blob: 159958c06a7625037797f2ba2e158e5afee0ffe9 [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
//
// Build the intermediate representation.
//
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <algorithm>
#include <vector>
#include "common/mathutil.h"
#include "common/matrix_utils.h"
#include "compiler/translator/Diagnostics.h"
#include "compiler/translator/HashNames.h"
#include "compiler/translator/IntermNode.h"
#include "compiler/translator/SymbolTable.h"
#include "compiler/translator/util.h"
namespace sh
{
namespace
{
const float kPi = 3.14159265358979323846f;
const float kDegreesToRadiansMultiplier = kPi / 180.0f;
const float kRadiansToDegreesMultiplier = 180.0f / kPi;
TPrecision GetHigherPrecision(TPrecision left, TPrecision right)
{
return left > right ? left : right;
}
TConstantUnion *Vectorize(const TConstantUnion &constant, size_t size)
{
TConstantUnion *constUnion = new TConstantUnion[size];
for (unsigned int i = 0; i < size; ++i)
constUnion[i] = constant;
return constUnion;
}
void UndefinedConstantFoldingError(const TSourceLoc &loc,
TOperator op,
TBasicType basicType,
TDiagnostics *diagnostics,
TConstantUnion *result)
{
diagnostics->warning(loc, "operation result is undefined for the values passed in",
GetOperatorString(op));
switch (basicType)
{
case EbtFloat:
result->setFConst(0.0f);
break;
case EbtInt:
result->setIConst(0);
break;
case EbtUInt:
result->setUConst(0u);
break;
case EbtBool:
result->setBConst(false);
break;
default:
break;
}
}
float VectorLength(const TConstantUnion *paramArray, size_t paramArraySize)
{
float result = 0.0f;
for (size_t i = 0; i < paramArraySize; i++)
{
float f = paramArray[i].getFConst();
result += f * f;
}
return sqrtf(result);
}
float VectorDotProduct(const TConstantUnion *paramArray1,
const TConstantUnion *paramArray2,
size_t paramArraySize)
{
float result = 0.0f;
for (size_t i = 0; i < paramArraySize; i++)
result += paramArray1[i].getFConst() * paramArray2[i].getFConst();
return result;
}
TIntermTyped *CreateFoldedNode(const TConstantUnion *constArray,
const TIntermTyped *originalNode,
TQualifier qualifier)
{
if (constArray == nullptr)
{
return nullptr;
}
TIntermTyped *folded = new TIntermConstantUnion(constArray, originalNode->getType());
folded->getTypePointer()->setQualifier(qualifier);
folded->setLine(originalNode->getLine());
return folded;
}
angle::Matrix<float> GetMatrix(const TConstantUnion *paramArray,
const unsigned int &rows,
const unsigned int &cols)
{
std::vector<float> elements;
for (size_t i = 0; i < rows * cols; i++)
elements.push_back(paramArray[i].getFConst());
// Transpose is used since the Matrix constructor expects arguments in row-major order,
// whereas the paramArray is in column-major order. Rows/cols parameters are also flipped below
// so that the created matrix will have the expected dimensions after the transpose.
return angle::Matrix<float>(elements, cols, rows).transpose();
}
angle::Matrix<float> GetMatrix(const TConstantUnion *paramArray, const unsigned int &size)
{
std::vector<float> elements;
for (size_t i = 0; i < size * size; i++)
elements.push_back(paramArray[i].getFConst());
// Transpose is used since the Matrix constructor expects arguments in row-major order,
// whereas the paramArray is in column-major order.
return angle::Matrix<float>(elements, size).transpose();
}
void SetUnionArrayFromMatrix(const angle::Matrix<float> &m, TConstantUnion *resultArray)
{
// Transpose is used since the input Matrix is in row-major order,
// whereas the actual result should be in column-major order.
angle::Matrix<float> result = m.transpose();
std::vector<float> resultElements = result.elements();
for (size_t i = 0; i < resultElements.size(); i++)
resultArray[i].setFConst(resultElements[i]);
}
} // namespace anonymous
////////////////////////////////////////////////////////////////
//
// Member functions of the nodes used for building the tree.
//
////////////////////////////////////////////////////////////////
void TIntermTyped::setTypePreservePrecision(const TType &t)
{
TPrecision precision = getPrecision();
mType = t;
ASSERT(mType.getBasicType() != EbtBool || precision == EbpUndefined);
mType.setPrecision(precision);
}
#define REPLACE_IF_IS(node, type, original, replacement) \
if (node == original) \
{ \
node = static_cast<type *>(replacement); \
return true; \
}
bool TIntermLoop::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
ASSERT(original != nullptr); // This risks replacing multiple children.
REPLACE_IF_IS(mInit, TIntermNode, original, replacement);
REPLACE_IF_IS(mCond, TIntermTyped, original, replacement);
REPLACE_IF_IS(mExpr, TIntermTyped, original, replacement);
REPLACE_IF_IS(mBody, TIntermBlock, original, replacement);
return false;
}
bool TIntermBranch::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
REPLACE_IF_IS(mExpression, TIntermTyped, original, replacement);
return false;
}
bool TIntermSwizzle::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
ASSERT(original->getAsTyped()->getType() == replacement->getAsTyped()->getType());
REPLACE_IF_IS(mOperand, TIntermTyped, original, replacement);
return false;
}
bool TIntermBinary::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
REPLACE_IF_IS(mLeft, TIntermTyped, original, replacement);
REPLACE_IF_IS(mRight, TIntermTyped, original, replacement);
return false;
}
bool TIntermUnary::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
ASSERT(original->getAsTyped()->getType() == replacement->getAsTyped()->getType());
REPLACE_IF_IS(mOperand, TIntermTyped, original, replacement);
return false;
}
bool TIntermInvariantDeclaration::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
REPLACE_IF_IS(mSymbol, TIntermSymbol, original, replacement);
return false;
}
bool TIntermFunctionDefinition::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
REPLACE_IF_IS(mPrototype, TIntermFunctionPrototype, original, replacement);
REPLACE_IF_IS(mBody, TIntermBlock, original, replacement);
return false;
}
bool TIntermAggregate::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
return replaceChildNodeInternal(original, replacement);
}
bool TIntermBlock::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
return replaceChildNodeInternal(original, replacement);
}
bool TIntermFunctionPrototype::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
return replaceChildNodeInternal(original, replacement);
}
bool TIntermDeclaration::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
return replaceChildNodeInternal(original, replacement);
}
bool TIntermAggregateBase::replaceChildNodeInternal(TIntermNode *original, TIntermNode *replacement)
{
for (size_t ii = 0; ii < getSequence()->size(); ++ii)
{
REPLACE_IF_IS((*getSequence())[ii], TIntermNode, original, replacement);
}
return false;
}
bool TIntermAggregateBase::replaceChildNodeWithMultiple(TIntermNode *original,
const TIntermSequence &replacements)
{
for (auto it = getSequence()->begin(); it < getSequence()->end(); ++it)
{
if (*it == original)
{
it = getSequence()->erase(it);
getSequence()->insert(it, replacements.begin(), replacements.end());
return true;
}
}
return false;
}
bool TIntermAggregateBase::insertChildNodes(TIntermSequence::size_type position,
const TIntermSequence &insertions)
{
if (position > getSequence()->size())
{
return false;
}
auto it = getSequence()->begin() + position;
getSequence()->insert(it, insertions.begin(), insertions.end());
return true;
}
TIntermAggregate *TIntermAggregate::CreateFunctionCall(const TFunction &func,
TIntermSequence *arguments)
{
TIntermAggregate *callNode =
new TIntermAggregate(func.getReturnType(), EOpCallFunctionInAST, arguments);
callNode->getFunctionSymbolInfo()->setFromFunction(func);
return callNode;
}
TIntermAggregate *TIntermAggregate::CreateFunctionCall(const TType &type,
const TSymbolUniqueId &id,
const TName &name,
TIntermSequence *arguments)
{
TIntermAggregate *callNode = new TIntermAggregate(type, EOpCallFunctionInAST, arguments);
callNode->getFunctionSymbolInfo()->setId(id);
callNode->getFunctionSymbolInfo()->setNameObj(name);
return callNode;
}
TIntermAggregate *TIntermAggregate::CreateBuiltInFunctionCall(const TFunction &func,
TIntermSequence *arguments)
{
TIntermAggregate *callNode =
new TIntermAggregate(func.getReturnType(), EOpCallBuiltInFunction, arguments);
callNode->getFunctionSymbolInfo()->setFromFunction(func);
// Note that name needs to be set before texture function type is determined.
callNode->setBuiltInFunctionPrecision();
return callNode;
}
TIntermAggregate *TIntermAggregate::CreateConstructor(const TType &type,
TIntermSequence *arguments)
{
return new TIntermAggregate(type, EOpConstruct, arguments);
}
TIntermAggregate *TIntermAggregate::Create(const TType &type,
TOperator op,
TIntermSequence *arguments)
{
TIntermAggregate *node = new TIntermAggregate(type, op, arguments);
ASSERT(op != EOpCallFunctionInAST); // Should use CreateFunctionCall
ASSERT(op != EOpCallBuiltInFunction); // Should use CreateBuiltInFunctionCall
ASSERT(!node->isConstructor()); // Should use CreateConstructor
return node;
}
TIntermAggregate::TIntermAggregate(const TType &type, TOperator op, TIntermSequence *arguments)
: TIntermOperator(op), mUseEmulatedFunction(false), mGotPrecisionFromChildren(false)
{
if (arguments != nullptr)
{
mArguments.swap(*arguments);
}
setTypePrecisionAndQualifier(type);
}
void TIntermAggregate::setTypePrecisionAndQualifier(const TType &type)
{
setType(type);
mType.setQualifier(EvqTemporary);
if (!isFunctionCall())
{
if (isConstructor())
{
// Structs should not be precision qualified, the individual members may be.
// Built-in types on the other hand should be precision qualified.
if (getBasicType() != EbtStruct)
{
setPrecisionFromChildren();
}
}
else
{
setPrecisionForBuiltInOp();
}
if (areChildrenConstQualified())
{
mType.setQualifier(EvqConst);
}
}
}
bool TIntermAggregate::areChildrenConstQualified()
{
for (TIntermNode *&arg : mArguments)
{
TIntermTyped *typedArg = arg->getAsTyped();
if (typedArg && typedArg->getQualifier() != EvqConst)
{
return false;
}
}
return true;
}
void TIntermAggregate::setPrecisionFromChildren()
{
mGotPrecisionFromChildren = true;
if (getBasicType() == EbtBool)
{
mType.setPrecision(EbpUndefined);
return;
}
TPrecision precision = EbpUndefined;
TIntermSequence::iterator childIter = mArguments.begin();
while (childIter != mArguments.end())
{
TIntermTyped *typed = (*childIter)->getAsTyped();
if (typed)
precision = GetHigherPrecision(typed->getPrecision(), precision);
++childIter;
}
mType.setPrecision(precision);
}
void TIntermAggregate::setPrecisionForBuiltInOp()
{
ASSERT(!isConstructor());
ASSERT(!isFunctionCall());
if (!setPrecisionForSpecialBuiltInOp())
{
setPrecisionFromChildren();
}
}
bool TIntermAggregate::setPrecisionForSpecialBuiltInOp()
{
switch (mOp)
{
case EOpBitfieldExtract:
mType.setPrecision(mArguments[0]->getAsTyped()->getPrecision());
mGotPrecisionFromChildren = true;
return true;
case EOpBitfieldInsert:
mType.setPrecision(GetHigherPrecision(mArguments[0]->getAsTyped()->getPrecision(),
mArguments[1]->getAsTyped()->getPrecision()));
mGotPrecisionFromChildren = true;
return true;
case EOpUaddCarry:
case EOpUsubBorrow:
mType.setPrecision(EbpHigh);
return true;
default:
return false;
}
}
void TIntermAggregate::setBuiltInFunctionPrecision()
{
// All built-ins returning bool should be handled as ops, not functions.
