blob: c919ab290d0d6f9ef635d2d358809c334e3a3268 [file] [log] [blame]
//
// Copyright 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Buffer11.cpp Defines the Buffer11 class.
#include "libANGLE/renderer/d3d/d3d11/Buffer11.h"
#include <memory>
#include "common/MemoryBuffer.h"
#include "libANGLE/renderer/d3d/IndexDataManager.h"
#include "libANGLE/renderer/d3d/VertexDataManager.h"
#include "libANGLE/renderer/d3d/d3d11/RenderTarget11.h"
#include "libANGLE/renderer/d3d/d3d11/Renderer11.h"
#include "libANGLE/renderer/d3d/d3d11/formatutils11.h"
#include "libANGLE/renderer/d3d/d3d11/renderer11_utils.h"
#include "libANGLE/renderer/renderer_utils.h"
namespace rx
{
namespace
{
template <typename T>
GLuint ReadIndexValueFromIndices(const uint8_t *data, size_t index)
{
return reinterpret_cast<const T *>(data)[index];
}
typedef GLuint (*ReadIndexValueFunction)(const uint8_t *data, size_t index);
enum class CopyResult
{
RECREATED,
NOT_RECREATED,
};
void CalculateConstantBufferParams(GLintptr offset,
GLsizeiptr size,
UINT *outFirstConstant,
UINT *outNumConstants)
{
// The offset must be aligned to 256 bytes (should have been enforced by glBindBufferRange).
ASSERT(offset % 256 == 0);
// firstConstant and numConstants are expressed in constants of 16-bytes. Furthermore they must
// be a multiple of 16 constants.
*outFirstConstant = static_cast<UINT>(offset / 16);
// The GL size is not required to be aligned to a 256 bytes boundary.
// Round the size up to a 256 bytes boundary then express the results in constants of 16-bytes.
*outNumConstants = static_cast<UINT>(rx::roundUp(size, static_cast<GLsizeiptr>(256)) / 16);
// Since the size is rounded up, firstConstant + numConstants may be bigger than the actual size
// of the buffer. This behaviour is explictly allowed according to the documentation on
// ID3D11DeviceContext1::PSSetConstantBuffers1
// https://msdn.microsoft.com/en-us/library/windows/desktop/hh404649%28v=vs.85%29.aspx
}
} // anonymous namespace
namespace gl_d3d11
{
D3D11_MAP GetD3DMapTypeFromBits(BufferUsage usage, GLbitfield access)
{
bool readBit = ((access & GL_MAP_READ_BIT) != 0);
bool writeBit = ((access & GL_MAP_WRITE_BIT) != 0);
ASSERT(readBit || writeBit);
// Note : we ignore the discard bit, because in D3D11, staging buffers
// don't accept the map-discard flag (discard only works for DYNAMIC usage)
if (readBit && !writeBit)
{
return D3D11_MAP_READ;
}
else if (writeBit && !readBit)
{
// Special case for uniform storage - we only allow full buffer updates.
return usage == BUFFER_USAGE_UNIFORM ? D3D11_MAP_WRITE_DISCARD : D3D11_MAP_WRITE;
}
else if (writeBit && readBit)
{
return D3D11_MAP_READ_WRITE;
}
else
{
UNREACHABLE();
return D3D11_MAP_READ;
}
}
} // namespace gl_d3d11
// Each instance of Buffer11::BufferStorage is specialized for a class of D3D binding points
// - vertex/transform feedback buffers
// - index buffers
// - pixel unpack buffers
// - uniform buffers
class Buffer11::BufferStorage : angle::NonCopyable
{
public:
virtual ~BufferStorage() {}
DataRevision getDataRevision() const { return mRevision; }
BufferUsage getUsage() const { return mUsage; }
size_t getSize() const { return mBufferSize; }
void setDataRevision(DataRevision rev) { mRevision = rev; }
virtual bool isMappable(GLbitfield access) const = 0;
virtual gl::ErrorOrResult<CopyResult> copyFromStorage(BufferStorage *source,
size_t sourceOffset,
size_t size,
size_t destOffset) = 0;
virtual gl::Error resize(size_t size, bool preserveData) = 0;
virtual gl::Error map(size_t offset,
size_t length,
GLbitfield access,
uint8_t **mapPointerOut) = 0;
virtual void unmap() = 0;
gl::Error setData(const uint8_t *data, size_t offset, size_t size);
protected:
BufferStorage(Renderer11 *renderer, BufferUsage usage);
Renderer11 *mRenderer;
DataRevision mRevision;
const BufferUsage mUsage;
size_t mBufferSize;
};
// A native buffer storage represents an underlying D3D11 buffer for a particular
// type of storage.
class Buffer11::NativeStorage : public Buffer11::BufferStorage
{
public:
NativeStorage(Renderer11 *renderer,
BufferUsage usage,
const OnBufferDataDirtyChannel *onStorageChanged);
~NativeStorage() override;
bool isMappable(GLbitfield access) const override;
ID3D11Buffer *getNativeStorage() const { return mNativeStorage; }
gl::ErrorOrResult<CopyResult> copyFromStorage(BufferStorage *source,
size_t sourceOffset,
size_t size,
size_t destOffset) override;
gl::Error resize(size_t size, bool preserveData) override;
gl::Error map(size_t offset,
size_t length,
GLbitfield access,
uint8_t **mapPointerOut) override;
void unmap() override;
gl::ErrorOrResult<ID3D11ShaderResourceView *> getSRVForFormat(DXGI_FORMAT srvFormat);
private:
static void FillBufferDesc(D3D11_BUFFER_DESC *bufferDesc,
Renderer11 *renderer,
BufferUsage usage,
unsigned int bufferSize);
void clearSRVs();
ID3D11Buffer *mNativeStorage;
const OnBufferDataDirtyChannel *mOnStorageChanged;
std::map<DXGI_FORMAT, ID3D11ShaderResourceView *> mBufferResourceViews;
};
// A emulated indexed buffer storage represents an underlying D3D11 buffer for data
// that has been expanded to match the indices list used. This storage is only
// used for FL9_3 pointsprite rendering emulation.
class Buffer11::EmulatedIndexedStorage : public Buffer11::BufferStorage
{
public:
EmulatedIndexedStorage(Renderer11 *renderer);
~EmulatedIndexedStorage() override;
bool isMappable(GLbitfield access) const override { return true; }
gl::ErrorOrResult<ID3D11Buffer *> getNativeStorage(SourceIndexData *indexInfo,
const TranslatedAttribute &attribute,
GLint startVertex);
gl::ErrorOrResult<CopyResult> copyFromStorage(BufferStorage *source,
size_t sourceOffset,
size_t size,
size_t destOffset) override;
gl::Error resize(size_t size, bool preserveData) override;
gl::Error map(size_t offset,
size_t length,
GLbitfield access,
uint8_t **mapPointerOut) override;
void unmap() override;
private:
ID3D11Buffer *mNativeStorage; // contains expanded data for use by D3D
angle::MemoryBuffer mMemoryBuffer; // original data (not expanded)
angle::MemoryBuffer mIndicesMemoryBuffer; // indices data
};
// Pack storage represents internal storage for pack buffers. We implement pack buffers
// as CPU memory, tied to a staging texture, for asynchronous texture readback.
