_.bits_per_sample() / 8, buffer);
media::AdjustVolume(buffer, bytes_to_fill, params_.channels(),
params_.bits_per_sample() / 8, volume_);
if (pa_stream_write(pa_stream_, buffer, bytes_to_fill, NULL, 0LL,
PA_SEEK_RELATIVE) < 0) {
if (source_callback_) {
source_callback_->OnError(this, pa_context_errno(pa_context_));
}
}
bytes_remaining -= bytes_to_fill;
current_frame = frames_to_fill;
}
}
void PulseAudioOutputStream::Start(AudioSourceCallback* callback) {
DCHECK(manager_->GetMessageLoop()->BelongsToCurrentThread());
CHECK(callback);
CHECK(pa_stream_);
AutoPulseLock auto_lock(pa_mainloop_);
// Ensure the context and stream are ready.
if (pa_context_get_state(pa_context_) != PA_CONTEXT_READY &&
pa_stream_get_state(pa_stream_) != PA_STREAM_READY) {
callback->OnError(this, pa_context_errno(pa_context_));
return;
}
source_callback_ = callback;
// Uncork (resume) the stream.
WaitForPulseOperation(pa_stream_cork(
pa_stream_, 0, &StreamSuccessCallback, this));
}
void PulseAudioOutputStream::Stop() {
DCHECK(manager_->GetMessageLoop()->BelongsToCurrentThread());
// Cork (pause) the stream. Waiting for the main loop lock will ensure
// outstanding callbacks have completed.
AutoPulseLock auto_lock(pa_mainloop_);
// Flush the stream prior to cork, doing so after will cause hangs. Write
// callbacks are suspended while inside pa_threaded_mainloop_lock() so this
// is all thread safe.
WaitForPulseOperation(pa_stream_flush(
pa_stream_, &StreamSuccessCallback, this));
WaitForPulseOperation(pa_stream_cork(
pa_stream_, 1, &StreamSuccessCallback, this));
source_callback_ = NULL;
}
void PulseAudioOutputStream::SetVolume(double volume) {
DCHECK(manager_->GetMessageLoop()->BelongsToCurrentThread());
volume_ = static_cast<float>(volume);
}
void PulseAudioOutputStream::GetVolume(double* volume) {
DCHECK(manager_->GetMessageLoop()->BelongsToCurrentThread());
*volume = volume_;
}
void PulseAudioOutputStream::WaitForPulseOperation(pa_operation* op) {
CHECK(op);
while (pa_operation_get_state(op) == PA_OPERATION_RUNNING) {
pa_threaded_mainloop_wait(pa_mainloop_);
}
pa_operation_unref(op);
}
} // namespace media