ASSERT(getBasicType() != EbtBool);
ASSERT(mOp == EOpCallBuiltInFunction);
TPrecision precision = EbpUndefined;
for (TIntermNode *arg : mArguments)
{
TIntermTyped *typed = arg->getAsTyped();
// ESSL spec section 8: texture functions get their precision from the sampler.
if (typed && IsSampler(typed->getBasicType()))
{
precision = typed->getPrecision();
break;
}
}
// ESSL 3.0 spec section 8: textureSize always gets highp precision.
// All other functions that take a sampler are assumed to be texture functions.
if (mFunctionInfo.getName().find("textureSize") == 0)
mType.setPrecision(EbpHigh);
else
mType.setPrecision(precision);
}
TString TIntermAggregate::getSymbolTableMangledName() const
{
ASSERT(!isConstructor());
switch (mOp)
{
case EOpCallInternalRawFunction:
case EOpCallBuiltInFunction:
case EOpCallFunctionInAST:
return TFunction::GetMangledNameFromCall(mFunctionInfo.getName(), mArguments);
default:
TString opString = GetOperatorString(mOp);
return TFunction::GetMangledNameFromCall(opString, mArguments);
}
}
void TIntermBlock::appendStatement(TIntermNode *statement)
{
// Declaration nodes with no children can appear if all the declarators just added constants to
// the symbol table instead of generating code. They're no-ops so they aren't added to blocks.
if (statement != nullptr && (statement->getAsDeclarationNode() == nullptr ||
!statement->getAsDeclarationNode()->getSequence()->empty()))
{
mStatements.push_back(statement);
}
}
void TIntermFunctionPrototype::appendParameter(TIntermSymbol *parameter)
{
ASSERT(parameter != nullptr);
mParameters.push_back(parameter);
}
void TIntermDeclaration::appendDeclarator(TIntermTyped *declarator)
{
ASSERT(declarator != nullptr);
ASSERT(declarator->getAsSymbolNode() != nullptr ||
(declarator->getAsBinaryNode() != nullptr &&
declarator->getAsBinaryNode()->getOp() == EOpInitialize));
ASSERT(mDeclarators.empty() ||
declarator->getType().sameElementType(mDeclarators.back()->getAsTyped()->getType()));
mDeclarators.push_back(declarator);
}
bool TIntermTernary::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
REPLACE_IF_IS(mCondition, TIntermTyped, original, replacement);
REPLACE_IF_IS(mTrueExpression, TIntermTyped, original, replacement);
REPLACE_IF_IS(mFalseExpression, TIntermTyped, original, replacement);
return false;
}
bool TIntermIfElse::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
REPLACE_IF_IS(mCondition, TIntermTyped, original, replacement);
REPLACE_IF_IS(mTrueBlock, TIntermBlock, original, replacement);
REPLACE_IF_IS(mFalseBlock, TIntermBlock, original, replacement);
return false;
}
bool TIntermSwitch::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
REPLACE_IF_IS(mInit, TIntermTyped, original, replacement);
REPLACE_IF_IS(mStatementList, TIntermBlock, original, replacement);
return false;
}
bool TIntermCase::replaceChildNode(TIntermNode *original, TIntermNode *replacement)
{
REPLACE_IF_IS(mCondition, TIntermTyped, original, replacement);
return false;
}
TIntermTyped::TIntermTyped(const TIntermTyped &node) : TIntermNode(), mType(node.mType)
{
// Copy constructor is disallowed for TIntermNode in order to disallow it for subclasses that
// don't explicitly allow it, so normal TIntermNode constructor is used to construct the copy.
// We need to manually copy any fields of TIntermNode besides handling fields in TIntermTyped.
mLine = node.mLine;
}
bool TIntermTyped::isConstructorWithOnlyConstantUnionParameters()
{
TIntermAggregate *constructor = getAsAggregate();
if (!constructor || !constructor->isConstructor())
{
return false;
}
for (TIntermNode *&node : *constructor->getSequence())
{
if (!node->getAsConstantUnion())
return false;
}
return true;
}
// static
TIntermTyped *TIntermTyped::CreateIndexNode(int index)
{
TConstantUnion *u = new TConstantUnion[1];
u[0].setIConst(index);
TType type(EbtInt, EbpUndefined, EvqConst, 1);
TIntermConstantUnion *node = new TIntermConstantUnion(u, type);
return node;
}
// static
TIntermTyped *TIntermTyped::CreateZero(const TType &type)
{
TType constType(type);
constType.setQualifier(EvqConst);
if (!type.isArray() && type.getBasicType() != EbtStruct)
{
size_t size = constType.getObjectSize();
TConstantUnion *u = new TConstantUnion[size];
for (size_t i = 0; i < size; ++i)
{
switch (type.getBasicType())
{
case EbtFloat:
u[i].setFConst(0.0f);
break;
case EbtInt:
u[i].setIConst(0);
break;
case EbtUInt:
u[i].setUConst(0u);
break;
case EbtBool:
u[i].setBConst(false);
break;
default:
// CreateZero is called by ParseContext that keeps parsing even when an error
// occurs, so it is possible for CreateZero to be called with non-basic types.
// This happens only on error condition but CreateZero needs to return a value
// with the correct type to continue the typecheck. That's why we handle
// non-basic type by setting whatever value, we just need the type to be right.
u[i].setIConst(42);
break;
}
}
TIntermConstantUnion *node = new TIntermConstantUnion(u, constType);
return node;
}
if (type.getBasicType() == EbtVoid)
{
// Void array. This happens only on error condition, similarly to the case above. We don't
// have a constructor operator for void, so this needs special handling. We'll end up with a
// value without the array type, but that should not be a problem.
constType.clearArrayness();
return CreateZero(constType);
}
TIntermSequence *arguments = new TIntermSequence();
if (type.isArray())
{
TType elementType(type);
elementType.clearArrayness();
size_t arraySize = type.getArraySize();
for (size_t i = 0; i < arraySize; ++i)
{
arguments->push_back(CreateZero(elementType));
}
}
else
{
ASSERT(type.getBasicType() == EbtStruct);
TStructure *structure = type.getStruct();
for (const auto &field : structure->fields())
{
arguments->push_back(CreateZero(*field->type()));
}
}
return TIntermAggregate::CreateConstructor(constType, arguments);
}
// static
TIntermTyped *TIntermTyped::CreateBool(bool value)
{
TConstantUnion *u = new TConstantUnion[1];
u[0].setBConst(value);
TType type(EbtBool, EbpUndefined, EvqConst, 1);
TIntermConstantUnion *node = new TIntermConstantUnion(u, type);
return node;
}
TIntermConstantUnion::TIntermConstantUnion(const TIntermConstantUnion &node) : TIntermTyped(node)
{
mUnionArrayPointer = node.mUnionArrayPointer;
}
void TFunctionSymbolInfo::setFromFunction(const TFunction &function)
{
setName(function.getName());
setId(TSymbolUniqueId(function));
}
TFunctionSymbolInfo::TFunctionSymbolInfo(const TSymbolUniqueId &id) : mId(new TSymbolUniqueId(id))
{
}
TFunctionSymbolInfo::TFunctionSymbolInfo(const TFunctionSymbolInfo &info)
: mName(info.mName), mId(nullptr)
{
if (info.mId)
{
mId = new TSymbolUniqueId(*info.mId);
}
}
TFunctionSymbolInfo &TFunctionSymbolInfo::operator=(const TFunctionSymbolInfo &info)
{
mName = info.mName;
if (info.mId)
{
mId = new TSymbolUniqueId(*info.mId);
}
else
{
mId = nullptr;
}
return *this;
}
void TFunctionSymbolInfo::setId(const TSymbolUniqueId &id)
{
mId = new TSymbolUniqueId(id);
}
const TSymbolUniqueId &TFunctionSymbolInfo::getId() const
{
ASSERT(mId);
return *mId;
}
TIntermAggregate::TIntermAggregate(const TIntermAggregate &node)
: TIntermOperator(node),
mUseEmulatedFunction(node.mUseEmulatedFunction),
mGotPrecisionFromChildren(node.mGotPrecisionFromChildren),
mFunctionInfo(node.mFunctionInfo)
{
for (TIntermNode *arg : node.mArguments)
{
TIntermTyped *typedArg = arg->getAsTyped();
ASSERT(typedArg != nullptr);
TIntermTyped *argCopy = typedArg->deepCopy();
mArguments.push_back(argCopy);
}
}
TIntermAggregate *TIntermAggregate::shallowCopy() const
{
TIntermSequence *copySeq = new TIntermSequence();
copySeq->insert(copySeq->begin(), getSequence()->begin(), getSequence()->end());
TIntermAggregate *copyNode = new TIntermAggregate(mType, mOp, copySeq);
*copyNode->getFunctionSymbolInfo() = mFunctionInfo;
copyNode->setLine(mLine);
return copyNode;
}
TIntermSwizzle::TIntermSwizzle(const TIntermSwizzle &node) : TIntermTyped(node)
{
TIntermTyped *operandCopy = node.mOperand->deepCopy();
ASSERT(operandCopy != nullptr);
mOperand = operandCopy;
mSwizzleOffsets = node.mSwizzleOffsets;
}
TIntermBinary::TIntermBinary(const TIntermBinary &node)
: TIntermOperator(node), mAddIndexClamp(node.mAddIndexClamp)
{
TIntermTyped *leftCopy = node.mLeft->deepCopy();
TIntermTyped *rightCopy = node.mRight->deepCopy();
ASSERT(leftCopy != nullptr && rightCopy != nullptr);
mLeft = leftCopy;
mRight = rightCopy;
}
TIntermUnary::TIntermUnary(const TIntermUnary &node)
: TIntermOperator(node), mUseEmulatedFunction(node.mUseEmulatedFunction)
{
TIntermTyped *operandCopy = node.mOperand->deepCopy();
ASSERT(operandCopy != nullptr);
mOperand = operandCopy;
}
TIntermTernary::TIntermTernary(const TIntermTernary &node) : TIntermTyped(node)
{
TIntermTyped *conditionCopy = node.mCondition->deepCopy();
TIntermTyped *trueCopy = node.mTrueExpression->deepCopy();
TIntermTyped *falseCopy = node.mFalseExpression->deepCopy();
ASSERT(conditionCopy != nullptr && trueCopy != nullptr && falseCopy != nullptr);
mCondition = conditionCopy;
mTrueExpression = trueCopy;
mFalseExpression = falseCopy;
}
bool TIntermOperator::isAssignment() const
{
return IsAssignment(mOp);
}
bool TIntermOperator::isMultiplication() const
{
switch (mOp)
{
case EOpMul:
case EOpMatrixTimesMatrix:
case EOpMatrixTimesVector:
case EOpMatrixTimesScalar:
case EOpVectorTimesMatrix:
case EOpVectorTimesScalar:
return true;
default:
return false;
}
}
bool TIntermOperator::isConstructor() const
{
return (mOp == EOpConstruct);
}
bool TIntermOperator::isFunctionCall() const
{
switch (mOp)
{
case EOpCallFunctionInAST:
case EOpCallBuiltInFunction:
case EOpCallInternalRawFunction:
return true;
default:
return false;
}
}
TOperator TIntermBinary::GetMulOpBasedOnOperands(const TType &left, const TType &right)
{
if (left.isMatrix())
{
if (right.isMatrix())
{
return EOpMatrixTimesMatrix;
}
else
{
if (right.isVector())
{
return EOpMatrixTimesVector;
}
else
{
return EOpMatrixTimesScalar;
}
}
}
else
{
if (right.isMatrix())
{
if (left.isVector())
{
return EOpVectorTimesMatrix;
}
else
{
return EOpMatrixTimesScalar;
}
}
else
{
// Neither operand is a matrix.
if (left.isVector() == right.isVector())
{
// Leave as component product.
return EOpMul;
}
else
{
return EOpVectorTimesScalar;
}
}
}
}
TOperator TIntermBinary::GetMulAssignOpBasedOnOperands(const TType &left, const TType &right)
{
if (left.isMatrix())
{
if (right.isMatrix())
{
return EOpMatrixTimesMatrixAssign;
}
else
{
// right should be scalar, but this may not be validated yet.
return EOpMatrixTimesScalarAssign;
}
}
else
{
if (right.isMatrix())
{
// Left should be a vector, but this may not be validated yet.
return EOpVectorTimesMatrixAssign;
}
else
{
// Neither operand is a matrix.
if (left.isVector() == right.isVector())
{
// Leave as component product.
return EOpMulAssign;
}
else
{
// left should be vector and right should be scalar, but this may not be validated
// yet.
return EOpVectorTimesScalarAssign;
}
}
}
}
//
// Make sure the type of a unary operator is appropriate for its
// combination of operation and operand type.