class Buffer11::PackStorage : public Buffer11::BufferStorage
{
public:
explicit PackStorage(Renderer11 *renderer);
~PackStorage() override;
bool isMappable(GLbitfield access) const override { return true; }
gl::ErrorOrResult<CopyResult> copyFromStorage(BufferStorage *source,
size_t sourceOffset,
size_t size,
size_t destOffset) override;
gl::Error resize(size_t size, bool preserveData) override;
gl::Error map(size_t offset,
size_t length,
GLbitfield access,
uint8_t **mapPointerOut) override;
void unmap() override;
gl::Error packPixels(const gl::FramebufferAttachment &readAttachment,
const PackPixelsParams &params);
private:
gl::Error flushQueuedPackCommand();
TextureHelper11 mStagingTexture;
angle::MemoryBuffer mMemoryBuffer;
std::unique_ptr<PackPixelsParams> mQueuedPackCommand;
PackPixelsParams mPackParams;
bool mDataModified;
};
// System memory storage stores a CPU memory buffer with our buffer data.
// For dynamic data, it's much faster to update the CPU memory buffer than
// it is to update a D3D staging buffer and read it back later.
class Buffer11::SystemMemoryStorage : public Buffer11::BufferStorage
{
public:
explicit SystemMemoryStorage(Renderer11 *renderer);
~SystemMemoryStorage() override {}
bool isMappable(GLbitfield access) const override { return true; }
gl::ErrorOrResult<CopyResult> copyFromStorage(BufferStorage *source,
size_t sourceOffset,
size_t size,
size_t destOffset) override;
gl::Error resize(size_t size, bool preserveData) override;
gl::Error map(size_t offset,
size_t length,
GLbitfield access,
uint8_t **mapPointerOut) override;
void unmap() override;
angle::MemoryBuffer *getSystemCopy() { return &mSystemCopy; }
protected:
angle::MemoryBuffer mSystemCopy;
};
Buffer11::Buffer11(const gl::BufferState &state, Renderer11 *renderer)
: BufferD3D(state, renderer),
mRenderer(renderer),
mSize(0),
mMappedStorage(nullptr),
mBufferStorages({}),
mDeallocThresholds({}),
mIdleness({}),
mConstantBufferStorageAdditionalSize(0),
mMaxConstantBufferLruCount(0)
{
}
Buffer11::~Buffer11()
{
for (auto &storage : mBufferStorages)
{
SafeDelete(storage);
}
for (auto &p : mConstantBufferRangeStoragesCache)
{
SafeDelete(p.second.storage);
}
mRenderer->onBufferDelete(this);
}
gl::Error Buffer11::setData(ContextImpl *context,
GLenum target,
const void *data,
size_t size,
GLenum usage)
{
updateD3DBufferUsage(usage);
ANGLE_TRY(setSubData(context, target, data, size, 0));
return gl::NoError();
}
gl::Error Buffer11::getData(const uint8_t **outData)
{
SystemMemoryStorage *systemMemoryStorage = nullptr;
ANGLE_TRY_RESULT(getSystemMemoryStorage(), systemMemoryStorage);
ASSERT(systemMemoryStorage->getSize() >= mSize);
*outData = systemMemoryStorage->getSystemCopy()->data();
return gl::NoError();
}
gl::ErrorOrResult<Buffer11::SystemMemoryStorage *> Buffer11::getSystemMemoryStorage()
{
BufferStorage *storage = nullptr;
ANGLE_TRY_RESULT(getBufferStorage(BUFFER_USAGE_SYSTEM_MEMORY), storage);
return GetAs<SystemMemoryStorage>(storage);
}
gl::Error Buffer11::setSubData(ContextImpl * /*context*/,
GLenum target,
const void *data,
size_t size,
size_t offset)
{
size_t requiredSize = size + offset;
if (data && size > 0)
{
// Use system memory storage for dynamic buffers.
// Try using a constant storage for constant buffers
BufferStorage *writeBuffer = nullptr;
if (target == GL_UNIFORM_BUFFER)
{
// If we are a very large uniform buffer, keep system memory storage around so that we
// aren't forced to read back from a constant buffer. We also check the workaround for
// Intel - this requires us to use system memory so we don't end up having to copy from
// a constant buffer to a staging buffer.
// TODO(jmadill): Use Context caps.
if (offset == 0 && size >= mSize &&
size <= static_cast<UINT>(mRenderer->getNativeCaps().maxUniformBlockSize) &&
!mRenderer->getWorkarounds().useSystemMemoryForConstantBuffers)
{
ANGLE_TRY_RESULT(getBufferStorage(BUFFER_USAGE_UNIFORM), writeBuffer);
}
else
{
ANGLE_TRY_RESULT(getSystemMemoryStorage(), writeBuffer);
}
}
else if (supportsDirectBinding())
{
ANGLE_TRY_RESULT(getStagingStorage(), writeBuffer);
}
else
{
ANGLE_TRY_RESULT(getSystemMemoryStorage(), writeBuffer);
}
ASSERT(writeBuffer);
// Explicitly resize the staging buffer, preserving data if the new data will not
// completely fill the buffer
if (writeBuffer->getSize() < requiredSize)
{
bool preserveData = (offset > 0);
ANGLE_TRY(writeBuffer->resize(requiredSize, preserveData));
}
writeBuffer->setData(static_cast<const uint8_t *>(data), offset, size);
writeBuffer->setDataRevision(writeBuffer->getDataRevision() + 1);
}
mSize = std::max(mSize, requiredSize);
invalidateStaticData();
return gl::NoError();
}
gl::Error Buffer11::copySubData(ContextImpl *context,
BufferImpl *source,
GLintptr sourceOffset,
GLintptr destOffset,
GLsizeiptr size)
{
Buffer11 *sourceBuffer = GetAs<Buffer11>(source);
ASSERT(sourceBuffer != nullptr);
BufferStorage *copyDest = nullptr;
ANGLE_TRY_RESULT(getLatestBufferStorage(), copyDest);
if (!copyDest)
{
ANGLE_TRY_RESULT(getStagingStorage(), copyDest);
}
BufferStorage *copySource = nullptr;
ANGLE_TRY_RESULT(sourceBuffer->getLatestBufferStorage(), copySource);
if (!copySource || !copyDest)
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to allocate internal staging buffer.");
}
// If copying to/from a pixel pack buffer, we must have a staging or
// pack buffer partner, because other native buffers can't be mapped
if (copyDest->getUsage() == BUFFER_USAGE_PIXEL_PACK && !copySource->isMappable(GL_MAP_READ_BIT))
{
ANGLE_TRY_RESULT(sourceBuffer->getStagingStorage(), copySource);
}
else if (copySource->getUsage() == BUFFER_USAGE_PIXEL_PACK &&
!copyDest->isMappable(GL_MAP_WRITE_BIT))
{
ANGLE_TRY_RESULT(getStagingStorage(), copyDest);
}
// D3D11 does not allow overlapped copies until 11.1, and only if the
// device supports D3D11_FEATURE_DATA_D3D11_OPTIONS::CopyWithOverlap
// Get around this via a different source buffer
if (copySource == copyDest)
{
if (copySource->getUsage() == BUFFER_USAGE_STAGING)
{
ANGLE_TRY_RESULT(getBufferStorage(BUFFER_USAGE_VERTEX_OR_TRANSFORM_FEEDBACK),
copySource);
}
else
{
ANGLE_TRY_RESULT(getStagingStorage(), copySource);
}
}
CopyResult copyResult = CopyResult::NOT_RECREATED;
ANGLE_TRY_RESULT(copyDest->copyFromStorage(copySource, sourceOffset, size, destOffset),
copyResult);
copyDest->setDataRevision(copyDest->getDataRevision() + 1);
mSize = std::max<size_t>(mSize, destOffset + size);
invalidateStaticData();
return gl::NoError();
}
gl::Error Buffer11::map(ContextImpl *context, GLenum access, void **mapPtr)
{
// GL_OES_mapbuffer uses an enum instead of a bitfield for it's access, convert to a bitfield
// and call mapRange.
