| #include <google/protobuf/stubs/time.h> |
| |
| #include <ctime> |
| |
| #include <google/protobuf/stubs/stringprintf.h> |
| #include <google/protobuf/stubs/strutil.h> |
| |
| namespace google { |
| namespace protobuf { |
| namespace internal { |
| |
| namespace { |
| static const int64 kSecondsPerMinute = 60; |
| static const int64 kSecondsPerHour = 3600; |
| static const int64 kSecondsPerDay = kSecondsPerHour * 24; |
| static const int64 kSecondsPer400Years = |
| kSecondsPerDay * (400 * 365 + 400 / 4 - 3); |
| // Seconds from 0001-01-01T00:00:00 to 1970-01-01T:00:00:00 |
| static const int64 kSecondsFromEraToEpoch = 62135596800LL; |
| // The range of timestamp values we support. |
| static const int64 kMinTime = -62135596800LL; // 0001-01-01T00:00:00 |
| static const int64 kMaxTime = 253402300799LL; // 9999-12-31T23:59:59 |
| |
| static const int kNanosPerMillisecond = 1000000; |
| static const int kNanosPerMicrosecond = 1000; |
| |
| // Count the seconds from the given year (start at Jan 1, 00:00) to 100 years |
| // after. |
| int64 SecondsPer100Years(int year) { |
| if (year % 400 == 0 || year % 400 > 300) { |
| return kSecondsPerDay * (100 * 365 + 100 / 4); |
| } else { |
| return kSecondsPerDay * (100 * 365 + 100 / 4 - 1); |
| } |
| } |
| |
| // Count the seconds from the given year (start at Jan 1, 00:00) to 4 years |
| // after. |
| int64 SecondsPer4Years(int year) { |
| if ((year % 100 == 0 || year % 100 > 96) && |
| !(year % 400 == 0 || year % 400 > 396)) { |
| // No leap years. |
| return kSecondsPerDay * (4 * 365); |
| } else { |
| // One leap years. |
| return kSecondsPerDay * (4 * 365 + 1); |
| } |
| } |
| |
| bool IsLeapYear(int year) { |
| return year % 400 == 0 || (year % 4 == 0 && year % 100 != 0); |
| } |
| |
| int64 SecondsPerYear(int year) { |
| return kSecondsPerDay * (IsLeapYear(year) ? 366 : 365); |
| } |
| |
| static const int kDaysInMonth[13] = { |
| 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 |
| }; |
| |
| int64 SecondsPerMonth(int month, bool leap) { |
| if (month == 2 && leap) { |
| return kSecondsPerDay * (kDaysInMonth[month] + 1); |
| } |
| return kSecondsPerDay * kDaysInMonth[month]; |
| } |
| |
| static const int kDaysSinceJan[13] = { |
| 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, |
| }; |
| |
| bool ValidateDateTime(const DateTime& time) { |
| if (time.year < 1 || time.year > 9999 || |
| time.month < 1 || time.month > 12 || |
| time.day < 1 || time.day > 31 || |
| time.hour < 0 || time.hour > 23 || |
| time.minute < 0 || time.minute > 59 || |
| time.second < 0 || time.second > 59) { |
| return false; |
| } |
| if (time.month == 2 && IsLeapYear(time.year)) { |
| return time.month <= kDaysInMonth[time.month] + 1; |
| } else { |
| return time.month <= kDaysInMonth[time.month]; |
| } |
| } |
| |
| // Count the number of seconds elapsed from 0001-01-01T00:00:00 to the given |
| // time. |
| int64 SecondsSinceCommonEra(const DateTime& time) { |
| int64 result = 0; |
| // Years should be between 1 and 9999. |
| assert(time.year >= 1 && time.year <= 9999); |
| int year = 1; |
| if ((time.year - year) >= 400) { |
| int count_400years = (time.year - year) / 400; |
| result += kSecondsPer400Years * count_400years; |
| year += count_400years * 400; |
| } |
| while ((time.year - year) >= 100) { |
| result += SecondsPer100Years(year); |
| year += 100; |
| } |
| while ((time.year - year) >= 4) { |
| result += SecondsPer4Years(year); |
| year += 4; |
| } |
| while (time.year > year) { |
| result += SecondsPerYear(year); |
| ++year; |
| } |