//
void TIntermUnary::promote()
{
TQualifier resultQualifier = EvqTemporary;
if (mOperand->getQualifier() == EvqConst)
resultQualifier = EvqConst;
unsigned char operandPrimarySize =
static_cast<unsigned char>(mOperand->getType().getNominalSize());
switch (mOp)
{
case EOpFloatBitsToInt:
setType(TType(EbtInt, EbpHigh, resultQualifier, operandPrimarySize));
break;
case EOpFloatBitsToUint:
setType(TType(EbtUInt, EbpHigh, resultQualifier, operandPrimarySize));
break;
case EOpIntBitsToFloat:
case EOpUintBitsToFloat:
setType(TType(EbtFloat, EbpHigh, resultQualifier, operandPrimarySize));
break;
case EOpPackSnorm2x16:
case EOpPackUnorm2x16:
case EOpPackHalf2x16:
case EOpPackUnorm4x8:
case EOpPackSnorm4x8:
setType(TType(EbtUInt, EbpHigh, resultQualifier));
break;
case EOpUnpackSnorm2x16:
case EOpUnpackUnorm2x16:
setType(TType(EbtFloat, EbpHigh, resultQualifier, 2));
break;
case EOpUnpackHalf2x16:
setType(TType(EbtFloat, EbpMedium, resultQualifier, 2));
break;
case EOpUnpackUnorm4x8:
case EOpUnpackSnorm4x8:
setType(TType(EbtFloat, EbpMedium, resultQualifier, 4));
break;
case EOpAny:
case EOpAll:
setType(TType(EbtBool, EbpUndefined, resultQualifier));
break;
case EOpLength:
case EOpDeterminant:
setType(TType(EbtFloat, mOperand->getType().getPrecision(), resultQualifier));
break;
case EOpTranspose:
setType(TType(EbtFloat, mOperand->getType().getPrecision(), resultQualifier,
static_cast<unsigned char>(mOperand->getType().getRows()),
static_cast<unsigned char>(mOperand->getType().getCols())));
break;
case EOpIsInf:
case EOpIsNan:
setType(TType(EbtBool, EbpUndefined, resultQualifier, operandPrimarySize));
break;
case EOpBitfieldReverse:
setType(TType(mOperand->getBasicType(), EbpHigh, resultQualifier, operandPrimarySize));
break;
case EOpBitCount:
setType(TType(EbtInt, EbpLow, resultQualifier, operandPrimarySize));
break;
case EOpFindLSB:
setType(TType(EbtInt, EbpLow, resultQualifier, operandPrimarySize));
break;
case EOpFindMSB:
setType(TType(EbtInt, EbpLow, resultQualifier, operandPrimarySize));
break;
default:
setType(mOperand->getType());
mType.setQualifier(resultQualifier);
break;
}
}
TIntermSwizzle::TIntermSwizzle(TIntermTyped *operand, const TVector<int> &swizzleOffsets)
: TIntermTyped(TType(EbtFloat, EbpUndefined)),
mOperand(operand),
mSwizzleOffsets(swizzleOffsets)
{
ASSERT(mSwizzleOffsets.size() <= 4);
promote();
}
TIntermUnary::TIntermUnary(TOperator op, TIntermTyped *operand)
: TIntermOperator(op), mOperand(operand), mUseEmulatedFunction(false)
{
promote();
}
TIntermBinary::TIntermBinary(TOperator op, TIntermTyped *left, TIntermTyped *right)
: TIntermOperator(op), mLeft(left), mRight(right), mAddIndexClamp(false)
{
promote();
}
TIntermInvariantDeclaration::TIntermInvariantDeclaration(TIntermSymbol *symbol, const TSourceLoc &line)
: TIntermNode(), mSymbol(symbol)
{
ASSERT(symbol);
setLine(line);
}
TIntermTernary::TIntermTernary(TIntermTyped *cond,
TIntermTyped *trueExpression,
TIntermTyped *falseExpression)
: TIntermTyped(trueExpression->getType()),
mCondition(cond),
mTrueExpression(trueExpression),
mFalseExpression(falseExpression)
{
getTypePointer()->setQualifier(
TIntermTernary::DetermineQualifier(cond, trueExpression, falseExpression));
}
TIntermLoop::TIntermLoop(TLoopType type,
TIntermNode *init,
TIntermTyped *cond,
TIntermTyped *expr,
TIntermBlock *body)
: mType(type), mInit(init), mCond(cond), mExpr(expr), mBody(body)
{
// Declaration nodes with no children can appear if all the declarators just added constants to
// the symbol table instead of generating code. They're no-ops so don't add them to the tree.
if (mInit && mInit->getAsDeclarationNode() &&
mInit->getAsDeclarationNode()->getSequence()->empty())
{
mInit = nullptr;
}
}
// static
TQualifier TIntermTernary::DetermineQualifier(TIntermTyped *cond,
TIntermTyped *trueExpression,
TIntermTyped *falseExpression)
{
if (cond->getQualifier() == EvqConst && trueExpression->getQualifier() == EvqConst &&
falseExpression->getQualifier() == EvqConst)
{
return EvqConst;
}
return EvqTemporary;
}
void TIntermSwizzle::promote()
{
TQualifier resultQualifier = EvqTemporary;
if (mOperand->getQualifier() == EvqConst)
resultQualifier = EvqConst;
auto numFields = mSwizzleOffsets.size();
setType(TType(mOperand->getBasicType(), mOperand->getPrecision(), resultQualifier,
static_cast<unsigned char>(numFields)));
}
bool TIntermSwizzle::hasDuplicateOffsets() const
{
int offsetCount[4] = {0u, 0u, 0u, 0u};
for (const auto offset : mSwizzleOffsets)
{
offsetCount[offset]++;
if (offsetCount[offset] > 1)
{
return true;
}
}
return false;
}
bool TIntermSwizzle::offsetsMatch(int offset) const
{
return mSwizzleOffsets.size() == 1 && mSwizzleOffsets[0] == offset;
}
void TIntermSwizzle::writeOffsetsAsXYZW(TInfoSinkBase *out) const
{
for (const int offset : mSwizzleOffsets)
{
switch (offset)
{
case 0:
*out << "x";
break;
case 1:
*out << "y";
break;
case 2:
*out << "z";
break;
case 3:
*out << "w";
break;
default:
UNREACHABLE();
}
}
}
TQualifier TIntermBinary::GetCommaQualifier(int shaderVersion,
const TIntermTyped *left,
const TIntermTyped *right)
{
// ESSL3.00 section 12.43: The result of a sequence operator is not a constant-expression.
if (shaderVersion >= 300 || left->getQualifier() != EvqConst ||
right->getQualifier() != EvqConst)
{
return EvqTemporary;
}
return EvqConst;
}
// Establishes the type of the result of the binary operation.
void TIntermBinary::promote()
{
ASSERT(!isMultiplication() ||
mOp == GetMulOpBasedOnOperands(mLeft->getType(), mRight->getType()));
// Comma is handled as a special case.
if (mOp == EOpComma)
{
setType(mRight->getType());
return;
}
// Base assumption: just make the type the same as the left
// operand. Then only deviations from this need be coded.
setType(mLeft->getType());
TQualifier resultQualifier = EvqConst;
// Binary operations results in temporary variables unless both
// operands are const.
if (mLeft->getQualifier() != EvqConst || mRight->getQualifier() != EvqConst)
{
resultQualifier = EvqTemporary;
getTypePointer()->setQualifier(EvqTemporary);
}
// Handle indexing ops.
switch (mOp)
{
case EOpIndexDirect:
case EOpIndexIndirect:
if (mLeft->isArray())
{
mType.clearArrayness();
}
else if (mLeft->isMatrix())
{
setType(TType(mLeft->getBasicType(), mLeft->getPrecision(), resultQualifier,
static_cast<unsigned char>(mLeft->getRows())));
}
else if (mLeft->isVector())
{
setType(TType(mLeft->getBasicType(), mLeft->getPrecision(), resultQualifier));
}
else
{
UNREACHABLE();
}
return;
case EOpIndexDirectStruct:
{
const TFieldList &fields = mLeft->getType().getStruct()->fields();
const int i = mRight->getAsConstantUnion()->getIConst(0);
setType(*fields[i]->type());
getTypePointer()->setQualifier(resultQualifier);
return;
}
case EOpIndexDirectInterfaceBlock:
{
const TFieldList &fields = mLeft->getType().getInterfaceBlock()->fields();
const int i = mRight->getAsConstantUnion()->getIConst(0);
setType(*fields[i]->type());
getTypePointer()->setQualifier(resultQualifier);
return;
}
default:
break;
}
ASSERT(mLeft->isArray() == mRight->isArray());
// The result gets promoted to the highest precision.
TPrecision higherPrecision = GetHigherPrecision(mLeft->getPrecision(), mRight->getPrecision());
getTypePointer()->setPrecision(higherPrecision);
const int nominalSize = std::max(mLeft->getNominalSize(), mRight->getNominalSize());
//
// All scalars or structs. Code after this test assumes this case is removed!
//
if (nominalSize == 1)
{
switch (mOp)
{
//
// Promote to conditional
//
case EOpEqual:
case EOpNotEqual:
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
setType(TType(EbtBool, EbpUndefined, resultQualifier));
break;
//
// And and Or operate on conditionals
//
case EOpLogicalAnd:
case EOpLogicalXor:
case EOpLogicalOr:
ASSERT(mLeft->getBasicType() == EbtBool && mRight->getBasicType() == EbtBool);
setType(TType(EbtBool, EbpUndefined, resultQualifier));
break;
default:
break;
}
return;
}
// If we reach here, at least one of the operands is vector or matrix.
// The other operand could be a scalar, vector, or matrix.
TBasicType basicType = mLeft->getBasicType();
switch (mOp)
{
case EOpMul:
break;
case EOpMatrixTimesScalar:
if (mRight->isMatrix())
{
setType(TType(basicType, higherPrecision, resultQualifier,
static_cast<unsigned char>(mRight->getCols()),
static_cast<unsigned char>(mRight->getRows())));
}
break;
case EOpMatrixTimesVector:
setType(TType(basicType, higherPrecision, resultQualifier,
static_cast<unsigned char>(mLeft->getRows()), 1));
break;
case EOpMatrixTimesMatrix:
setType(TType(basicType, higherPrecision, resultQualifier,
static_cast<unsigned char>(mRight->getCols()),
static_cast<unsigned char>(mLeft->getRows())));
break;
case EOpVectorTimesScalar:
setType(TType(basicType, higherPrecision, resultQualifier,
static_cast<unsigned char>(nominalSize), 1));
break;
case EOpVectorTimesMatrix:
setType(TType(basicType, higherPrecision, resultQualifier,
static_cast<unsigned char>(mRight->getCols()), 1));
break;
case EOpMulAssign:
case EOpVectorTimesScalarAssign:
case EOpVectorTimesMatrixAssign:
case EOpMatrixTimesScalarAssign:
case EOpMatrixTimesMatrixAssign:
ASSERT(mOp == GetMulAssignOpBasedOnOperands(mLeft->getType(), mRight->getType()));
break;
case EOpAssign:
case EOpInitialize:
ASSERT((mLeft->getNominalSize() == mRight->getNominalSize()) &&
(mLeft->getSecondarySize() == mRight->getSecondarySize()));
break;
case EOpAdd:
case EOpSub:
case EOpDiv:
case EOpIMod:
case EOpBitShiftLeft:
case EOpBitShiftRight:
case EOpBitwiseAnd:
case EOpBitwiseXor:
case EOpBitwiseOr:
case EOpAddAssign:
case EOpSubAssign:
case EOpDivAssign:
case EOpIModAssign:
case EOpBitShiftLeftAssign:
case EOpBitShiftRightAssign:
case EOpBitwiseAndAssign:
case EOpBitwiseXorAssign:
case EOpBitwiseOrAssign:
{
const int secondarySize =
std::max(mLeft->getSecondarySize(), mRight->getSecondarySize());
setType(TType(basicType, higherPrecision, resultQualifier,
static_cast<unsigned char>(nominalSize),
static_cast<unsigned char>(secondarySize)));
ASSERT(!mLeft->isArray() && !mRight->isArray());
break;
}
case EOpEqual:
case EOpNotEqual:
case EOpLessThan:
case EOpGreaterThan:
case EOpLessThanEqual:
case EOpGreaterThanEqual:
ASSERT((mLeft->getNominalSize() == mRight->getNominalSize()) &&
(mLeft->getSecondarySize() == mRight->getSecondarySize()));
setType(TType(EbtBool, EbpUndefined, resultQualifier));
break;
case EOpIndexDirect:
case EOpIndexIndirect:
case EOpIndexDirectInterfaceBlock:
case EOpIndexDirectStruct:
// These ops should be already fully handled.
