blob: 38f077c4e616aff52b93ed4807f2e26cbaee3c8b [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/adapters.h"
#include "src/base/bits.h"
#include "src/compiler/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
namespace v8 {
namespace internal {
namespace compiler {
#define TRACE_UNIMPL() \
PrintF("UNIMPLEMENTED instr_sel: %s at line %d\n", __FUNCTION__, __LINE__)
#define TRACE() PrintF("instr_sel: %s at line %d\n", __FUNCTION__, __LINE__)
// Adds Mips-specific methods for generating InstructionOperands.
class Mips64OperandGenerator final : public OperandGenerator {
public:
explicit Mips64OperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
InstructionOperand UseOperand(Node* node, InstructionCode opcode) {
if (CanBeImmediate(node, opcode)) {
return UseImmediate(node);
}
return UseRegister(node);
}
// Use the zero register if the node has the immediate value zero, otherwise
// assign a register.
InstructionOperand UseRegisterOrImmediateZero(Node* node) {
if ((IsIntegerConstant(node) && (GetIntegerConstantValue(node) == 0)) ||
(IsFloatConstant(node) &&
(bit_cast<int64_t>(GetFloatConstantValue(node)) == 0))) {
return UseImmediate(node);
}
return UseRegister(node);
}
bool IsIntegerConstant(Node* node) {
return (node->opcode() == IrOpcode::kInt32Constant) ||
(node->opcode() == IrOpcode::kInt64Constant);
}
int64_t GetIntegerConstantValue(Node* node) {
if (node->opcode() == IrOpcode::kInt32Constant) {
return OpParameter<int32_t>(node);
}
DCHECK_EQ(IrOpcode::kInt64Constant, node->opcode());
return OpParameter<int64_t>(node);
}
bool IsFloatConstant(Node* node) {
return (node->opcode() == IrOpcode::kFloat32Constant) ||
(node->opcode() == IrOpcode::kFloat64Constant);
}
double GetFloatConstantValue(Node* node) {
if (node->opcode() == IrOpcode::kFloat32Constant) {
return OpParameter<float>(node);
}
DCHECK_EQ(IrOpcode::kFloat64Constant, node->opcode());
return OpParameter<double>(node);
}
bool CanBeImmediate(Node* node, InstructionCode mode) {
return IsIntegerConstant(node) &&
CanBeImmediate(GetIntegerConstantValue(node), mode);
}
bool CanBeImmediate(int64_t value, InstructionCode opcode) {
switch (ArchOpcodeField::decode(opcode)) {
case kMips64Shl:
case kMips64Sar:
case kMips64Shr:
return is_uint5(value);
case kMips64Dshl:
case kMips64Dsar:
case kMips64Dshr:
return is_uint6(value);
case kMips64Add:
case kMips64And32:
case kMips64And:
case kMips64Dadd:
case kMips64Or32:
case kMips64Or:
case kMips64Tst:
case kMips64Xor:
return is_uint16(value);
case kMips64Lb:
case kMips64Lbu:
case kMips64Sb:
case kMips64Lh:
case kMips64Lhu:
case kMips64Sh:
case kMips64Lw:
case kMips64Sw:
case kMips64Ld:
case kMips64Sd:
case kMips64Lwc1:
case kMips64Swc1:
case kMips64Ldc1:
case kMips64Sdc1:
return is_int32(value);
default:
return is_int16(value);
}
}
private:
bool ImmediateFitsAddrMode1Instruction(int32_t imm) const {
TRACE_UNIMPL();
return false;
}
};
static void VisitRR(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
Mips64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
static void VisitRRI(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
Mips64OperandGenerator g(selector);
int32_t imm = OpParameter<int32_t>(node);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseImmediate(imm));
}
static void VisitRRIR(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
Mips64OperandGenerator g(selector);
int32_t imm = OpParameter<int32_t>(node);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseImmediate(imm),
g.UseRegister(node->InputAt(1)));
}
static void VisitRRR(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
Mips64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)));
}
void VisitRRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) {
Mips64OperandGenerator g(selector);
selector->Emit(
opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2)));
}
static void VisitRRO(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
Mips64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)),
g.UseOperand(node->InputAt(1), opcode));
}
struct ExtendingLoadMatcher {
ExtendingLoadMatcher(Node* node, InstructionSelector* selector)
: matches_(false), selector_(selector), base_(nullptr), immediate_(0) {
Initialize(node);
}
bool Matches() const { return matches_; }
Node* base() const {
DCHECK(Matches());
return base_;
}
int64_t immediate() const {
DCHECK(Matches());
return immediate_;
}
ArchOpcode opcode() const {
DCHECK(Matches());
return opcode_;
}
private:
bool matches_;
InstructionSelector* selector_;
Node* base_;
int64_t immediate_;
ArchOpcode opcode_;
void Initialize(Node* node) {
Int64BinopMatcher m(node);
// When loading a 64-bit value and shifting by 32, we should
// just load and sign-extend the interesting 4 bytes instead.