ASSERT(access == GL_WRITE_ONLY_OES);
return mapRange(context, 0, mSize, GL_MAP_WRITE_BIT, mapPtr);
}
gl::Error Buffer11::mapRange(ContextImpl *context,
size_t offset,
size_t length,
GLbitfield access,
void **mapPtr)
{
ASSERT(!mMappedStorage);
BufferStorage *latestStorage = nullptr;
ANGLE_TRY_RESULT(getLatestBufferStorage(), latestStorage);
if (latestStorage && (latestStorage->getUsage() == BUFFER_USAGE_PIXEL_PACK ||
latestStorage->getUsage() == BUFFER_USAGE_STAGING))
{
// Latest storage is mappable.
mMappedStorage = latestStorage;
}
else
{
// Fall back to using the staging buffer if the latest storage does not exist or is not
// CPU-accessible.
ANGLE_TRY_RESULT(getStagingStorage(), mMappedStorage);
}
if (!mMappedStorage)
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to allocate mappable internal buffer.");
}
if ((access & GL_MAP_WRITE_BIT) > 0)
{
// Update the data revision immediately, since the data might be changed at any time
mMappedStorage->setDataRevision(mMappedStorage->getDataRevision() + 1);
invalidateStaticData();
}
uint8_t *mappedBuffer = nullptr;
ANGLE_TRY(mMappedStorage->map(offset, length, access, &mappedBuffer));
ASSERT(mappedBuffer);
*mapPtr = static_cast<void *>(mappedBuffer);
return gl::NoError();
}
gl::Error Buffer11::unmap(ContextImpl *context, GLboolean *result)
{
ASSERT(mMappedStorage);
mMappedStorage->unmap();
mMappedStorage = nullptr;
// TODO: detect if we had corruption. if so, return false.
*result = GL_TRUE;
return gl::NoError();
}
gl::Error Buffer11::markTransformFeedbackUsage()
{
BufferStorage *transformFeedbackStorage = nullptr;
ANGLE_TRY_RESULT(getBufferStorage(BUFFER_USAGE_VERTEX_OR_TRANSFORM_FEEDBACK),
transformFeedbackStorage);
if (transformFeedbackStorage)
{
transformFeedbackStorage->setDataRevision(transformFeedbackStorage->getDataRevision() + 1);
}
invalidateStaticData();
return gl::NoError();
}
void Buffer11::updateDeallocThreshold(BufferUsage usage)
{
// The following strategy was tuned on the Oort online benchmark (http://oortonline.gl/)
// as well as a custom microbenchmark (IndexConversionPerfTest.Run/index_range_d3d11)
// First readback: 8 unmodified uses before we free buffer memory.
// After that, double the threshold each time until we reach the max.
if (mDeallocThresholds[usage] == 0)
{
mDeallocThresholds[usage] = 8;
}
else if (mDeallocThresholds[usage] < std::numeric_limits<unsigned int>::max() / 2u)
{
mDeallocThresholds[usage] *= 2u;
}
else
{
mDeallocThresholds[usage] = std::numeric_limits<unsigned int>::max();
}
}
// Free the storage if we decide it isn't being used very often.
gl::Error Buffer11::checkForDeallocation(BufferUsage usage)
{
mIdleness[usage]++;
BufferStorage *&storage = mBufferStorages[usage];
if (storage != nullptr && mIdleness[usage] > mDeallocThresholds[usage])
{
BufferStorage *latestStorage = nullptr;
ANGLE_TRY_RESULT(getLatestBufferStorage(), latestStorage);
if (latestStorage != storage)
{
SafeDelete(storage);
}
}
return gl::NoError();
}
// Keep system memory when we are using it for the canonical version of data.
bool Buffer11::canDeallocateSystemMemory() const
{
// Must keep system memory on Intel.