UNREACHABLE();
break;
default:
UNREACHABLE();
break;
}
}
const TConstantUnion *TIntermConstantUnion::foldIndexing(int index)
{
if (isArray())
{
ASSERT(index < static_cast<int>(getType().getArraySize()));
TType arrayElementType = getType();
arrayElementType.clearArrayness();
size_t arrayElementSize = arrayElementType.getObjectSize();
return &mUnionArrayPointer[arrayElementSize * index];
}
else if (isMatrix())
{
ASSERT(index < getType().getCols());
int size = getType().getRows();
return &mUnionArrayPointer[size * index];
}
else if (isVector())
{
ASSERT(index < getType().getNominalSize());
return &mUnionArrayPointer[index];
}
else
{
UNREACHABLE();
return nullptr;
}
}
TIntermTyped *TIntermSwizzle::fold()
{
TIntermConstantUnion *operandConstant = mOperand->getAsConstantUnion();
if (operandConstant == nullptr)
{
return nullptr;
}
TConstantUnion *constArray = new TConstantUnion[mSwizzleOffsets.size()];
for (size_t i = 0; i < mSwizzleOffsets.size(); ++i)
{
constArray[i] = *operandConstant->foldIndexing(mSwizzleOffsets.at(i));
}
return CreateFoldedNode(constArray, this, mType.getQualifier());
}
TIntermTyped *TIntermBinary::fold(TDiagnostics *diagnostics)
{
TIntermConstantUnion *leftConstant = mLeft->getAsConstantUnion();
TIntermConstantUnion *rightConstant = mRight->getAsConstantUnion();
switch (mOp)
{
case EOpIndexDirect:
{
if (leftConstant == nullptr || rightConstant == nullptr)
{
return nullptr;
}
int index = rightConstant->getIConst(0);
const TConstantUnion *constArray = leftConstant->foldIndexing(index);
return CreateFoldedNode(constArray, this, mType.getQualifier());
}
case EOpIndexDirectStruct:
{
if (leftConstant == nullptr || rightConstant == nullptr)
{
return nullptr;
}
const TFieldList &fields = mLeft->getType().getStruct()->fields();
size_t index = static_cast<size_t>(rightConstant->getIConst(0));
size_t previousFieldsSize = 0;
for (size_t i = 0; i < index; ++i)
{
previousFieldsSize += fields[i]->type()->getObjectSize();
}
const TConstantUnion *constArray = leftConstant->getUnionArrayPointer();
return CreateFoldedNode(constArray + previousFieldsSize, this, mType.getQualifier());
}
case EOpIndexIndirect:
case EOpIndexDirectInterfaceBlock:
// Can never be constant folded.
return nullptr;
default:
{
if (leftConstant == nullptr || rightConstant == nullptr)
{
return nullptr;
}
TConstantUnion *constArray =
leftConstant->foldBinary(mOp, rightConstant, diagnostics, mLeft->getLine());
// Nodes may be constant folded without being qualified as constant.
return CreateFoldedNode(constArray, this, mType.getQualifier());
}
}
}
TIntermTyped *TIntermUnary::fold(TDiagnostics *diagnostics)
{
TIntermConstantUnion *operandConstant = mOperand->getAsConstantUnion();
if (operandConstant == nullptr)
{
return nullptr;
}
TConstantUnion *constArray = nullptr;
switch (mOp)
{
case EOpAny:
case EOpAll:
case EOpLength:
case EOpTranspose:
case EOpDeterminant:
case EOpInverse:
case EOpPackSnorm2x16:
case EOpUnpackSnorm2x16:
case EOpPackUnorm2x16:
case EOpUnpackUnorm2x16:
case EOpPackHalf2x16:
case EOpUnpackHalf2x16:
case EOpPackUnorm4x8:
case EOpPackSnorm4x8:
case EOpUnpackUnorm4x8:
case EOpUnpackSnorm4x8:
constArray = operandConstant->foldUnaryNonComponentWise(mOp);
break;
default:
constArray = operandConstant->foldUnaryComponentWise(mOp, diagnostics);
break;
}
// Nodes may be constant folded without being qualified as constant.
return CreateFoldedNode(constArray, this, mType.getQualifier());
}
TIntermTyped *TIntermAggregate::fold(TDiagnostics *diagnostics)
{
// Make sure that all params are constant before actual constant folding.
for (auto *param : *getSequence())
{
if (param->getAsConstantUnion() == nullptr)
{
return nullptr;
}
}
TConstantUnion *constArray = nullptr;
if (isConstructor())
constArray = TIntermConstantUnion::FoldAggregateConstructor(this);
else
constArray = TIntermConstantUnion::FoldAggregateBuiltIn(this, diagnostics);
// Nodes may be constant folded without being qualified as constant.
return CreateFoldedNode(constArray, this, getQualifier());
}
//
// The fold functions see if an operation on a constant can be done in place,
// without generating run-time code.
//
// Returns the constant value to keep using or nullptr.
//
TConstantUnion *TIntermConstantUnion::foldBinary(TOperator op,
TIntermConstantUnion *rightNode,
TDiagnostics *diagnostics,
const TSourceLoc &line)
{
const TConstantUnion *leftArray = getUnionArrayPointer();
const TConstantUnion *rightArray = rightNode->getUnionArrayPointer();
ASSERT(leftArray && rightArray);
size_t objectSize = getType().getObjectSize();
// for a case like float f = vec4(2, 3, 4, 5) + 1.2;
if (rightNode->getType().getObjectSize() == 1 && objectSize > 1)
{
rightArray = Vectorize(*rightNode->getUnionArrayPointer(), objectSize);
}
else if (rightNode->getType().getObjectSize() > 1 && objectSize == 1)
{
// for a case like float f = 1.2 + vec4(2, 3, 4, 5);
leftArray = Vectorize(*getUnionArrayPointer(), rightNode->getType().getObjectSize());
objectSize = rightNode->getType().getObjectSize();
}
TConstantUnion *resultArray = nullptr;
switch (op)
{
case EOpAdd:
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
resultArray[i] =
TConstantUnion::add(leftArray[i], rightArray[i], diagnostics, line);
break;
case EOpSub:
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
resultArray[i] =
TConstantUnion::sub(leftArray[i], rightArray[i], diagnostics, line);
break;
case EOpMul:
case EOpVectorTimesScalar:
case EOpMatrixTimesScalar:
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
resultArray[i] =
TConstantUnion::mul(leftArray[i], rightArray[i], diagnostics, line);
break;
case EOpMatrixTimesMatrix:
{
// TODO(jmadll): This code should check for overflows.
ASSERT(getType().getBasicType() == EbtFloat && rightNode->getBasicType() == EbtFloat);
const int leftCols = getCols();
const int leftRows = getRows();
const int rightCols = rightNode->getType().getCols();
const int rightRows = rightNode->getType().getRows();
const int resultCols = rightCols;
const int resultRows = leftRows;
resultArray = new TConstantUnion[resultCols * resultRows];
for (int row = 0; row < resultRows; row++)
{
for (int column = 0; column < resultCols; column++)
{
resultArray[resultRows * column + row].setFConst(0.0f);
for (int i = 0; i < leftCols; i++)
{
resultArray[resultRows * column + row].setFConst(
resultArray[resultRows * column + row].getFConst() +
leftArray[i * leftRows + row].getFConst() *
rightArray[column * rightRows + i].getFConst());
}
}
}
}
break;
case EOpDiv:
case EOpIMod:
{
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
{
switch (getType().getBasicType())
{
case EbtFloat:
{
ASSERT(op == EOpDiv);
float dividend = leftArray[i].getFConst();
float divisor = rightArray[i].getFConst();
if (divisor == 0.0f)
{
if (dividend == 0.0f)
{
diagnostics->warning(
getLine(),
"Zero divided by zero during constant folding generated NaN",
"/");
resultArray[i].setFConst(std::numeric_limits<float>::quiet_NaN());
}
else
{
diagnostics->warning(getLine(),
"Divide by zero during constant folding", "/");
bool negativeResult =
std::signbit(dividend) != std::signbit(divisor);
resultArray[i].setFConst(
negativeResult ? -std::numeric_limits<float>::infinity()
: std::numeric_limits<float>::infinity());
}
}
else if (gl::isInf(dividend) && gl::isInf(divisor))
{
diagnostics->warning(getLine(),
"Infinity divided by infinity during constant "
"folding generated NaN",
"/");
resultArray[i].setFConst(std::numeric_limits<float>::quiet_NaN());
}
else
{
float result = dividend / divisor;
if (!gl::isInf(dividend) && gl::isInf(result))
{
diagnostics->warning(
getLine(), "Constant folded division overflowed to infinity",
"/");
}
resultArray[i].setFConst(result);
}
break;
}
case EbtInt:
if (rightArray[i] == 0)
{
diagnostics->warning(
getLine(), "Divide by zero error during constant folding", "/");
resultArray[i].setIConst(INT_MAX);
}
else
{
int lhs = leftArray[i].getIConst();
int divisor = rightArray[i].getIConst();
if (op == EOpDiv)
{
// Check for the special case where the minimum representable number
// is
// divided by -1. If left alone this leads to integer overflow in
// C++.
// ESSL 3.00.6 section 4.1.3 Integers:
// "However, for the case where the minimum representable value is
// divided by -1, it is allowed to return either the minimum
// representable value or the maximum representable value."
if (lhs == -0x7fffffff - 1 && divisor == -1)
{
resultArray[i].setIConst(0x7fffffff);
}
else
{
resultArray[i].setIConst(lhs / divisor);
}
}
else
{
ASSERT(op == EOpIMod);
if (lhs < 0 || divisor < 0)
{
// ESSL 3.00.6 section 5.9: Results of modulus are undefined
// when
// either one of the operands is negative.
diagnostics->warning(getLine(),
"Negative modulus operator operand "
"encountered during constant folding",
"%");
resultArray[i].setIConst(0);
}
else
{
resultArray[i].setIConst(lhs % divisor);
}
}
}
break;
case EbtUInt:
if (rightArray[i] == 0)
{
diagnostics->warning(
getLine(), "Divide by zero error during constant folding", "/");
resultArray[i].setUConst(UINT_MAX);
}
else
{
if (op == EOpDiv)
{
resultArray[i].setUConst(leftArray[i].getUConst() /
rightArray[i].getUConst());
}
else
{
ASSERT(op == EOpIMod);
resultArray[i].setUConst(leftArray[i].getUConst() %
rightArray[i].getUConst());
}
}
break;
default:
UNREACHABLE();
return nullptr;
}
}
}
break;
case EOpMatrixTimesVector:
{
// TODO(jmadll): This code should check for overflows.
ASSERT(rightNode->getBasicType() == EbtFloat);
const int matrixCols = getCols();
const int matrixRows = getRows();
resultArray = new TConstantUnion[matrixRows];
for (int matrixRow = 0; matrixRow < matrixRows; matrixRow++)
{
resultArray[matrixRow].setFConst(0.0f);
for (int col = 0; col < matrixCols; col++)
{
resultArray[matrixRow].setFConst(
resultArray[matrixRow].getFConst() +
leftArray[col * matrixRows + matrixRow].getFConst() *
rightArray[col].getFConst());
}
}
}
break;
case EOpVectorTimesMatrix:
{
// TODO(jmadll): This code should check for overflows.