// This happens, for example, when we're loading and untagging SMIs.
DCHECK(m.IsWord64Sar());
if (m.left().IsLoad() && m.right().Is(32) &&
selector_->CanCover(m.node(), m.left().node())) {
MachineRepresentation rep =
LoadRepresentationOf(m.left().node()->op()).representation();
DCHECK_EQ(3, ElementSizeLog2Of(rep));
if (rep != MachineRepresentation::kTaggedSigned &&
rep != MachineRepresentation::kTaggedPointer &&
rep != MachineRepresentation::kTagged &&
rep != MachineRepresentation::kWord64) {
return;
}
Mips64OperandGenerator g(selector_);
Node* load = m.left().node();
Node* offset = load->InputAt(1);
base_ = load->InputAt(0);
opcode_ = kMips64Lw;
if (g.CanBeImmediate(offset, opcode_)) {
#if defined(V8_TARGET_LITTLE_ENDIAN)
immediate_ = g.GetIntegerConstantValue(offset) + 4;
#elif defined(V8_TARGET_BIG_ENDIAN)
immediate_ = g.GetIntegerConstantValue(offset);
#endif
matches_ = g.CanBeImmediate(immediate_, kMips64Lw);
}
}
}
};
bool TryEmitExtendingLoad(InstructionSelector* selector, Node* node,
Node* output_node) {
ExtendingLoadMatcher m(node, selector);
Mips64OperandGenerator g(selector);
if (m.Matches()) {
InstructionOperand inputs[2];
inputs[0] = g.UseRegister(m.base());
InstructionCode opcode =
m.opcode() | AddressingModeField::encode(kMode_MRI);
DCHECK(is_int32(m.immediate()));
inputs[1] = g.TempImmediate(static_cast<int32_t>(m.immediate()));
InstructionOperand outputs[] = {g.DefineAsRegister(output_node)};
selector->Emit(opcode, arraysize(outputs), outputs, arraysize(inputs),
inputs);
return true;
}
return false;
}
bool TryMatchImmediate(InstructionSelector* selector,
InstructionCode* opcode_return, Node* node,
size_t* input_count_return, InstructionOperand* inputs) {
Mips64OperandGenerator g(selector);
if (g.CanBeImmediate(node, *opcode_return)) {
*opcode_return |= AddressingModeField::encode(kMode_MRI);
inputs[0] = g.UseImmediate(node);
*input_count_return = 1;
return true;
}
return false;
}
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, bool has_reverse_opcode,
InstructionCode reverse_opcode,
FlagsContinuation* cont) {
Mips64OperandGenerator g(selector);
Int32BinopMatcher m(node);
InstructionOperand inputs[4];
size_t input_count = 0;
InstructionOperand outputs[2];
size_t output_count = 0;
if (TryMatchImmediate(selector, &opcode, m.right().node(), &input_count,
&inputs[1])) {
inputs[0] = g.UseRegister(m.left().node());
input_count++;
} else if (has_reverse_opcode &&
TryMatchImmediate(selector, &reverse_opcode, m.left().node(),
&input_count, &inputs[1])) {
inputs[0] = g.UseRegister(m.right().node());
opcode = reverse_opcode;
input_count++;
} else {
inputs[input_count++] = g.UseRegister(m.left().node());
inputs[input_count++] = g.UseOperand(m.right().node(), opcode);
}
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
} else if (cont->IsTrap()) {
inputs[input_count++] = g.TempImmediate(cont->trap_id());
}
if (cont->IsDeoptimize()) {
// If we can deoptimize as a result of the binop, we need to make sure that
// the deopt inputs are not overwritten by the binop result. One way
// to achieve that is to declare the output register as same-as-first.