if (mRenderer->getWorkarounds().useSystemMemoryForConstantBuffers)
{
return false;
}
return (!mBufferStorages[BUFFER_USAGE_UNIFORM] ||
mSize <= mRenderer->getNativeCaps().maxUniformBlockSize);
}
void Buffer11::markBufferUsage(BufferUsage usage)
{
mIdleness[usage] = 0;
}
gl::Error Buffer11::garbageCollection(BufferUsage currentUsage)
{
if (currentUsage != BUFFER_USAGE_SYSTEM_MEMORY && canDeallocateSystemMemory())
{
ANGLE_TRY(checkForDeallocation(BUFFER_USAGE_SYSTEM_MEMORY));
}
if (currentUsage != BUFFER_USAGE_STAGING)
{
ANGLE_TRY(checkForDeallocation(BUFFER_USAGE_STAGING));
}
return gl::NoError();
}
gl::ErrorOrResult<ID3D11Buffer *> Buffer11::getBuffer(BufferUsage usage)
{
BufferStorage *storage = nullptr;
ANGLE_TRY_RESULT(getBufferStorage(usage), storage);
return GetAs<NativeStorage>(storage)->getNativeStorage();
}
gl::ErrorOrResult<ID3D11Buffer *> Buffer11::getEmulatedIndexedBuffer(
SourceIndexData *indexInfo,
const TranslatedAttribute &attribute,
GLint startVertex)
{
ASSERT(indexInfo);
BufferStorage *untypedStorage = nullptr;
ANGLE_TRY_RESULT(getBufferStorage(BUFFER_USAGE_EMULATED_INDEXED_VERTEX), untypedStorage);
EmulatedIndexedStorage *emulatedStorage = GetAs<EmulatedIndexedStorage>(untypedStorage);
ID3D11Buffer *nativeStorage = nullptr;
ANGLE_TRY_RESULT(emulatedStorage->getNativeStorage(indexInfo, attribute, startVertex),
nativeStorage);
return nativeStorage;
}
gl::Error Buffer11::getConstantBufferRange(GLintptr offset,
GLsizeiptr size,
ID3D11Buffer **bufferOut,
UINT *firstConstantOut,
UINT *numConstantsOut)
{
BufferStorage *bufferStorage = nullptr;
if (offset == 0 || mRenderer->getRenderer11DeviceCaps().supportsConstantBufferOffsets)
{
ANGLE_TRY_RESULT(getBufferStorage(BUFFER_USAGE_UNIFORM), bufferStorage);
CalculateConstantBufferParams(offset, size, firstConstantOut, numConstantsOut);
}
else
{
ANGLE_TRY_RESULT(getConstantBufferRangeStorage(offset, size), bufferStorage);
*firstConstantOut = 0;
*numConstantsOut = 0;
}
*bufferOut = GetAs<NativeStorage>(bufferStorage)->getNativeStorage();
return gl::NoError();
}
gl::ErrorOrResult<ID3D11ShaderResourceView *> Buffer11::getSRV(DXGI_FORMAT srvFormat)
{
BufferStorage *storage = nullptr;
ANGLE_TRY_RESULT(getBufferStorage(BUFFER_USAGE_PIXEL_UNPACK), storage);
NativeStorage *nativeStorage = GetAs<NativeStorage>(storage);
return nativeStorage->getSRVForFormat(srvFormat);
}
gl::Error Buffer11::packPixels(const gl::FramebufferAttachment &readAttachment,
const PackPixelsParams &params)
{
PackStorage *packStorage = nullptr;
ANGLE_TRY_RESULT(getPackStorage(), packStorage);
BufferStorage *latestStorage = nullptr;
ANGLE_TRY_RESULT(getLatestBufferStorage(), latestStorage);
ASSERT(packStorage);
ANGLE_TRY(packStorage->packPixels(readAttachment, params));
packStorage->setDataRevision(latestStorage ? latestStorage->getDataRevision() + 1 : 1);
return gl::NoError();
}
size_t Buffer11::getTotalCPUBufferMemoryBytes() const
{
size_t allocationSize = 0;
BufferStorage *staging = mBufferStorages[BUFFER_USAGE_STAGING];
allocationSize += staging ? staging->getSize() : 0;
BufferStorage *sysMem = mBufferStorages[BUFFER_USAGE_SYSTEM_MEMORY];
allocationSize += sysMem ? sysMem->getSize() : 0;
return allocationSize;
}
gl::ErrorOrResult<Buffer11::BufferStorage *> Buffer11::getBufferStorage(BufferUsage usage)
{
ASSERT(0 <= usage && usage < BUFFER_USAGE_COUNT);
BufferStorage *&newStorage = mBufferStorages[usage];
if (!newStorage)
{
newStorage = allocateStorage(usage);
}
markBufferUsage(usage);
// resize buffer
if (newStorage->getSize() < mSize)
{
ANGLE_TRY(newStorage->resize(mSize, true));
}
ASSERT(newStorage);
ANGLE_TRY(updateBufferStorage(newStorage, 0, mSize));
ANGLE_TRY(garbageCollection(usage));
return newStorage;
}
Buffer11::BufferStorage *Buffer11::allocateStorage(BufferUsage usage)
{
updateDeallocThreshold(usage);
switch (usage)
{
case BUFFER_USAGE_PIXEL_PACK:
return new PackStorage(mRenderer);
case BUFFER_USAGE_SYSTEM_MEMORY:
return new SystemMemoryStorage(mRenderer);
case BUFFER_USAGE_EMULATED_INDEXED_VERTEX:
return new EmulatedIndexedStorage(mRenderer);
case BUFFER_USAGE_VERTEX_OR_TRANSFORM_FEEDBACK:
return new NativeStorage(mRenderer, usage, &mDirectBroadcastChannel);
default:
return new NativeStorage(mRenderer, usage, nullptr);
}
}
gl::ErrorOrResult<Buffer11::BufferStorage *> Buffer11::getConstantBufferRangeStorage(
GLintptr offset,
GLsizeiptr size)
{
BufferStorage *newStorage;
{
// Keep the cacheEntry in a limited scope because it may be invalidated later in the code if
// we need to reclaim some space.
ConstantBufferCacheEntry *cacheEntry = &mConstantBufferRangeStoragesCache[offset];
if (!cacheEntry->storage)
{
cacheEntry->storage = allocateStorage(BUFFER_USAGE_UNIFORM);
cacheEntry->lruCount = ++mMaxConstantBufferLruCount;
}
cacheEntry->lruCount = ++mMaxConstantBufferLruCount;
newStorage = cacheEntry->storage;
}
markBufferUsage(BUFFER_USAGE_UNIFORM);
if (newStorage->getSize() < static_cast<size_t>(size))
{
size_t maximumAllowedAdditionalSize = 2 * getSize();
size_t sizeDelta = size - newStorage->getSize();
while (mConstantBufferStorageAdditionalSize + sizeDelta > maximumAllowedAdditionalSize)
{
auto iter = std::min_element(std::begin(mConstantBufferRangeStoragesCache),
std::end(mConstantBufferRangeStoragesCache),
[](const ConstantBufferCache::value_type &a,
const ConstantBufferCache::value_type &b) {
return a.second.lruCount < b.second.lruCount;
});
ASSERT(iter->second.storage != newStorage);
ASSERT(mConstantBufferStorageAdditionalSize >= iter->second.storage->getSize());
mConstantBufferStorageAdditionalSize -= iter->second.storage->getSize();
SafeDelete(iter->second.storage);
mConstantBufferRangeStoragesCache.erase(iter);
}
ANGLE_TRY(newStorage->resize(size, false));
mConstantBufferStorageAdditionalSize += sizeDelta;
// We don't copy the old data when resizing the constant buffer because the data may be
// out-of-date therefore we reset the data revision and let updateBufferStorage() handle the
// copy.
newStorage->setDataRevision(0);
}
ANGLE_TRY(updateBufferStorage(newStorage, offset, size));
ANGLE_TRY(garbageCollection(BUFFER_USAGE_UNIFORM));
return newStorage;
}
gl::Error Buffer11::updateBufferStorage(BufferStorage *storage,
size_t sourceOffset,
size_t storageSize)
{
BufferStorage *latestBuffer = nullptr;
ANGLE_TRY_RESULT(getLatestBufferStorage(), latestBuffer);
ASSERT(storage);
if (latestBuffer && latestBuffer->getDataRevision() > storage->getDataRevision())
{
// Copy through a staging buffer if we're copying from or to a non-staging, mappable
// buffer storage. This is because we can't map a GPU buffer, and copy CPU
// data directly. If we're already using a staging buffer we're fine.