ASSERT(getType().getBasicType() == EbtFloat);
const int matrixCols = rightNode->getType().getCols();
const int matrixRows = rightNode->getType().getRows();
resultArray = new TConstantUnion[matrixCols];
for (int matrixCol = 0; matrixCol < matrixCols; matrixCol++)
{
resultArray[matrixCol].setFConst(0.0f);
for (int matrixRow = 0; matrixRow < matrixRows; matrixRow++)
{
resultArray[matrixCol].setFConst(
resultArray[matrixCol].getFConst() +
leftArray[matrixRow].getFConst() *
rightArray[matrixCol * matrixRows + matrixRow].getFConst());
}
}
}
break;
case EOpLogicalAnd:
{
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
{
resultArray[i] = leftArray[i] && rightArray[i];
}
}
break;
case EOpLogicalOr:
{
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
{
resultArray[i] = leftArray[i] || rightArray[i];
}
}
break;
case EOpLogicalXor:
{
ASSERT(getType().getBasicType() == EbtBool);
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
{
resultArray[i].setBConst(leftArray[i] != rightArray[i]);
}
}
break;
case EOpBitwiseAnd:
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
resultArray[i] = leftArray[i] & rightArray[i];
break;
case EOpBitwiseXor:
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
resultArray[i] = leftArray[i] ^ rightArray[i];
break;
case EOpBitwiseOr:
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
resultArray[i] = leftArray[i] | rightArray[i];
break;
case EOpBitShiftLeft:
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
resultArray[i] =
TConstantUnion::lshift(leftArray[i], rightArray[i], diagnostics, line);
break;
case EOpBitShiftRight:
resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
resultArray[i] =
TConstantUnion::rshift(leftArray[i], rightArray[i], diagnostics, line);
break;
case EOpLessThan:
ASSERT(objectSize == 1);
resultArray = new TConstantUnion[1];
resultArray->setBConst(*leftArray < *rightArray);
break;
case EOpGreaterThan:
ASSERT(objectSize == 1);
resultArray = new TConstantUnion[1];
resultArray->setBConst(*leftArray > *rightArray);
break;
case EOpLessThanEqual:
ASSERT(objectSize == 1);
resultArray = new TConstantUnion[1];
resultArray->setBConst(!(*leftArray > *rightArray));
break;
case EOpGreaterThanEqual:
ASSERT(objectSize == 1);
resultArray = new TConstantUnion[1];
resultArray->setBConst(!(*leftArray < *rightArray));
break;
case EOpEqual:
case EOpNotEqual:
{
resultArray = new TConstantUnion[1];
bool equal = true;
for (size_t i = 0; i < objectSize; i++)
{
if (leftArray[i] != rightArray[i])
{
equal = false;
break; // break out of for loop
}
}
if (op == EOpEqual)
{
resultArray->setBConst(equal);
}
else
{
resultArray->setBConst(!equal);
}
}
break;
default:
UNREACHABLE();
return nullptr;
}
return resultArray;
}
// The fold functions do operations on a constant at GLSL compile time, without generating run-time
// code. Returns the constant value to keep using. Nullptr should not be returned.
TConstantUnion *TIntermConstantUnion::foldUnaryNonComponentWise(TOperator op)
{
// Do operations where the return type may have a different number of components compared to the
// operand type.
const TConstantUnion *operandArray = getUnionArrayPointer();
ASSERT(operandArray);
size_t objectSize = getType().getObjectSize();
TConstantUnion *resultArray = nullptr;
switch (op)
{
case EOpAny:
ASSERT(getType().getBasicType() == EbtBool);
resultArray = new TConstantUnion();
resultArray->setBConst(false);
for (size_t i = 0; i < objectSize; i++)
{
if (operandArray[i].getBConst())
{
resultArray->setBConst(true);
break;
}
}
break;
case EOpAll:
ASSERT(getType().getBasicType() == EbtBool);
resultArray = new TConstantUnion();
resultArray->setBConst(true);
for (size_t i = 0; i < objectSize; i++)
{
if (!operandArray[i].getBConst())
{
resultArray->setBConst(false);
break;
}
}
break;
case EOpLength:
ASSERT(getType().getBasicType() == EbtFloat);
resultArray = new TConstantUnion();
resultArray->setFConst(VectorLength(operandArray, objectSize));
break;
case EOpTranspose:
{
ASSERT(getType().getBasicType() == EbtFloat);
resultArray = new TConstantUnion[objectSize];
angle::Matrix<float> result =
GetMatrix(operandArray, getType().getRows(), getType().getCols()).transpose();
SetUnionArrayFromMatrix(result, resultArray);
break;
}
case EOpDeterminant:
{
ASSERT(getType().getBasicType() == EbtFloat);
unsigned int size = getType().getNominalSize();
ASSERT(size >= 2 && size <= 4);
resultArray = new TConstantUnion();
resultArray->setFConst(GetMatrix(operandArray, size).determinant());
break;
}
case EOpInverse:
{
ASSERT(getType().getBasicType() == EbtFloat);
unsigned int size = getType().getNominalSize();
ASSERT(size >= 2 && size <= 4);
resultArray = new TConstantUnion[objectSize];
angle::Matrix<float> result = GetMatrix(operandArray, size).inverse();
SetUnionArrayFromMatrix(result, resultArray);
break;
}
case EOpPackSnorm2x16:
ASSERT(getType().getBasicType() == EbtFloat);
ASSERT(getType().getNominalSize() == 2);
resultArray = new TConstantUnion();
resultArray->setUConst(
gl::packSnorm2x16(operandArray[0].getFConst(), operandArray[1].getFConst()));
break;
case EOpUnpackSnorm2x16:
{
ASSERT(getType().getBasicType() == EbtUInt);
resultArray = new TConstantUnion[2];
float f1, f2;
gl::unpackSnorm2x16(operandArray[0].getUConst(), &f1, &f2);
resultArray[0].setFConst(f1);
resultArray[1].setFConst(f2);
break;
}
case EOpPackUnorm2x16:
ASSERT(getType().getBasicType() == EbtFloat);
ASSERT(getType().getNominalSize() == 2);
resultArray = new TConstantUnion();
resultArray->setUConst(
gl::packUnorm2x16(operandArray[0].getFConst(), operandArray[1].getFConst()));
break;
case EOpUnpackUnorm2x16:
{
ASSERT(getType().getBasicType() == EbtUInt);
resultArray = new TConstantUnion[2];
float f1, f2;
gl::unpackUnorm2x16(operandArray[0].getUConst(), &f1, &f2);
resultArray[0].setFConst(f1);
resultArray[1].setFConst(f2);
break;
}
case EOpPackHalf2x16:
ASSERT(getType().getBasicType() == EbtFloat);
ASSERT(getType().getNominalSize() == 2);
resultArray = new TConstantUnion();
resultArray->setUConst(
gl::packHalf2x16(operandArray[0].getFConst(), operandArray[1].getFConst()));
break;
case EOpUnpackHalf2x16:
{
ASSERT(getType().getBasicType() == EbtUInt);
resultArray = new TConstantUnion[2];
float f1, f2;
gl::unpackHalf2x16(operandArray[0].getUConst(), &f1, &f2);
resultArray[0].setFConst(f1);
resultArray[1].setFConst(f2);
break;
}
case EOpPackUnorm4x8:
{
ASSERT(getType().getBasicType() == EbtFloat);
resultArray = new TConstantUnion();
resultArray->setUConst(
gl::PackUnorm4x8(operandArray[0].getFConst(), operandArray[1].getFConst(),
operandArray[2].getFConst(), operandArray[3].getFConst()));
break;
}
case EOpPackSnorm4x8:
{
ASSERT(getType().getBasicType() == EbtFloat);
resultArray = new TConstantUnion();
resultArray->setUConst(
gl::PackSnorm4x8(operandArray[0].getFConst(), operandArray[1].getFConst(),
operandArray[2].getFConst(), operandArray[3].getFConst()));
break;
}
case EOpUnpackUnorm4x8:
{
ASSERT(getType().getBasicType() == EbtUInt);
resultArray = new TConstantUnion[4];
float f[4];
gl::UnpackUnorm4x8(operandArray[0].getUConst(), f);
for (size_t i = 0; i < 4; ++i)
{
resultArray[i].setFConst(f[i]);
}
break;
}
case EOpUnpackSnorm4x8:
{
ASSERT(getType().getBasicType() == EbtUInt);
resultArray = new TConstantUnion[4];
float f[4];
gl::UnpackSnorm4x8(operandArray[0].getUConst(), f);
for (size_t i = 0; i < 4; ++i)
{
resultArray[i].setFConst(f[i]);
}
break;
}
default:
UNREACHABLE();
break;
}
return resultArray;
}
TConstantUnion *TIntermConstantUnion::foldUnaryComponentWise(TOperator op,
TDiagnostics *diagnostics)
{
// Do unary operations where each component of the result is computed based on the corresponding
// component of the operand. Also folds normalize, though the divisor in that case takes all
// components into account.
const TConstantUnion *operandArray = getUnionArrayPointer();
ASSERT(operandArray);
size_t objectSize = getType().getObjectSize();
TConstantUnion *resultArray = new TConstantUnion[objectSize];
for (size_t i = 0; i < objectSize; i++)
{
switch (op)
{
case EOpNegative:
switch (getType().getBasicType())
{
case EbtFloat:
resultArray[i].setFConst(-operandArray[i].getFConst());
break;
case EbtInt:
if (operandArray[i] == std::numeric_limits<int>::min())
{
// The minimum representable integer doesn't have a positive
// counterpart, rather the negation overflows and in ESSL is supposed to
// wrap back to the minimum representable integer. Make sure that we
// don't actually let the negation overflow, which has undefined
// behavior in C++.
resultArray[i].setIConst(std::numeric_limits<int>::min());
}
else
{
resultArray[i].setIConst(-operandArray[i].getIConst());
}
break;
case EbtUInt:
if (operandArray[i] == 0x80000000u)
{
resultArray[i].setUConst(0x80000000u);
}
else
{
resultArray[i].setUConst(static_cast<unsigned int>(
-static_cast<int>(operandArray[i].getUConst())));
}
break;
default:
UNREACHABLE();
return nullptr;
}
break;
case EOpPositive:
switch (getType().getBasicType())
{
case EbtFloat:
resultArray[i].setFConst(operandArray[i].getFConst());
break;
case EbtInt:
resultArray[i].setIConst(operandArray[i].getIConst());
break;
case EbtUInt:
resultArray[i].setUConst(static_cast<unsigned int>(
static_cast<int>(operandArray[i].getUConst())));
break;
default:
UNREACHABLE();
return nullptr;
}
break;
case EOpLogicalNot:
switch (getType().getBasicType())
{
case EbtBool:
resultArray[i].setBConst(!operandArray[i].getBConst());
break;
default:
UNREACHABLE();
return nullptr;
}
break;
case EOpBitwiseNot:
switch (getType().getBasicType())
{
case EbtInt:
resultArray[i].setIConst(~operandArray[i].getIConst());
break;
case EbtUInt:
resultArray[i].setUConst(~operandArray[i].getUConst());
break;
default:
UNREACHABLE();
return nullptr;
}
break;
case EOpRadians:
ASSERT(getType().getBasicType() == EbtFloat);
resultArray[i].setFConst(kDegreesToRadiansMultiplier * operandArray[i].getFConst());
break;
case EOpDegrees:
ASSERT(getType().getBasicType() == EbtFloat);
resultArray[i].setFConst(kRadiansToDegreesMultiplier * operandArray[i].getFConst());
break;
case EOpSin:
foldFloatTypeUnary(operandArray[i], &sinf, &resultArray[i]);
break;
case EOpCos:
foldFloatTypeUnary(operandArray[i], &cosf, &resultArray[i]);
break;
case EOpTan:
foldFloatTypeUnary(operandArray[i], &tanf, &resultArray[i]);
break;
case EOpAsin:
// For asin(x), results are undefined if |x| > 1, we are choosing to set result to
// 0.