outputs[output_count++] = g.DefineSameAsFirst(node);
} else {
outputs[output_count++] = g.DefineAsRegister(node);
}
if (cont->IsSet()) {
outputs[output_count++] = g.DefineAsRegister(cont->result());
}
DCHECK_NE(0u, input_count);
DCHECK_NE(0u, output_count);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
opcode = cont->Encode(opcode);
if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs,
cont->kind(), cont->reason(), cont->feedback(),
cont->frame_state());
} else {
selector->Emit(opcode, output_count, outputs, input_count, inputs);
}
}
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, bool has_reverse_opcode,
InstructionCode reverse_opcode) {
FlagsContinuation cont;
VisitBinop(selector, node, opcode, has_reverse_opcode, reverse_opcode, &cont);
}
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
VisitBinop(selector, node, opcode, false, kArchNop, cont);
}
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
VisitBinop(selector, node, opcode, false, kArchNop);
}
void InstructionSelector::VisitStackSlot(Node* node) {
StackSlotRepresentation rep = StackSlotRepresentationOf(node->op());
int alignment = rep.alignment();
int slot = frame_->AllocateSpillSlot(rep.size(), alignment);
OperandGenerator g(this);
Emit(kArchStackSlot, g.DefineAsRegister(node),
sequence()->AddImmediate(Constant(slot)),
sequence()->AddImmediate(Constant(alignment)), 0, nullptr);
}
void InstructionSelector::VisitDebugAbort(Node* node) {
Mips64OperandGenerator g(this);
Emit(kArchDebugAbort, g.NoOutput(), g.UseFixed(node->InputAt(0), a0));
}
void EmitLoad(InstructionSelector* selector, Node* node, InstructionCode opcode,
Node* output = nullptr) {
Mips64OperandGenerator g(selector);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
if (g.CanBeImmediate(index, opcode)) {
selector->Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(output == nullptr ? node : output),
g.UseRegister(base), g.UseImmediate(index));
} else {
InstructionOperand addr_reg = g.TempRegister();
selector->Emit(kMips64Dadd | AddressingModeField::encode(kMode_None),
addr_reg, g.UseRegister(index), g.UseRegister(base));
// Emit desired load opcode, using temp addr_reg.
selector->Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(output == nullptr ? node : output),
addr_reg, g.TempImmediate(0));
}
}
void InstructionSelector::VisitLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
ArchOpcode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kFloat32:
opcode = kMips64Lwc1;
break;
case MachineRepresentation::kFloat64:
opcode = kMips64Ldc1;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = load_rep.IsUnsigned() ? kMips64Lbu : kMips64Lb;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsUnsigned() ? kMips64Lhu : kMips64Lh;
break;
case MachineRepresentation::kWord32:
opcode = load_rep.IsUnsigned() ? kMips64Lwu : kMips64Lw;
break;
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord64:
opcode = kMips64Ld;
break;
case MachineRepresentation::kSimd128:
opcode = kMips64MsaLd;
break;
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
EmitLoad(this, node, opcode);
}
void InstructionSelector::VisitProtectedLoad(Node* node) {
// TODO(eholk)
UNIMPLEMENTED();
}
void InstructionSelector::VisitStore(Node* node) {
Mips64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
StoreRepresentation store_rep = StoreRepresentationOf(node->op());
WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind();
MachineRepresentation rep = store_rep.representation();
// TODO(mips): I guess this could be done in a better way.