if (latestBuffer->getUsage() != BUFFER_USAGE_STAGING &&
storage->getUsage() != BUFFER_USAGE_STAGING &&
(!latestBuffer->isMappable(GL_MAP_READ_BIT) || !storage->isMappable(GL_MAP_WRITE_BIT)))
{
NativeStorage *stagingBuffer = nullptr;
ANGLE_TRY_RESULT(getStagingStorage(), stagingBuffer);
CopyResult copyResult = CopyResult::NOT_RECREATED;
ANGLE_TRY_RESULT(
stagingBuffer->copyFromStorage(latestBuffer, 0, latestBuffer->getSize(), 0),
copyResult);
stagingBuffer->setDataRevision(latestBuffer->getDataRevision());
latestBuffer = stagingBuffer;
}
CopyResult copyResult = CopyResult::NOT_RECREATED;
ANGLE_TRY_RESULT(storage->copyFromStorage(latestBuffer, sourceOffset, storageSize, 0),
copyResult);
// If the D3D buffer has been recreated, we should update our serial.
if (copyResult == CopyResult::RECREATED)
{
updateSerial();
}
storage->setDataRevision(latestBuffer->getDataRevision());
}
return gl::NoError();
}
gl::ErrorOrResult<Buffer11::BufferStorage *> Buffer11::getLatestBufferStorage() const
{
// Even though we iterate over all the direct buffers, it is expected that only
// 1 or 2 will be present.
BufferStorage *latestStorage = nullptr;
DataRevision latestRevision = 0;
for (auto &storage : mBufferStorages)
{
if (storage && (!latestStorage || storage->getDataRevision() > latestRevision))
{
latestStorage = storage;
latestRevision = storage->getDataRevision();
}
}
// resize buffer
if (latestStorage && latestStorage->getSize() < mSize)
{
ANGLE_TRY(latestStorage->resize(mSize, true));
}
return latestStorage;
}
gl::ErrorOrResult<Buffer11::NativeStorage *> Buffer11::getStagingStorage()
{
BufferStorage *stagingStorage = nullptr;
ANGLE_TRY_RESULT(getBufferStorage(BUFFER_USAGE_STAGING), stagingStorage);
return GetAs<NativeStorage>(stagingStorage);
}
gl::ErrorOrResult<Buffer11::PackStorage *> Buffer11::getPackStorage()
{
BufferStorage *packStorage = nullptr;
ANGLE_TRY_RESULT(getBufferStorage(BUFFER_USAGE_PIXEL_PACK), packStorage);
return GetAs<PackStorage>(packStorage);
}
bool Buffer11::supportsDirectBinding() const
{
// Do not support direct buffers for dynamic data. The streaming buffer
// offers better performance for data which changes every frame.
return (mUsage == D3DBufferUsage::STATIC);
}
void Buffer11::initializeStaticData()
{
BufferD3D::initializeStaticData();
// Notify when static data changes.
mStaticBroadcastChannel.signal();
}
void Buffer11::invalidateStaticData()
{
BufferD3D::invalidateStaticData();
// Notify when static data changes.
mStaticBroadcastChannel.signal();
}
OnBufferDataDirtyChannel *Buffer11::getStaticBroadcastChannel()
{
return &mStaticBroadcastChannel;
}
OnBufferDataDirtyChannel *Buffer11::getDirectBroadcastChannel()
{
return &mDirectBroadcastChannel;
}
// Buffer11::BufferStorage implementation
Buffer11::BufferStorage::BufferStorage(Renderer11 *renderer, BufferUsage usage)
: mRenderer(renderer), mRevision(0), mUsage(usage), mBufferSize(0)
{
}
gl::Error Buffer11::BufferStorage::setData(const uint8_t *data, size_t offset, size_t size)
{
ASSERT(isMappable(GL_MAP_WRITE_BIT));
// Uniform storage can have a different internal size than the buffer size. Ensure we don't
// overflow.
size_t mapSize = std::min(size, mBufferSize - offset);
uint8_t *writePointer = nullptr;
ANGLE_TRY(map(offset, mapSize, GL_MAP_WRITE_BIT, &writePointer));
memcpy(writePointer, data, mapSize);
unmap();
return gl::NoError();
}
// Buffer11::NativeStorage implementation
Buffer11::NativeStorage::NativeStorage(Renderer11 *renderer,
BufferUsage usage,
const OnBufferDataDirtyChannel *onStorageChanged)
: BufferStorage(renderer, usage), mNativeStorage(nullptr), mOnStorageChanged(onStorageChanged)
{
}
Buffer11::NativeStorage::~NativeStorage()
{
SafeRelease(mNativeStorage);
clearSRVs();
}
bool Buffer11::NativeStorage::isMappable(GLbitfield access) const
{
if ((access & GL_MAP_READ_BIT) != 0)
{
// Read is more exclusive than write mappability.
return (mUsage == BUFFER_USAGE_STAGING);
}
ASSERT((access & GL_MAP_WRITE_BIT) != 0);
return (mUsage == BUFFER_USAGE_STAGING || mUsage == BUFFER_USAGE_UNIFORM);
}
// Returns true if it recreates the direct buffer
gl::ErrorOrResult<CopyResult> Buffer11::NativeStorage::copyFromStorage(BufferStorage *source,
size_t sourceOffset,
size_t size,
size_t destOffset)
{
ID3D11DeviceContext *context = mRenderer->getDeviceContext();
size_t requiredSize = destOffset + size;
bool createBuffer = !mNativeStorage || mBufferSize < requiredSize;
// (Re)initialize D3D buffer if needed
bool preserveData = (destOffset > 0);
if (createBuffer)
{
resize(requiredSize, preserveData);
}
size_t clampedSize = size;
if (mUsage == BUFFER_USAGE_UNIFORM)
{
clampedSize = std::min(clampedSize, mBufferSize - destOffset);
}
if (source->getUsage() == BUFFER_USAGE_PIXEL_PACK ||
source->getUsage() == BUFFER_USAGE_SYSTEM_MEMORY)
{
ASSERT(source->isMappable(GL_MAP_READ_BIT) && isMappable(GL_MAP_WRITE_BIT));
// Uniform buffers must be mapped with write/discard.