| // Months should be between 1 and 12. |
| assert(time.month >= 1 && time.month <= 12); |
| int month = time.month; |
| result += kSecondsPerDay * kDaysSinceJan[month]; |
| if (month > 2 && IsLeapYear(year)) { |
| result += kSecondsPerDay; |
| } |
| assert(time.day >= 1 && |
| time.day <= (month == 2 && IsLeapYear(year) |
| ? kDaysInMonth[month] + 1 |
| : kDaysInMonth[month])); |
| result += kSecondsPerDay * (time.day - 1); |
| result += kSecondsPerHour * time.hour + |
| kSecondsPerMinute * time.minute + |
| time.second; |
| return result; |
| } |
| |
| // Format nanoseconds with either 3, 6, or 9 digits depending on the required |
| // precision to represent the exact value. |
| string FormatNanos(int32 nanos) { |
| if (nanos % kNanosPerMillisecond == 0) { |
| return StringPrintf("%03d", nanos / kNanosPerMillisecond); |
| } else if (nanos % kNanosPerMicrosecond == 0) { |
| return StringPrintf("%06d", nanos / kNanosPerMicrosecond); |
| } else { |
| return StringPrintf("%09d", nanos); |
| } |
| } |
| |
| // Parses an integer from a null-terminated char sequence. The method |
| // consumes at most "width" chars. Returns a pointer after the consumed |
| // integer, or NULL if the data does not start with an integer or the |
| // integer value does not fall in the range of [min_value, max_value]. |
| const char* ParseInt(const char* data, int width, int min_value, |
| int max_value, int* result) { |
| if (!ascii_isdigit(*data)) { |
| return NULL; |
| } |
| int value = 0; |
| for (int i = 0; i < width; ++i, ++data) { |
| if (ascii_isdigit(*data)) { |
| value = value * 10 + (*data - '0'); |
| } else { |
| break; |
| } |
| } |
| if (value >= min_value && value <= max_value) { |
| *result = value; |
| return data; |
| } else { |
| return NULL; |
| } |
| } |
| |
| // Consumes the fractional parts of a second into nanos. For example, |
| // "010" will be parsed to 10000000 nanos. |
| const char* ParseNanos(const char* data, int32* nanos) { |
| if (!ascii_isdigit(*data)) { |
| return NULL; |
| } |
| int value = 0; |
| int len = 0; |
| // Consume as many digits as there are but only take the first 9 into |
| // account. |
| while (ascii_isdigit(*data)) { |
| if (len < 9) { |
| value = value * 10 + *data - '0'; |
| } |
| ++len; |
| ++data; |
| } |
| while (len < 9) { |
| value = value * 10; |
| ++len; |
| } |
| *nanos = value; |
| return data; |
| } |
| |
| const char* ParseTimezoneOffset(const char* data, int64* offset) { |
| // Accept format "HH:MM". E.g., "08:00" |
| int hour; |
| if ((data = ParseInt(data, 2, 0, 23, &hour)) == NULL) { |
| return NULL; |
| } |
| if (*data++ != ':') { |
| return NULL; |
| } |
| int minute; |
| if ((data = ParseInt(data, 2, 0, 59, &minute)) == NULL) { |
| return NULL; |
| } |
| *offset = (hour * 60 + minute) * 60; |
| return data; |
| } |
| } // namespace |
| |
| bool SecondsToDateTime(int64 seconds, DateTime* time) { |
| if (seconds < kMinTime || seconds > kMaxTime) { |
| return false; |
| } |
| // It's easier to calcuate the DateTime starting from 0001-01-01T00:00:00 |
| seconds = seconds + kSecondsFromEraToEpoch; |
| int year = 1; |
| if (seconds >= kSecondsPer400Years) { |
| int count_400years = seconds / kSecondsPer400Years; |
| year += 400 * count_400years; |
| seconds %= kSecondsPer400Years; |
| } |
| while (seconds >= SecondsPer100Years(year)) { |
| seconds -= SecondsPer100Years(year); |
| year += 100; |
| } |
| while (seconds >= SecondsPer4Years(year)) { |
| seconds -= SecondsPer4Years(year); |
| year += 4; |
| } |
| while (seconds >= SecondsPerYear(year)) { |