if (write_barrier_kind != kNoWriteBarrier) {
DCHECK(CanBeTaggedPointer(rep));
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] = g.UseUniqueRegister(index);
inputs[input_count++] = g.UseUniqueRegister(value);
RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny;
switch (write_barrier_kind) {
case kNoWriteBarrier:
UNREACHABLE();
break;
case kMapWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsMap;
break;
case kPointerWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsPointer;
break;
case kFullWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsAny;
break;
}
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
size_t const temp_count = arraysize(temps);
InstructionCode code = kArchStoreWithWriteBarrier;
code |= MiscField::encode(static_cast<int>(record_write_mode));
Emit(code, 0, nullptr, input_count, inputs, temp_count, temps);
} else {
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kFloat32:
opcode = kMips64Swc1;
break;
case MachineRepresentation::kFloat64:
opcode = kMips64Sdc1;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = kMips64Sb;
break;
case MachineRepresentation::kWord16:
opcode = kMips64Sh;
break;
case MachineRepresentation::kWord32:
opcode = kMips64Sw;
break;
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord64:
opcode = kMips64Sd;
break;
case MachineRepresentation::kSimd128:
opcode = kMips64MsaSt;
break;
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, opcode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
g.UseRegister(base), g.UseImmediate(index),
g.UseRegisterOrImmediateZero(value));
} else {
InstructionOperand addr_reg = g.TempRegister();
Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), addr_reg,
g.UseRegister(index), g.UseRegister(base));
// Emit desired store opcode, using temp addr_reg.
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value));
}
}
}
void InstructionSelector::VisitProtectedStore(Node* node) {
// TODO(eholk)
UNIMPLEMENTED();
}
void InstructionSelector::VisitWord32And(Node* node) {
Mips64OperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().IsWord32Shr() && CanCover(node, m.left().node()) &&
m.right().HasValue()) {
uint32_t mask = m.right().Value();
uint32_t mask_width = base::bits::CountPopulation(mask);
uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
// The mask must be contiguous, and occupy the least-significant bits.
DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
// Select Ext for And(Shr(x, imm), mask) where the mask is in the least
// significant bits.
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) {
// Any shift value can match; int32 shifts use `value % 32`.
uint32_t lsb = mleft.right().Value() & 0x1F;
// Ext cannot extract bits past the register size, however since
// shifting the original value would have introduced some zeros we can
// still use Ext with a smaller mask and the remaining bits will be
// zeros.
if (lsb + mask_width > 32) mask_width = 32 - lsb;
Emit(kMips64Ext, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
g.TempImmediate(mask_width));
return;
}
// Other cases fall through to the normal And operation.
}
}
if (m.right().HasValue()) {
uint32_t mask = m.right().Value();
uint32_t shift = base::bits::CountPopulation(~mask);
uint32_t msb = base::bits::CountLeadingZeros32(~mask);
if (shift != 0 && shift != 32 && msb + shift == 32) {
// Insert zeros for (x >> K) << K => x & ~(2^K - 1) expression reduction
// and remove constant loading of inverted mask.
Emit(kMips64Ins, g.DefineSameAsFirst(node),
g.UseRegister(m.left().node()), g.TempImmediate(0),
g.TempImmediate(shift));
return;
}
}
VisitBinop(this, node, kMips64And32, true, kMips64And32);
}
void InstructionSelector::VisitWord64And(Node* node) {
Mips64OperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.left().IsWord64Shr() && CanCover(node, m.left().node()) &&
m.right().HasValue()) {
uint64_t mask = m.right().Value();
uint32_t mask_width = base::bits::CountPopulation(mask);
uint32_t mask_msb = base::bits::CountLeadingZeros64(mask);
if ((mask_width != 0) && (mask_msb + mask_width == 64)) {
// The mask must be contiguous, and occupy the least-significant bits.