ASSERT(!(preserveData && mUsage == BUFFER_USAGE_UNIFORM));
uint8_t *sourcePointer = nullptr;
ANGLE_TRY(source->map(sourceOffset, clampedSize, GL_MAP_READ_BIT, &sourcePointer));
setData(sourcePointer, destOffset, clampedSize);
source->unmap();
}
else
{
D3D11_BOX srcBox;
srcBox.left = static_cast<unsigned int>(sourceOffset);
srcBox.right = static_cast<unsigned int>(sourceOffset + clampedSize);
srcBox.top = 0;
srcBox.bottom = 1;
srcBox.front = 0;
srcBox.back = 1;
ID3D11Buffer *sourceBuffer = GetAs<NativeStorage>(source)->getNativeStorage();
context->CopySubresourceRegion(mNativeStorage, 0, static_cast<unsigned int>(destOffset), 0,
0, sourceBuffer, 0, &srcBox);
}
return createBuffer ? CopyResult::RECREATED : CopyResult::NOT_RECREATED;
}
gl::Error Buffer11::NativeStorage::resize(size_t size, bool preserveData)
{
ID3D11Device *device = mRenderer->getDevice();
ID3D11DeviceContext *context = mRenderer->getDeviceContext();
D3D11_BUFFER_DESC bufferDesc;
FillBufferDesc(&bufferDesc, mRenderer, mUsage, static_cast<unsigned int>(size));
ID3D11Buffer *newBuffer;
HRESULT result = device->CreateBuffer(&bufferDesc, nullptr, &newBuffer);
if (FAILED(result))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to create internal buffer, result: 0x%X.",
result);
}
d3d11::SetDebugName(newBuffer, "Buffer11::NativeStorage");
if (mNativeStorage && preserveData)
{
// We don't call resize if the buffer is big enough already.
ASSERT(mBufferSize <= size);
D3D11_BOX srcBox;
srcBox.left = 0;
srcBox.right = static_cast<unsigned int>(mBufferSize);
srcBox.top = 0;
srcBox.bottom = 1;
srcBox.front = 0;
srcBox.back = 1;
context->CopySubresourceRegion(newBuffer, 0, 0, 0, 0, mNativeStorage, 0, &srcBox);
}
// No longer need the old buffer
SafeRelease(mNativeStorage);
mNativeStorage = newBuffer;
mBufferSize = bufferDesc.ByteWidth;
// Free the SRVs.
clearSRVs();
// Notify that the storage has changed.
if (mOnStorageChanged)
{
mOnStorageChanged->signal();
}
return gl::NoError();
}
// static
void Buffer11::NativeStorage::FillBufferDesc(D3D11_BUFFER_DESC *bufferDesc,
Renderer11 *renderer,
BufferUsage usage,
unsigned int bufferSize)
{
bufferDesc->ByteWidth = bufferSize;
bufferDesc->MiscFlags = 0;
bufferDesc->StructureByteStride = 0;
switch (usage)
{
case BUFFER_USAGE_STAGING:
bufferDesc->Usage = D3D11_USAGE_STAGING;
bufferDesc->BindFlags = 0;
bufferDesc->CPUAccessFlags = D3D11_CPU_ACCESS_READ | D3D11_CPU_ACCESS_WRITE;
break;
case BUFFER_USAGE_VERTEX_OR_TRANSFORM_FEEDBACK:
bufferDesc->Usage = D3D11_USAGE_DEFAULT;
bufferDesc->BindFlags = D3D11_BIND_VERTEX_BUFFER;
if (renderer->isES3Capable())
{
bufferDesc->BindFlags |= D3D11_BIND_STREAM_OUTPUT;
}
bufferDesc->CPUAccessFlags = 0;
break;
case BUFFER_USAGE_INDEX:
bufferDesc->Usage = D3D11_USAGE_DEFAULT;
bufferDesc->BindFlags = D3D11_BIND_INDEX_BUFFER;
bufferDesc->CPUAccessFlags = 0;
break;
case BUFFER_USAGE_INDIRECT:
bufferDesc->MiscFlags = D3D11_RESOURCE_MISC_DRAWINDIRECT_ARGS;
bufferDesc->Usage = D3D11_USAGE_DEFAULT;
bufferDesc->BindFlags = 0;
bufferDesc->CPUAccessFlags = 0;
break;
case BUFFER_USAGE_PIXEL_UNPACK:
bufferDesc->Usage = D3D11_USAGE_DEFAULT;
bufferDesc->BindFlags = D3D11_BIND_SHADER_RESOURCE;
bufferDesc->CPUAccessFlags = 0;
break;
case BUFFER_USAGE_UNIFORM:
bufferDesc->Usage = D3D11_USAGE_DYNAMIC;
bufferDesc->BindFlags = D3D11_BIND_CONSTANT_BUFFER;
bufferDesc->CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
// Constant buffers must be of a limited size, and aligned to 16 byte boundaries
// For our purposes we ignore any buffer data past the maximum constant buffer size
bufferDesc->ByteWidth = roundUp(bufferDesc->ByteWidth, 16u);
// Note: it seems that D3D11 allows larger buffers on some platforms, but not all.
// (Windows 10 seems to allow larger constant buffers, but not Windows 7)
bufferDesc->ByteWidth =
std::min<UINT>(bufferDesc->ByteWidth,
static_cast<UINT>(renderer->getNativeCaps().maxUniformBlockSize));
break;
default:
UNREACHABLE();
}
}
gl::Error Buffer11::NativeStorage::map(size_t offset,
size_t length,
GLbitfield access,
uint8_t **mapPointerOut)
{
ASSERT(isMappable(access));
D3D11_MAPPED_SUBRESOURCE mappedResource;
ID3D11DeviceContext *context = mRenderer->getDeviceContext();
D3D11_MAP d3dMapType = gl_d3d11::GetD3DMapTypeFromBits(mUsage, access);
UINT d3dMapFlag = ((access & GL_MAP_UNSYNCHRONIZED_BIT) != 0 ? D3D11_MAP_FLAG_DO_NOT_WAIT : 0);
HRESULT result = context->Map(mNativeStorage, 0, d3dMapType, d3dMapFlag, &mappedResource);
ASSERT(SUCCEEDED(result));
if (FAILED(result))
{
return gl::Error(GL_OUT_OF_MEMORY,
"Failed to map native storage in Buffer11::NativeStorage::map");
}
ASSERT(mappedResource.pData);
*mapPointerOut = static_cast<uint8_t *>(mappedResource.pData) + offset;
return gl::NoError();
}
void Buffer11::NativeStorage::unmap()
{
ASSERT(isMappable(GL_MAP_WRITE_BIT) || isMappable(GL_MAP_READ_BIT));
ID3D11DeviceContext *context = mRenderer->getDeviceContext();
context->Unmap(mNativeStorage, 0);
}
gl::ErrorOrResult<ID3D11ShaderResourceView *> Buffer11::NativeStorage::getSRVForFormat(
DXGI_FORMAT srvFormat)
{
auto bufferSRVIt = mBufferResourceViews.find(srvFormat);
if (bufferSRVIt != mBufferResourceViews.end())
{
return bufferSRVIt->second;
}
ID3D11Device *device = mRenderer->getDevice();
ID3D11ShaderResourceView *bufferSRV = nullptr;
const d3d11::DXGIFormatSize &dxgiFormatInfo = d3d11::GetDXGIFormatSizeInfo(srvFormat);
D3D11_SHADER_RESOURCE_VIEW_DESC bufferSRVDesc;
bufferSRVDesc.Buffer.ElementOffset = 0;
bufferSRVDesc.Buffer.ElementWidth = static_cast<UINT>(mBufferSize) / dxgiFormatInfo.pixelBytes;
bufferSRVDesc.ViewDimension = D3D11_SRV_DIMENSION_BUFFER;
bufferSRVDesc.Format = srvFormat;
HRESULT result = device->CreateShaderResourceView(mNativeStorage, &bufferSRVDesc, &bufferSRV);
ASSERT(SUCCEEDED(result));
if (FAILED(result))
{
return gl::Error(GL_OUT_OF_MEMORY,