| seconds -= SecondsPerYear(year); |
| year += 1; |
| } |
| bool leap = IsLeapYear(year); |
| int month = 1; |
| while (seconds >= SecondsPerMonth(month, leap)) { |
| seconds -= SecondsPerMonth(month, leap); |
| ++month; |
| } |
| int day = 1 + seconds / kSecondsPerDay; |
| seconds %= kSecondsPerDay; |
| int hour = seconds / kSecondsPerHour; |
| seconds %= kSecondsPerHour; |
| int minute = seconds / kSecondsPerMinute; |
| seconds %= kSecondsPerMinute; |
| time->year = year; |
| time->month = month; |
| time->day = day; |
| time->hour = hour; |
| time->minute = minute; |
| time->second = static_cast<int>(seconds); |
| return true; |
| } |
| |
| bool DateTimeToSeconds(const DateTime& time, int64* seconds) { |
| if (!ValidateDateTime(time)) { |
| return false; |
| } |
| *seconds = SecondsSinceCommonEra(time) - kSecondsFromEraToEpoch; |
| return true; |
| } |
| |
| void GetCurrentTime(int64* seconds, int32* nanos) { |
| // TODO(xiaofeng): Improve the accuracy of this implementation (or just |
| // remove this method from protobuf). |
| *seconds = time(NULL); |
| *nanos = 0; |
| } |
| |
| string FormatTime(int64 seconds, int32 nanos) { |
| DateTime time; |
| if (nanos < 0 || nanos > 999999999 || !SecondsToDateTime(seconds, &time)) { |
| return "InvalidTime"; |
| } |
| string result = StringPrintf("%04d-%02d-%02dT%02d:%02d:%02d", |
| time.year, time.month, time.day, |
| time.hour, time.minute, time.second); |
| if (nanos != 0) { |
| result += "." + FormatNanos(nanos); |
| } |
| return result + "Z"; |
| } |
| |
| bool ParseTime(const string& value, int64* seconds, int32* nanos) { |
| DateTime time; |
| const char* data = value.c_str(); |
| // We only accept: |
| // Z-normalized: 2015-05-20T13:29:35.120Z |
| // With UTC offset: 2015-05-20T13:29:35.120-08:00 |
| |
| // Parse year |
| if ((data = ParseInt(data, 4, 1, 9999, &time.year)) == NULL) { |
| return false; |
| } |
| // Expect '-' |
| if (*data++ != '-') return false; |
| // Parse month |
| if ((data = ParseInt(data, 2, 1, 12, &time.month)) == NULL) { |
| return false; |
| } |
| // Expect '-' |
| if (*data++ != '-') return false; |
| // Parse day |
| if ((data = ParseInt(data, 2, 1, 31, &time.day)) == NULL) { |
| return false; |
| } |
| // Expect 'T' |
| if (*data++ != 'T') return false; |
| // Parse hour |
| if ((data = ParseInt(data, 2, 0, 23, &time.hour)) == NULL) { |
| return false; |
| } |
| // Expect ':' |
| if (*data++ != ':') return false; |
| // Parse minute |
| if ((data = ParseInt(data, 2, 0, 59, &time.minute)) == NULL) { |
| return false; |
| } |
| // Expect ':' |
| if (*data++ != ':') return false; |
| // Parse second |
| if ((data = ParseInt(data, 2, 0, 59, &time.second)) == NULL) { |
| return false; |
| } |
| if (!DateTimeToSeconds(time, seconds)) { |
| return false; |
| } |
| // Parse nanoseconds. |
| if (*data == '.') { |
| ++data; |
| // Parse nanoseconds. |
| if ((data = ParseNanos(data, nanos)) == NULL) { |
| return false; |
| } |
| } else { |
| *nanos = 0; |
| } |
| // Parse UTC offsets. |
| if (*data == 'Z') { |
| ++data; |
| } else if (*data == '+') { |
| ++data; |
| int64 offset; |
| if ((data = ParseTimezoneOffset(data, &offset)) == NULL) { |
| return false; |
| } |
| *seconds -= offset; |
| } else if (*data == '-') { |
| ++data; |
| int64 offset; |
| if ((data = ParseTimezoneOffset(data, &offset)) == NULL) { |
| return false; |
| } |
| *seconds += offset; |
| } else { |
| return false; |
| } |
| // Done with parsing. |
| return *data == 0; |
| } |
| |
| } // namespace internal |
| } // namespace protobuf |
| } // namespace google |