if (fabsf(operandArray[i].getFConst()) > 1.0f)
UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
diagnostics, &resultArray[i]);
else
foldFloatTypeUnary(operandArray[i], &asinf, &resultArray[i]);
break;
case EOpAcos:
// For acos(x), results are undefined if |x| > 1, we are choosing to set result to
// 0.
if (fabsf(operandArray[i].getFConst()) > 1.0f)
UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
diagnostics, &resultArray[i]);
else
foldFloatTypeUnary(operandArray[i], &acosf, &resultArray[i]);
break;
case EOpAtan:
foldFloatTypeUnary(operandArray[i], &atanf, &resultArray[i]);
break;
case EOpSinh:
foldFloatTypeUnary(operandArray[i], &sinhf, &resultArray[i]);
break;
case EOpCosh:
foldFloatTypeUnary(operandArray[i], &coshf, &resultArray[i]);
break;
case EOpTanh:
foldFloatTypeUnary(operandArray[i], &tanhf, &resultArray[i]);
break;
case EOpAsinh:
foldFloatTypeUnary(operandArray[i], &asinhf, &resultArray[i]);
break;
case EOpAcosh:
// For acosh(x), results are undefined if x < 1, we are choosing to set result to 0.
if (operandArray[i].getFConst() < 1.0f)
UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
diagnostics, &resultArray[i]);
else
foldFloatTypeUnary(operandArray[i], &acoshf, &resultArray[i]);
break;
case EOpAtanh:
// For atanh(x), results are undefined if |x| >= 1, we are choosing to set result to
// 0.
if (fabsf(operandArray[i].getFConst()) >= 1.0f)
UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
diagnostics, &resultArray[i]);
else
foldFloatTypeUnary(operandArray[i], &atanhf, &resultArray[i]);
break;
case EOpAbs:
switch (getType().getBasicType())
{
case EbtFloat:
resultArray[i].setFConst(fabsf(operandArray[i].getFConst()));
break;
case EbtInt:
resultArray[i].setIConst(abs(operandArray[i].getIConst()));
break;
default:
UNREACHABLE();
return nullptr;
}
break;
case EOpSign:
switch (getType().getBasicType())
{
case EbtFloat:
{
float fConst = operandArray[i].getFConst();
float fResult = 0.0f;
if (fConst > 0.0f)
fResult = 1.0f;
else if (fConst < 0.0f)
fResult = -1.0f;
resultArray[i].setFConst(fResult);
break;
}
case EbtInt:
{
int iConst = operandArray[i].getIConst();
int iResult = 0;
if (iConst > 0)
iResult = 1;
else if (iConst < 0)
iResult = -1;
resultArray[i].setIConst(iResult);
break;
}
default:
UNREACHABLE();
return nullptr;
}
break;
case EOpFloor:
foldFloatTypeUnary(operandArray[i], &floorf, &resultArray[i]);
break;
case EOpTrunc:
foldFloatTypeUnary(operandArray[i], &truncf, &resultArray[i]);
break;
case EOpRound:
foldFloatTypeUnary(operandArray[i], &roundf, &resultArray[i]);
break;
case EOpRoundEven:
{
ASSERT(getType().getBasicType() == EbtFloat);
float x = operandArray[i].getFConst();
float result;
float fractPart = modff(x, &result);
if (fabsf(fractPart) == 0.5f)
result = 2.0f * roundf(x / 2.0f);
else
result = roundf(x);
resultArray[i].setFConst(result);
break;
}
case EOpCeil:
foldFloatTypeUnary(operandArray[i], &ceilf, &resultArray[i]);
break;
case EOpFract:
{
ASSERT(getType().getBasicType() == EbtFloat);
float x = operandArray[i].getFConst();
resultArray[i].setFConst(x - floorf(x));
break;
}
case EOpIsNan:
ASSERT(getType().getBasicType() == EbtFloat);
resultArray[i].setBConst(gl::isNaN(operandArray[0].getFConst()));
break;
case EOpIsInf:
ASSERT(getType().getBasicType() == EbtFloat);
resultArray[i].setBConst(gl::isInf(operandArray[0].getFConst()));
break;
case EOpFloatBitsToInt:
ASSERT(getType().getBasicType() == EbtFloat);
resultArray[i].setIConst(gl::bitCast<int32_t>(operandArray[0].getFConst()));
break;
case EOpFloatBitsToUint:
ASSERT(getType().getBasicType() == EbtFloat);
resultArray[i].setUConst(gl::bitCast<uint32_t>(operandArray[0].getFConst()));
break;
case EOpIntBitsToFloat:
ASSERT(getType().getBasicType() == EbtInt);
resultArray[i].setFConst(gl::bitCast<float>(operandArray[0].getIConst()));
break;
case EOpUintBitsToFloat:
ASSERT(getType().getBasicType() == EbtUInt);
resultArray[i].setFConst(gl::bitCast<float>(operandArray[0].getUConst()));
break;
case EOpExp:
foldFloatTypeUnary(operandArray[i], &expf, &resultArray[i]);
break;
case EOpLog:
// For log(x), results are undefined if x <= 0, we are choosing to set result to 0.
if (operandArray[i].getFConst() <= 0.0f)
UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
diagnostics, &resultArray[i]);
else
foldFloatTypeUnary(operandArray[i], &logf, &resultArray[i]);
break;
case EOpExp2:
foldFloatTypeUnary(operandArray[i], &exp2f, &resultArray[i]);
break;
case EOpLog2:
// For log2(x), results are undefined if x <= 0, we are choosing to set result to 0.
// And log2f is not available on some plarforms like old android, so just using
// log(x)/log(2) here.
if (operandArray[i].getFConst() <= 0.0f)
UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
diagnostics, &resultArray[i]);
else
{
foldFloatTypeUnary(operandArray[i], &logf, &resultArray[i]);
resultArray[i].setFConst(resultArray[i].getFConst() / logf(2.0f));
}
break;
case EOpSqrt:
// For sqrt(x), results are undefined if x < 0, we are choosing to set result to 0.
if (operandArray[i].getFConst() < 0.0f)
UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
diagnostics, &resultArray[i]);
else
foldFloatTypeUnary(operandArray[i], &sqrtf, &resultArray[i]);
break;
case EOpInverseSqrt:
// There is no stdlib built-in function equavalent for GLES built-in inversesqrt(),
// so getting the square root first using builtin function sqrt() and then taking
// its inverse.
// Also, for inversesqrt(x), results are undefined if x <= 0, we are choosing to set
// result to 0.
if (operandArray[i].getFConst() <= 0.0f)
UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
diagnostics, &resultArray[i]);
else
{
foldFloatTypeUnary(operandArray[i], &sqrtf, &resultArray[i]);
resultArray[i].setFConst(1.0f / resultArray[i].getFConst());
}
break;
case EOpLogicalNotComponentWise:
ASSERT(getType().getBasicType() == EbtBool);
resultArray[i].setBConst(!operandArray[i].getBConst());
break;
case EOpNormalize:
{
ASSERT(getType().getBasicType() == EbtFloat);
float x = operandArray[i].getFConst();
float length = VectorLength(operandArray, objectSize);
if (length)
resultArray[i].setFConst(x / length);
else
UndefinedConstantFoldingError(getLine(), op, getType().getBasicType(),
diagnostics, &resultArray[i]);
break;
}
case EOpBitfieldReverse:
{
uint32_t value;
if (getType().getBasicType() == EbtInt)
{
value = static_cast<uint32_t>(operandArray[i].getIConst());
}
else
{
ASSERT(getType().getBasicType() == EbtUInt);
value = operandArray[i].getUConst();
}
uint32_t result = gl::BitfieldReverse(value);
if (getType().getBasicType() == EbtInt)
{
resultArray[i].setIConst(static_cast<int32_t>(result));
}
else
{
resultArray[i].setUConst(result);
}
break;
}
case EOpBitCount:
{
uint32_t value;
if (getType().getBasicType() == EbtInt)
{
value = static_cast<uint32_t>(operandArray[i].getIConst());
}
else
{
ASSERT(getType().getBasicType() == EbtUInt);
value = operandArray[i].getUConst();
}
int result = gl::BitCount(value);
resultArray[i].setIConst(result);
break;
}
case EOpFindLSB:
{
uint32_t value;
if (getType().getBasicType() == EbtInt)
{
value = static_cast<uint32_t>(operandArray[i].getIConst());
}
else
{
ASSERT(getType().getBasicType() == EbtUInt);
value = operandArray[i].getUConst();
}
resultArray[i].setIConst(gl::FindLSB(value));
break;
}
case EOpFindMSB:
{
uint32_t value;
if (getType().getBasicType() == EbtInt)
{
int intValue = operandArray[i].getIConst();
value = static_cast<uint32_t>(intValue);
if (intValue < 0)
{
// Look for zero instead of one in value. This also handles the intValue ==
// -1 special case, where the return value needs to be -1.
value = ~value;
}
}
else
{
ASSERT(getType().getBasicType() == EbtUInt);
value = operandArray[i].getUConst();
}
resultArray[i].setIConst(gl::FindMSB(value));
break;
}
case EOpDFdx:
case EOpDFdy:
case EOpFwidth:
ASSERT(getType().getBasicType() == EbtFloat);
// Derivatives of constant arguments should be 0.
resultArray[i].setFConst(0.0f);
break;
default:
return nullptr;
}
}
return resultArray;
}
void TIntermConstantUnion::foldFloatTypeUnary(const TConstantUnion &parameter,
FloatTypeUnaryFunc builtinFunc,
TConstantUnion *result) const
{
ASSERT(builtinFunc);
ASSERT(getType().getBasicType() == EbtFloat);
result->setFConst(builtinFunc(parameter.getFConst()));
}
// static
TConstantUnion *TIntermConstantUnion::FoldAggregateConstructor(TIntermAggregate *aggregate)
{
ASSERT(aggregate->getSequence()->size() > 0u);
size_t resultSize = aggregate->getType().getObjectSize();
TConstantUnion *resultArray = new TConstantUnion[resultSize];
TBasicType basicType = aggregate->getBasicType();
size_t resultIndex = 0u;
if (aggregate->getSequence()->size() == 1u)
{
TIntermNode *argument = aggregate->getSequence()->front();
TIntermConstantUnion *argumentConstant = argument->getAsConstantUnion();
const TConstantUnion *argumentUnionArray = argumentConstant->getUnionArrayPointer();
// Check the special case of constructing a matrix diagonal from a single scalar,
// or a vector from a single scalar.
if (argumentConstant->getType().getObjectSize() == 1u)
{
if (aggregate->isMatrix())
{
int resultCols = aggregate->getType().getCols();
int resultRows = aggregate->getType().getRows();
for (int col = 0; col < resultCols; ++col)
{
for (int row = 0; row < resultRows; ++row)
{
if (col == row)
{
resultArray[resultIndex].cast(basicType, argumentUnionArray[0]);
}
else
{
resultArray[resultIndex].setFConst(0.0f);
}
++resultIndex;
}
}
}
else
{
while (resultIndex < resultSize)
{
resultArray[resultIndex].cast(basicType, argumentUnionArray[0]);
++resultIndex;
}
}
ASSERT(resultIndex == resultSize);
return resultArray;
}
else if (aggregate->isMatrix() && argumentConstant->isMatrix())
{
// The special case of constructing a matrix from a matrix.