"Error creating buffer SRV in Buffer11::NativeStorage::getSRVForFormat");
}
mBufferResourceViews[srvFormat] = bufferSRV;
return bufferSRV;
}
void Buffer11::NativeStorage::clearSRVs()
{
for (auto &srv : mBufferResourceViews)
{
SafeRelease(srv.second);
}
mBufferResourceViews.clear();
}
// Buffer11::EmulatedIndexStorage implementation
Buffer11::EmulatedIndexedStorage::EmulatedIndexedStorage(Renderer11 *renderer)
: BufferStorage(renderer, BUFFER_USAGE_EMULATED_INDEXED_VERTEX), mNativeStorage(nullptr)
{
}
Buffer11::EmulatedIndexedStorage::~EmulatedIndexedStorage()
{
SafeRelease(mNativeStorage);
}
gl::ErrorOrResult<ID3D11Buffer *> Buffer11::EmulatedIndexedStorage::getNativeStorage(
SourceIndexData *indexInfo,
const TranslatedAttribute &attribute,
GLint startVertex)
{
// If a change in the indices applied from the last draw call is detected, then the emulated
// indexed buffer needs to be invalidated. After invalidation, the change detected flag should
// be cleared to avoid unnecessary recreation of the buffer.
if (mNativeStorage == nullptr || indexInfo->srcIndicesChanged)
{
SafeRelease(mNativeStorage);
// Copy the source index data. This ensures that the lifetime of the indices pointer
// stays with this storage until the next time we invalidate.
size_t indicesDataSize = 0;
switch (indexInfo->srcIndexType)
{
case GL_UNSIGNED_INT:
indicesDataSize = sizeof(GLuint) * indexInfo->srcCount;
break;
case GL_UNSIGNED_SHORT:
indicesDataSize = sizeof(GLushort) * indexInfo->srcCount;
break;
case GL_UNSIGNED_BYTE:
indicesDataSize = sizeof(GLubyte) * indexInfo->srcCount;
break;
default:
indicesDataSize = sizeof(GLushort) * indexInfo->srcCount;
break;
}
if (!mIndicesMemoryBuffer.resize(indicesDataSize))
{
return gl::Error(GL_OUT_OF_MEMORY,
"Error resizing index memory buffer in "
"Buffer11::EmulatedIndexedStorage::getNativeStorage");
}
memcpy(mIndicesMemoryBuffer.data(), indexInfo->srcIndices, indicesDataSize);
indexInfo->srcIndicesChanged = false;
}
if (!mNativeStorage)
{
unsigned int offset = 0;
ANGLE_TRY_RESULT(attribute.computeOffset(startVertex), offset);
// Expand the memory storage upon request and cache the results.
unsigned int expandedDataSize =
static_cast<unsigned int>((indexInfo->srcCount * attribute.stride) + offset);
angle::MemoryBuffer expandedData;
if (!expandedData.resize(expandedDataSize))
{
return gl::Error(
GL_OUT_OF_MEMORY,
"Error resizing buffer in Buffer11::EmulatedIndexedStorage::getNativeStorage");
}
// Clear the contents of the allocated buffer
ZeroMemory(expandedData.data(), expandedDataSize);
uint8_t *curr = expandedData.data();
const uint8_t *ptr = static_cast<const uint8_t *>(indexInfo->srcIndices);
// Ensure that we start in the correct place for the emulated data copy operation to
// maintain offset behaviors.
curr += offset;
ReadIndexValueFunction readIndexValue = ReadIndexValueFromIndices<GLushort>;
switch (indexInfo->srcIndexType)
{
case GL_UNSIGNED_INT:
readIndexValue = ReadIndexValueFromIndices<GLuint>;
break;
case GL_UNSIGNED_SHORT:
readIndexValue = ReadIndexValueFromIndices<GLushort>;
break;
case GL_UNSIGNED_BYTE:
readIndexValue = ReadIndexValueFromIndices<GLubyte>;
break;
}
// Iterate over the cached index data and copy entries indicated into the emulated buffer.
for (GLuint i = 0; i < indexInfo->srcCount; i++)
{
GLuint idx = readIndexValue(ptr, i);
memcpy(curr, mMemoryBuffer.data() + (attribute.stride * idx), attribute.stride);
curr += attribute.stride;
}
// Finally, initialize the emulated indexed native storage object with the newly copied data
// and free the temporary buffers used.
ID3D11Device *device = mRenderer->getDevice();
D3D11_BUFFER_DESC bufferDesc;
bufferDesc.ByteWidth = expandedDataSize;
bufferDesc.MiscFlags = 0;
bufferDesc.StructureByteStride = 0;
bufferDesc.Usage = D3D11_USAGE_DEFAULT;
bufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
bufferDesc.CPUAccessFlags = 0;
D3D11_SUBRESOURCE_DATA subResourceData = {expandedData.data(), 0, 0};
HRESULT result = device->CreateBuffer(&bufferDesc, &subResourceData, &mNativeStorage);
if (FAILED(result))
{
return gl::Error(GL_OUT_OF_MEMORY, "Could not create emulated index data buffer: %08lX",
result);
}
d3d11::SetDebugName(mNativeStorage, "Buffer11::EmulatedIndexedStorage");
}
return mNativeStorage;
}
gl::ErrorOrResult<CopyResult> Buffer11::EmulatedIndexedStorage::copyFromStorage(
BufferStorage *source,
size_t sourceOffset,
size_t size,
size_t destOffset)
{
ASSERT(source->isMappable(GL_MAP_READ_BIT));
uint8_t *sourceData = nullptr;
ANGLE_TRY(source->map(sourceOffset, size, GL_MAP_READ_BIT, &sourceData));
ASSERT(destOffset + size <= mMemoryBuffer.size());
memcpy(mMemoryBuffer.data() + destOffset, sourceData, size);
source->unmap();
return CopyResult::RECREATED;
}
gl::Error Buffer11::EmulatedIndexedStorage::resize(size_t size, bool preserveData)
{
if (mMemoryBuffer.size() < size)
{
if (!mMemoryBuffer.resize(size))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to resize EmulatedIndexedStorage");
}
mBufferSize = size;
}
return gl::NoError();
}
gl::Error Buffer11::EmulatedIndexedStorage::map(size_t offset,
size_t length,
GLbitfield access,
uint8_t **mapPointerOut)
{
ASSERT(!mMemoryBuffer.empty() && offset + length <= mMemoryBuffer.size());
*mapPointerOut = mMemoryBuffer.data() + offset;
return gl::NoError();
}
void Buffer11::EmulatedIndexedStorage::unmap()
{
// No-op
}
// Buffer11::PackStorage implementation
Buffer11::PackStorage::PackStorage(Renderer11 *renderer)
: BufferStorage(renderer, BUFFER_USAGE_PIXEL_PACK), mStagingTexture(), mDataModified(false)
{
}
Buffer11::PackStorage::~PackStorage()
{
}
gl::ErrorOrResult<CopyResult> Buffer11::PackStorage::copyFromStorage(BufferStorage *source,
size_t sourceOffset,
size_t size,
size_t destOffset)
{
ANGLE_TRY(flushQueuedPackCommand());
// For all use cases of pack buffers, we must copy through a readable buffer.