DCHECK_EQ(0u, base::bits::CountTrailingZeros64(mask));
// Select Dext for And(Shr(x, imm), mask) where the mask is in the least
// significant bits.
Int64BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) {
// Any shift value can match; int64 shifts use `value % 64`.
uint32_t lsb = static_cast<uint32_t>(mleft.right().Value() & 0x3F);
// Dext cannot extract bits past the register size, however since
// shifting the original value would have introduced some zeros we can
// still use Dext with a smaller mask and the remaining bits will be
// zeros.
if (lsb + mask_width > 64) mask_width = 64 - lsb;
if (lsb == 0 && mask_width == 64) {
Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(mleft.left().node()));
} else {
Emit(kMips64Dext, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
g.TempImmediate(static_cast<int32_t>(mask_width)));
}
return;
}
// Other cases fall through to the normal And operation.
}
}
if (m.right().HasValue()) {
uint64_t mask = m.right().Value();
uint32_t shift = base::bits::CountPopulation(~mask);
uint32_t msb = base::bits::CountLeadingZeros64(~mask);
if (shift != 0 && shift < 32 && msb + shift == 64) {
// Insert zeros for (x >> K) << K => x & ~(2^K - 1) expression reduction
// and remove constant loading of inverted mask. Dins cannot insert bits
// past word size, so shifts smaller than 32 are covered.
Emit(kMips64Dins, g.DefineSameAsFirst(node),
g.UseRegister(m.left().node()), g.TempImmediate(0),
g.TempImmediate(shift));
return;
}
}
VisitBinop(this, node, kMips64And, true, kMips64And);
}
void InstructionSelector::VisitWord32Or(Node* node) {
VisitBinop(this, node, kMips64Or32, true, kMips64Or32);
}
void InstructionSelector::VisitWord64Or(Node* node) {
VisitBinop(this, node, kMips64Or, true, kMips64Or);
}
void InstructionSelector::VisitWord32Xor(Node* node) {
Int32BinopMatcher m(node);
if (m.left().IsWord32Or() && CanCover(node, m.left().node()) &&
m.right().Is(-1)) {
Int32BinopMatcher mleft(m.left().node());
if (!mleft.right().HasValue()) {
Mips64OperandGenerator g(this);
Emit(kMips64Nor32, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.UseRegister(mleft.right().node()));
return;
}
}
if (m.right().Is(-1)) {
// Use Nor for bit negation and eliminate constant loading for xori.
Mips64OperandGenerator g(this);
Emit(kMips64Nor32, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.TempImmediate(0));
return;
}
VisitBinop(this, node, kMips64Xor32, true, kMips64Xor32);
}
void InstructionSelector::VisitWord64Xor(Node* node) {
Int64BinopMatcher m(node);
if (m.left().IsWord64Or() && CanCover(node, m.left().node()) &&
m.right().Is(-1)) {
Int64BinopMatcher mleft(m.left().node());
if (!mleft.right().HasValue()) {
Mips64OperandGenerator g(this);
Emit(kMips64Nor, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.UseRegister(mleft.right().node()));
return;
}
}
if (m.right().Is(-1)) {
// Use Nor for bit negation and eliminate constant loading for xori.
Mips64OperandGenerator g(this);
Emit(kMips64Nor, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.TempImmediate(0));
return;
}
VisitBinop(this, node, kMips64Xor, true, kMips64Xor);
}
void InstructionSelector::VisitWord32Shl(Node* node) {
Int32BinopMatcher m(node);
if (m.left().IsWord32And() && CanCover(node, m.left().node()) &&
m.right().IsInRange(1, 31)) {
Mips64OperandGenerator g(this);
Int32BinopMatcher mleft(m.left().node());
// Match Word32Shl(Word32And(x, mask), imm) to Shl where the mask is
// contiguous, and the shift immediate non-zero.
if (mleft.right().HasValue()) {
uint32_t mask = mleft.right().Value();
uint32_t mask_width = base::bits::CountPopulation(mask);
uint32_t mask_msb = base::bits::CountLeadingZeros32(mask);
if ((mask_width != 0) && (mask_msb + mask_width == 32)) {
uint32_t shift = m.right().Value();
DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask));
DCHECK_NE(0u, shift);
if ((shift + mask_width) >= 32) {
// If the mask is contiguous and reaches or extends beyond the top
// bit, only the shift is needed.