int argumentCols = argumentConstant->getType().getCols();
int argumentRows = argumentConstant->getType().getRows();
int resultCols = aggregate->getType().getCols();
int resultRows = aggregate->getType().getRows();
for (int col = 0; col < resultCols; ++col)
{
for (int row = 0; row < resultRows; ++row)
{
if (col < argumentCols && row < argumentRows)
{
resultArray[resultIndex].cast(basicType,
argumentUnionArray[col * argumentRows + row]);
}
else if (col == row)
{
resultArray[resultIndex].setFConst(1.0f);
}
else
{
resultArray[resultIndex].setFConst(0.0f);
}
++resultIndex;
}
}
ASSERT(resultIndex == resultSize);
return resultArray;
}
}
for (TIntermNode *&argument : *aggregate->getSequence())
{
TIntermConstantUnion *argumentConstant = argument->getAsConstantUnion();
size_t argumentSize = argumentConstant->getType().getObjectSize();
const TConstantUnion *argumentUnionArray = argumentConstant->getUnionArrayPointer();
for (size_t i = 0u; i < argumentSize; ++i)
{
if (resultIndex >= resultSize)
break;
resultArray[resultIndex].cast(basicType, argumentUnionArray[i]);
++resultIndex;
}
}
ASSERT(resultIndex == resultSize);
return resultArray;
}
// static
TConstantUnion *TIntermConstantUnion::FoldAggregateBuiltIn(TIntermAggregate *aggregate,
TDiagnostics *diagnostics)
{
TOperator op = aggregate->getOp();
TIntermSequence *arguments = aggregate->getSequence();
unsigned int argsCount = static_cast<unsigned int>(arguments->size());
std::vector<const TConstantUnion *> unionArrays(argsCount);
std::vector<size_t> objectSizes(argsCount);
size_t maxObjectSize = 0;
TBasicType basicType = EbtVoid;
TSourceLoc loc;
for (unsigned int i = 0; i < argsCount; i++)
{
TIntermConstantUnion *argConstant = (*arguments)[i]->getAsConstantUnion();
ASSERT(argConstant != nullptr); // Should be checked already.
if (i == 0)
{
basicType = argConstant->getType().getBasicType();
loc = argConstant->getLine();
}
unionArrays[i] = argConstant->getUnionArrayPointer();
objectSizes[i] = argConstant->getType().getObjectSize();
if (objectSizes[i] > maxObjectSize)
maxObjectSize = objectSizes[i];
}
if (!(*arguments)[0]->getAsTyped()->isMatrix() && aggregate->getOp() != EOpOuterProduct)
{
for (unsigned int i = 0; i < argsCount; i++)
if (objectSizes[i] != maxObjectSize)
unionArrays[i] = Vectorize(*unionArrays[i], maxObjectSize);
}
TConstantUnion *resultArray = nullptr;
switch (op)
{
case EOpAtan:
{
ASSERT(basicType == EbtFloat);
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
{
float y = unionArrays[0][i].getFConst();
float x = unionArrays[1][i].getFConst();
// Results are undefined if x and y are both 0.
if (x == 0.0f && y == 0.0f)
UndefinedConstantFoldingError(loc, op, basicType, diagnostics, &resultArray[i]);
else
resultArray[i].setFConst(atan2f(y, x));
}
break;
}
case EOpPow:
{
ASSERT(basicType == EbtFloat);
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
{
float x = unionArrays[0][i].getFConst();
float y = unionArrays[1][i].getFConst();
// Results are undefined if x < 0.
// Results are undefined if x = 0 and y <= 0.
if (x < 0.0f)
UndefinedConstantFoldingError(loc, op, basicType, diagnostics, &resultArray[i]);
else if (x == 0.0f && y <= 0.0f)
UndefinedConstantFoldingError(loc, op, basicType, diagnostics, &resultArray[i]);
else
resultArray[i].setFConst(powf(x, y));
}
break;
}
case EOpMod:
{
ASSERT(basicType == EbtFloat);
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
{
float x = unionArrays[0][i].getFConst();
float y = unionArrays[1][i].getFConst();
resultArray[i].setFConst(x - y * floorf(x / y));
}
break;
}
case EOpMin:
{
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
{
switch (basicType)
{
case EbtFloat:
resultArray[i].setFConst(
std::min(unionArrays[0][i].getFConst(), unionArrays[1][i].getFConst()));
break;
case EbtInt:
resultArray[i].setIConst(
std::min(unionArrays[0][i].getIConst(), unionArrays[1][i].getIConst()));
break;
case EbtUInt:
resultArray[i].setUConst(
std::min(unionArrays[0][i].getUConst(), unionArrays[1][i].getUConst()));
break;
default:
UNREACHABLE();
break;
}
}
break;
}
case EOpMax:
{
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
{
switch (basicType)
{
case EbtFloat:
resultArray[i].setFConst(
std::max(unionArrays[0][i].getFConst(), unionArrays[1][i].getFConst()));
break;
case EbtInt:
resultArray[i].setIConst(
std::max(unionArrays[0][i].getIConst(), unionArrays[1][i].getIConst()));
break;
case EbtUInt:
resultArray[i].setUConst(
std::max(unionArrays[0][i].getUConst(), unionArrays[1][i].getUConst()));
break;
default:
UNREACHABLE();
break;
}
}
break;
}
case EOpStep:
{
ASSERT(basicType == EbtFloat);
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
resultArray[i].setFConst(
unionArrays[1][i].getFConst() < unionArrays[0][i].getFConst() ? 0.0f : 1.0f);
break;
}
case EOpLessThanComponentWise:
{
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
{
switch (basicType)
{
case EbtFloat:
resultArray[i].setBConst(unionArrays[0][i].getFConst() <
unionArrays[1][i].getFConst());
break;
case EbtInt:
resultArray[i].setBConst(unionArrays[0][i].getIConst() <
unionArrays[1][i].getIConst());
break;
case EbtUInt:
resultArray[i].setBConst(unionArrays[0][i].getUConst() <
unionArrays[1][i].getUConst());
break;
default:
UNREACHABLE();
break;
}
}
break;
}
case EOpLessThanEqualComponentWise:
{
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
{
switch (basicType)
{
case EbtFloat:
resultArray[i].setBConst(unionArrays[0][i].getFConst() <=
unionArrays[1][i].getFConst());
break;
case EbtInt:
resultArray[i].setBConst(unionArrays[0][i].getIConst() <=
unionArrays[1][i].getIConst());
break;
case EbtUInt:
resultArray[i].setBConst(unionArrays[0][i].getUConst() <=
unionArrays[1][i].getUConst());
break;
default:
UNREACHABLE();
break;
}
}
break;
}
case EOpGreaterThanComponentWise:
{
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
{
switch (basicType)
{
case EbtFloat:
resultArray[i].setBConst(unionArrays[0][i].getFConst() >
unionArrays[1][i].getFConst());
break;
case EbtInt:
resultArray[i].setBConst(unionArrays[0][i].getIConst() >
unionArrays[1][i].getIConst());
break;
case EbtUInt:
resultArray[i].setBConst(unionArrays[0][i].getUConst() >
unionArrays[1][i].getUConst());
break;
default:
UNREACHABLE();
break;
}
}
break;
}
case EOpGreaterThanEqualComponentWise:
{
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
{
switch (basicType)
{
case EbtFloat:
resultArray[i].setBConst(unionArrays[0][i].getFConst() >=
unionArrays[1][i].getFConst());
break;
case EbtInt:
resultArray[i].setBConst(unionArrays[0][i].getIConst() >=
unionArrays[1][i].getIConst());
break;
case EbtUInt:
resultArray[i].setBConst(unionArrays[0][i].getUConst() >=
unionArrays[1][i].getUConst());
break;
default:
UNREACHABLE();
break;
}
}
}
break;
case EOpEqualComponentWise:
{
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
{
switch (basicType)
{
case EbtFloat:
resultArray[i].setBConst(unionArrays[0][i].getFConst() ==
unionArrays[1][i].getFConst());
break;
case EbtInt:
resultArray[i].setBConst(unionArrays[0][i].getIConst() ==
unionArrays[1][i].getIConst());
break;
case EbtUInt:
resultArray[i].setBConst(unionArrays[0][i].getUConst() ==
unionArrays[1][i].getUConst());
break;
case EbtBool:
resultArray[i].setBConst(unionArrays[0][i].getBConst() ==
unionArrays[1][i].getBConst());
break;
default:
UNREACHABLE();
break;
}
}
break;
}
case EOpNotEqualComponentWise:
{
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
{
switch (basicType)
{
case EbtFloat:
resultArray[i].setBConst(unionArrays[0][i].getFConst() !=
unionArrays[1][i].getFConst());
break;
case EbtInt:
resultArray[i].setBConst(unionArrays[0][i].getIConst() !=
unionArrays[1][i].getIConst());
break;
case EbtUInt:
resultArray[i].setBConst(unionArrays[0][i].getUConst() !=
unionArrays[1][i].getUConst());
break;
case EbtBool:
resultArray[i].setBConst(unionArrays[0][i].getBConst() !=
unionArrays[1][i].getBConst());
break;
default:
UNREACHABLE();
break;
}
}
break;
}
case EOpDistance:
{
ASSERT(basicType == EbtFloat);
TConstantUnion *distanceArray = new TConstantUnion[maxObjectSize];
resultArray = new TConstantUnion();
for (size_t i = 0; i < maxObjectSize; i++)
{
float x = unionArrays[0][i].getFConst();
float y = unionArrays[1][i].getFConst();
distanceArray[i].setFConst(x - y);
}
resultArray->setFConst(VectorLength(distanceArray, maxObjectSize));
break;
}
case EOpDot:
ASSERT(basicType == EbtFloat);
resultArray = new TConstantUnion();
resultArray->setFConst(VectorDotProduct(unionArrays[0], unionArrays[1], maxObjectSize));
break;
case EOpCross:
{
ASSERT(basicType == EbtFloat && maxObjectSize == 3);
resultArray = new TConstantUnion[maxObjectSize];
float x0 = unionArrays[0][0].getFConst();
float x1 = unionArrays[0][1].getFConst();
float x2 = unionArrays[0][2].getFConst();
float y0 = unionArrays[1][0].getFConst();
float y1 = unionArrays[1][1].getFConst();
float y2 = unionArrays[1][2].getFConst();
resultArray[0].setFConst(x1 * y2 - y1 * x2);
resultArray[1].setFConst(x2 * y0 - y2 * x0);
resultArray[2].setFConst(x0 * y1 - y0 * x1);
break;
}
case EOpReflect:
{
ASSERT(basicType == EbtFloat);
// genType reflect (genType I, genType N) :
// For the incident vector I and surface orientation N, returns the reflection
// direction:
// I - 2 * dot(N, I) * N.
resultArray = new TConstantUnion[maxObjectSize];
float dotProduct = VectorDotProduct(unionArrays[1], unionArrays[0], maxObjectSize);
for (size_t i = 0; i < maxObjectSize; i++)
{
float result = unionArrays[0][i].getFConst() -
2.0f * dotProduct * unionArrays[1][i].getFConst();
resultArray[i].setFConst(result);
}
break;
}
case EOpMulMatrixComponentWise:
{
ASSERT(basicType == EbtFloat && (*arguments)[0]->getAsTyped()->isMatrix() &&
(*arguments)[1]->getAsTyped()->isMatrix());
// Perform component-wise matrix multiplication.
resultArray = new TConstantUnion[maxObjectSize];
int size = (*arguments)[0]->getAsTyped()->getNominalSize();
angle::Matrix<float> result =
GetMatrix(unionArrays[0], size).compMult(GetMatrix(unionArrays[1], size));
SetUnionArrayFromMatrix(result, resultArray);
break;
}
case EOpOuterProduct:
{
ASSERT(basicType == EbtFloat);
size_t numRows = (*arguments)[0]->getAsTyped()->getType().getObjectSize();
size_t numCols = (*arguments)[1]->getAsTyped()->getType().getObjectSize();
resultArray = new TConstantUnion[numRows * numCols];
angle::Matrix<float> result =
GetMatrix(unionArrays[0], static_cast<int>(numRows), 1)
.outerProduct(GetMatrix(unionArrays[1], 1, static_cast<int>(numCols)));
SetUnionArrayFromMatrix(result, resultArray);
break;
}
case EOpClamp:
{
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
{
switch (basicType)
{
case EbtFloat:
{
float x = unionArrays[0][i].getFConst();
float min = unionArrays[1][i].getFConst();
float max = unionArrays[2][i].getFConst();
// Results are undefined if min > max.
if (min > max)
UndefinedConstantFoldingError(loc, op, basicType, diagnostics,
&resultArray[i]);
else
resultArray[i].setFConst(gl::clamp(x, min, max));
break;
}
case EbtInt:
{
int x = unionArrays[0][i].getIConst();
int min = unionArrays[1][i].getIConst();
int max = unionArrays[2][i].getIConst();
// Results are undefined if min > max.
if (min > max)
UndefinedConstantFoldingError(loc, op, basicType, diagnostics,
&resultArray[i]);
else
resultArray[i].setIConst(gl::clamp(x, min, max));
break;
}
case EbtUInt:
{
unsigned int x = unionArrays[0][i].getUConst();
unsigned int min = unionArrays[1][i].getUConst();
unsigned int max = unionArrays[2][i].getUConst();
// Results are undefined if min > max.
if (min > max)
UndefinedConstantFoldingError(loc, op, basicType, diagnostics,
&resultArray[i]);
else
resultArray[i].setUConst(gl::clamp(x, min, max));
break;
}
default:
UNREACHABLE();
break;
}
}
break;
}
case EOpMix:
{
ASSERT(basicType == EbtFloat);
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
{
float x = unionArrays[0][i].getFConst();
float y = unionArrays[1][i].getFConst();
TBasicType type = (*arguments)[2]->getAsTyped()->getType().getBasicType();
if (type == EbtFloat)
{
// Returns the linear blend of x and y, i.e., x * (1 - a) + y * a.
float a = unionArrays[2][i].getFConst();
resultArray[i].setFConst(x * (1.0f - a) + y * a);
}
else // 3rd parameter is EbtBool
{
ASSERT(type == EbtBool);
// Selects which vector each returned component comes from.