ASSERT(source->isMappable(GL_MAP_READ_BIT));
uint8_t *sourceData = nullptr;
ANGLE_TRY(source->map(sourceOffset, size, GL_MAP_READ_BIT, &sourceData));
ASSERT(destOffset + size <= mMemoryBuffer.size());
memcpy(mMemoryBuffer.data() + destOffset, sourceData, size);
source->unmap();
return CopyResult::NOT_RECREATED;
}
gl::Error Buffer11::PackStorage::resize(size_t size, bool preserveData)
{
if (size != mBufferSize)
{
if (!mMemoryBuffer.resize(size))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to resize internal buffer storage.");
}
mBufferSize = size;
}
return gl::NoError();
}
gl::Error Buffer11::PackStorage::map(size_t offset,
size_t length,
GLbitfield access,
uint8_t **mapPointerOut)
{
ASSERT(offset + length <= getSize());
// TODO: fast path
// We might be able to optimize out one or more memcpy calls by detecting when
// and if D3D packs the staging texture memory identically to how we would fill
// the pack buffer according to the current pack state.
ANGLE_TRY(flushQueuedPackCommand());
mDataModified = (mDataModified || (access & GL_MAP_WRITE_BIT) != 0);
*mapPointerOut = mMemoryBuffer.data() + offset;
return gl::NoError();
}
void Buffer11::PackStorage::unmap()
{
// No-op
}
gl::Error Buffer11::PackStorage::packPixels(const gl::FramebufferAttachment &readAttachment,
const PackPixelsParams &params)
{
ANGLE_TRY(flushQueuedPackCommand());
RenderTarget11 *renderTarget = nullptr;
ANGLE_TRY(readAttachment.getRenderTarget(&renderTarget));
ID3D11Resource *renderTargetResource = renderTarget->getTexture();
ASSERT(renderTargetResource);
unsigned int srcSubresource = renderTarget->getSubresourceIndex();
TextureHelper11 srcTexture =
TextureHelper11::MakeAndReference(renderTargetResource, renderTarget->getFormatSet());
mQueuedPackCommand.reset(new PackPixelsParams(params));
gl::Extents srcTextureSize(params.area.width, params.area.height, 1);
if (!mStagingTexture.getResource() || mStagingTexture.getFormat() != srcTexture.getFormat() ||
mStagingTexture.getExtents() != srcTextureSize)
{
ANGLE_TRY_RESULT(
CreateStagingTexture(srcTexture.getTextureType(), srcTexture.getFormatSet(),
srcTextureSize, StagingAccess::READ, mRenderer->getDevice()),
mStagingTexture);
}
// ReadPixels from multisampled FBOs isn't supported in current GL
ASSERT(srcTexture.getSampleCount() <= 1);
ID3D11DeviceContext *immediateContext = mRenderer->getDeviceContext();
D3D11_BOX srcBox;
srcBox.left = params.area.x;
srcBox.right = params.area.x + params.area.width;
srcBox.top = params.area.y;
srcBox.bottom = params.area.y + params.area.height;
// Select the correct layer from a 3D attachment
srcBox.front = 0;
if (mStagingTexture.getTextureType() == GL_TEXTURE_3D)
{
srcBox.front = static_cast<UINT>(readAttachment.layer());
}
srcBox.back = srcBox.front + 1;
// Asynchronous copy
immediateContext->CopySubresourceRegion(mStagingTexture.getResource(), 0, 0, 0, 0,
srcTexture.getResource(), srcSubresource, &srcBox);
return gl::NoError();
}
gl::Error Buffer11::PackStorage::flushQueuedPackCommand()
{
ASSERT(mMemoryBuffer.size() > 0);
if (mQueuedPackCommand)
{
ANGLE_TRY(
mRenderer->packPixels(mStagingTexture, *mQueuedPackCommand, mMemoryBuffer.data()));
mQueuedPackCommand.reset(nullptr);
}
return gl::NoError();
}
// Buffer11::SystemMemoryStorage implementation
Buffer11::SystemMemoryStorage::SystemMemoryStorage(Renderer11 *renderer)
: Buffer11::BufferStorage(renderer, BUFFER_USAGE_SYSTEM_MEMORY)
{
}
gl::ErrorOrResult<CopyResult> Buffer11::SystemMemoryStorage::copyFromStorage(BufferStorage *source,
size_t sourceOffset,
size_t size,
size_t destOffset)
{
ASSERT(source->isMappable(GL_MAP_READ_BIT));
uint8_t *sourceData = nullptr;
ANGLE_TRY(source->map(sourceOffset, size, GL_MAP_READ_BIT, &sourceData));
ASSERT(destOffset + size <= mSystemCopy.size());
memcpy(mSystemCopy.data() + destOffset, sourceData, size);
source->unmap();
return CopyResult::RECREATED;
}
gl::Error Buffer11::SystemMemoryStorage::resize(size_t size, bool preserveData)
{
if (mSystemCopy.size() < size)
{
if (!mSystemCopy.resize(size))
{
return gl::Error(GL_OUT_OF_MEMORY, "Failed to resize SystemMemoryStorage");
}
mBufferSize = size;
}
return gl::NoError();
}
gl::Error Buffer11::SystemMemoryStorage::map(size_t offset,
size_t length,
GLbitfield access,
uint8_t **mapPointerOut)
{
ASSERT(!mSystemCopy.empty() && offset + length <= mSystemCopy.size());
*mapPointerOut = mSystemCopy.data() + offset;
return gl::NoError();
}
void Buffer11::SystemMemoryStorage::unmap()
{
// No-op
}
} // namespace rx