// For a component of a that is false, the corresponding component of x is
// returned.
// For a component of a that is true, the corresponding component of y is
// returned.
bool a = unionArrays[2][i].getBConst();
resultArray[i].setFConst(a ? y : x);
}
}
break;
}
case EOpSmoothStep:
{
ASSERT(basicType == EbtFloat);
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
{
float edge0 = unionArrays[0][i].getFConst();
float edge1 = unionArrays[1][i].getFConst();
float x = unionArrays[2][i].getFConst();
// Results are undefined if edge0 >= edge1.
if (edge0 >= edge1)
{
UndefinedConstantFoldingError(loc, op, basicType, diagnostics, &resultArray[i]);
}
else
{
// Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and performs smooth
// Hermite interpolation between 0 and 1 when edge0 < x < edge1.
float t = gl::clamp((x - edge0) / (edge1 - edge0), 0.0f, 1.0f);
resultArray[i].setFConst(t * t * (3.0f - 2.0f * t));
}
}
break;
}
case EOpLdexp:
{
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; i++)
{
float x = unionArrays[0][i].getFConst();
int exp = unionArrays[1][i].getIConst();
if (exp > 128)
{
UndefinedConstantFoldingError(loc, op, basicType, diagnostics, &resultArray[i]);
}
else
{
resultArray[i].setFConst(gl::Ldexp(x, exp));
}
}
break;
}
case EOpFaceForward:
{
ASSERT(basicType == EbtFloat);
// genType faceforward(genType N, genType I, genType Nref) :
// If dot(Nref, I) < 0 return N, otherwise return -N.
resultArray = new TConstantUnion[maxObjectSize];
float dotProduct = VectorDotProduct(unionArrays[2], unionArrays[1], maxObjectSize);
for (size_t i = 0; i < maxObjectSize; i++)
{
if (dotProduct < 0)
resultArray[i].setFConst(unionArrays[0][i].getFConst());
else
resultArray[i].setFConst(-unionArrays[0][i].getFConst());
}
break;
}
case EOpRefract:
{
ASSERT(basicType == EbtFloat);
// genType refract(genType I, genType N, float eta) :
// For the incident vector I and surface normal N, and the ratio of indices of
// refraction eta,
// return the refraction vector. The result is computed by
// k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I))
// if (k < 0.0)
// return genType(0.0)
// else
// return eta * I - (eta * dot(N, I) + sqrt(k)) * N
resultArray = new TConstantUnion[maxObjectSize];
float dotProduct = VectorDotProduct(unionArrays[1], unionArrays[0], maxObjectSize);
for (size_t i = 0; i < maxObjectSize; i++)
{
float eta = unionArrays[2][i].getFConst();
float k = 1.0f - eta * eta * (1.0f - dotProduct * dotProduct);
if (k < 0.0f)
resultArray[i].setFConst(0.0f);
else
resultArray[i].setFConst(eta * unionArrays[0][i].getFConst() -
(eta * dotProduct + sqrtf(k)) *
unionArrays[1][i].getFConst());
}
break;
}
case EOpBitfieldExtract:
{
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; ++i)
{
int offset = unionArrays[1][0].getIConst();
int bits = unionArrays[2][0].getIConst();
if (bits == 0)
{
if (aggregate->getBasicType() == EbtInt)
{
resultArray[i].setIConst(0);
}
else
{
ASSERT(aggregate->getBasicType() == EbtUInt);
resultArray[i].setUConst(0);
}
}
else if (offset < 0 || bits < 0 || offset >= 32 || bits > 32 || offset + bits > 32)
{
UndefinedConstantFoldingError(loc, op, aggregate->getBasicType(), diagnostics,
&resultArray[i]);
}
else
{
// bits can be 32 here, so we need to avoid bit shift overflow.
uint32_t maskMsb = 1u << (bits - 1);
uint32_t mask = ((maskMsb - 1u) | maskMsb) << offset;
if (aggregate->getBasicType() == EbtInt)
{
uint32_t value = static_cast<uint32_t>(unionArrays[0][i].getIConst());
uint32_t resultUnsigned = (value & mask) >> offset;
if ((resultUnsigned & maskMsb) != 0)
{
// The most significant bits (from bits+1 to the most significant bit)
// should be set to 1.
uint32_t higherBitsMask = ((1u << (32 - bits)) - 1u) << bits;
resultUnsigned |= higherBitsMask;
}
resultArray[i].setIConst(static_cast<int32_t>(resultUnsigned));
}
else
{
ASSERT(aggregate->getBasicType() == EbtUInt);
uint32_t value = unionArrays[0][i].getUConst();
resultArray[i].setUConst((value & mask) >> offset);
}
}
}
break;
}
case EOpBitfieldInsert:
{
resultArray = new TConstantUnion[maxObjectSize];
for (size_t i = 0; i < maxObjectSize; ++i)
{
int offset = unionArrays[2][0].getIConst();
int bits = unionArrays[3][0].getIConst();
if (bits == 0)
{
if (aggregate->getBasicType() == EbtInt)
{
int32_t base = unionArrays[0][i].getIConst();
resultArray[i].setIConst(base);
}
else
{
ASSERT(aggregate->getBasicType() == EbtUInt);
uint32_t base = unionArrays[0][i].getUConst();
resultArray[i].setUConst(base);
}
}
else if (offset < 0 || bits < 0 || offset >= 32 || bits > 32 || offset + bits > 32)
{
UndefinedConstantFoldingError(loc, op, aggregate->getBasicType(), diagnostics,
&resultArray[i]);
}
else
{
// bits can be 32 here, so we need to avoid bit shift overflow.
uint32_t maskMsb = 1u << (bits - 1);
uint32_t insertMask = ((maskMsb - 1u) | maskMsb) << offset;
uint32_t baseMask = ~insertMask;
if (aggregate->getBasicType() == EbtInt)
{
uint32_t base = static_cast<uint32_t>(unionArrays[0][i].getIConst());
uint32_t insert = static_cast<uint32_t>(unionArrays[1][i].getIConst());
uint32_t resultUnsigned =
(base & baseMask) | ((insert << offset) & insertMask);
resultArray[i].setIConst(static_cast<int32_t>(resultUnsigned));
}
else
{
ASSERT(aggregate->getBasicType() == EbtUInt);
uint32_t base = unionArrays[0][i].getUConst();
uint32_t insert = unionArrays[1][i].getUConst();
resultArray[i].setUConst((base & baseMask) |
((insert << offset) & insertMask));
}
}
}
break;
}
default:
UNREACHABLE();
return nullptr;
}
return resultArray;
}
// static
TString TIntermTraverser::hash(const TString &name, ShHashFunction64 hashFunction)
{
if (hashFunction == nullptr || name.empty())
return name;
khronos_uint64_t number = (*hashFunction)(name.c_str(), name.length());
TStringStream stream;
stream << HASHED_NAME_PREFIX << std::hex << number;
TString hashedName = stream.str();
return hashedName;
}
void TIntermTraverser::updateTree()
{
for (size_t ii = 0; ii < mInsertions.size(); ++ii)
{
const NodeInsertMultipleEntry &insertion = mInsertions[ii];
ASSERT(insertion.parent);
if (!insertion.insertionsAfter.empty())
{
bool inserted = insertion.parent->insertChildNodes(insertion.position + 1,
insertion.insertionsAfter);
ASSERT(inserted);
}
if (!insertion.insertionsBefore.empty())
{
bool inserted =
insertion.parent->insertChildNodes(insertion.position, insertion.insertionsBefore);
ASSERT(inserted);
}
}
for (size_t ii = 0; ii < mReplacements.size(); ++ii)
{
const NodeUpdateEntry &replacement = mReplacements[ii];
ASSERT(replacement.parent);
bool replaced =
replacement.parent->replaceChildNode(replacement.original, replacement.replacement);
ASSERT(replaced);
if (!replacement.originalBecomesChildOfReplacement)
{
// In AST traversing, a parent is visited before its children.
// After we replace a node, if its immediate child is to
// be replaced, we need to make sure we don't update the replaced
// node; instead, we update the replacement node.
for (size_t jj = ii + 1; jj < mReplacements.size(); ++jj)
{
NodeUpdateEntry &replacement2 = mReplacements[jj];
if (replacement2.parent == replacement.original)
replacement2.parent = replacement.replacement;
}
}
}
for (size_t ii = 0; ii < mMultiReplacements.size(); ++ii)
{
const NodeReplaceWithMultipleEntry &replacement = mMultiReplacements[ii];
ASSERT(replacement.parent);
bool replaced = replacement.parent->replaceChildNodeWithMultiple(replacement.original,
replacement.replacements);
ASSERT(replaced);
}
clearReplacementQueue();
}
void TIntermTraverser::clearReplacementQueue()
{
mReplacements.clear();
mMultiReplacements.clear();
mInsertions.clear();
}
void TIntermTraverser::queueReplacement(TIntermNode *original,
TIntermNode *replacement,
OriginalNode originalStatus)
{
queueReplacementWithParent(getParentNode(), original, replacement, originalStatus);
}
void TIntermTraverser::queueReplacementWithParent(TIntermNode *parent,
TIntermNode *original,
TIntermNode *replacement,
OriginalNode originalStatus)
{
bool originalBecomesChild = (originalStatus == OriginalNode::BECOMES_CHILD);
mReplacements.push_back(NodeUpdateEntry(parent, original, replacement, originalBecomesChild));
}
TName TIntermTraverser::GetInternalFunctionName(const char *name)
{
TString nameStr(name);
TName nameObj(nameStr);
nameObj.setInternal(true);
return nameObj;
}
TIntermFunctionPrototype *TIntermTraverser::CreateInternalFunctionPrototypeNode(
const TType &returnType,
const char *name,
const TSymbolUniqueId &functionId)
{
TIntermFunctionPrototype *functionNode = new TIntermFunctionPrototype(returnType, functionId);
functionNode->getFunctionSymbolInfo()->setNameObj(GetInternalFunctionName(name));
return functionNode;
}
TIntermFunctionDefinition *TIntermTraverser::CreateInternalFunctionDefinitionNode(
const TType &returnType,
const char *name,
TIntermBlock *functionBody,
const TSymbolUniqueId &functionId)
{
TIntermFunctionPrototype *prototypeNode =
CreateInternalFunctionPrototypeNode(returnType, name, functionId);
return new TIntermFunctionDefinition(prototypeNode, functionBody);
}
TIntermAggregate *TIntermTraverser::CreateInternalFunctionCallNode(
const TType &returnType,
const char *name,
const TSymbolUniqueId &functionId,
TIntermSequence *arguments)
{
TIntermAggregate *functionNode = TIntermAggregate::CreateFunctionCall(
returnType, functionId, GetInternalFunctionName(name), arguments);
return functionNode;
}
} // namespace sh