Emit(kMips64Shl, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.UseImmediate(m.right().node()));
return;
}
}
}
}
VisitRRO(this, kMips64Shl, node);
}
void InstructionSelector::VisitWord32Shr(Node* node) {
Int32BinopMatcher m(node);
if (m.left().IsWord32And() && m.right().HasValue()) {
uint32_t lsb = m.right().Value() & 0x1F;
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue() && mleft.right().Value() != 0) {
// Select Ext for Shr(And(x, mask), imm) where the result of the mask is
// shifted into the least-significant bits.
uint32_t mask = (mleft.right().Value() >> lsb) << lsb;
unsigned mask_width = base::bits::CountPopulation(mask);
unsigned mask_msb = base::bits::CountLeadingZeros32(mask);
if ((mask_msb + mask_width + lsb) == 32) {
Mips64OperandGenerator g(this);
DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask));
Emit(kMips64Ext, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
g.TempImmediate(mask_width));
return;
}
}
}
VisitRRO(this, kMips64Shr, node);
}
void InstructionSelector::VisitWord32Sar(Node* node) {
Int32BinopMatcher m(node);
if (m.left().IsWord32Shl() && CanCover(node, m.left().node())) {
Int32BinopMatcher mleft(m.left().node());
if (m.right().HasValue() && mleft.right().HasValue()) {
Mips64OperandGenerator g(this);
uint32_t sar = m.right().Value();
uint32_t shl = mleft.right().Value();
if ((sar == shl) && (sar == 16)) {
Emit(kMips64Seh, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()));
return;
} else if ((sar == shl) && (sar == 24)) {
Emit(kMips64Seb, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()));
return;
} else if ((sar == shl) && (sar == 32)) {
Emit(kMips64Shl, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(0));
return;
}
}
}
VisitRRO(this, kMips64Sar, node);
}
void InstructionSelector::VisitWord64Shl(Node* node) {
Mips64OperandGenerator g(this);
Int64BinopMatcher m(node);
if ((m.left().IsChangeInt32ToInt64() || m.left().IsChangeUint32ToUint64()) &&
m.right().IsInRange(32, 63) && CanCover(node, m.left().node())) {
// There's no need to sign/zero-extend to 64-bit if we shift out the upper
// 32 bits anyway.
Emit(kMips64Dshl, g.DefineSameAsFirst(node),
g.UseRegister(m.left().node()->InputAt(0)),
g.UseImmediate(m.right().node()));
return;
}
if (m.left().IsWord64And() && CanCover(node, m.left().node()) &&
m.right().IsInRange(1, 63)) {
// Match Word64Shl(Word64And(x, mask), imm) to Dshl where the mask is
// contiguous, and the shift immediate non-zero.
Int64BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue()) {
uint64_t mask = mleft.right().Value();
uint32_t mask_width = base::bits::CountPopulation(mask);
uint32_t mask_msb = base::bits::CountLeadingZeros64(mask);
if ((mask_width != 0) && (mask_msb + mask_width == 64)) {
uint64_t shift = m.right().Value();
DCHECK_EQ(0u, base::bits::CountTrailingZeros64(mask));
DCHECK_NE(0u, shift);
if ((shift + mask_width) >= 64) {
// If the mask is contiguous and reaches or extends beyond the top
// bit, only the shift is needed.
Emit(kMips64Dshl, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()),
g.UseImmediate(m.right().node()));
return;
}
}
}
}
VisitRRO(this, kMips64Dshl, node);
}
void InstructionSelector::VisitWord64Shr(Node* node) {
Int64BinopMatcher m(node);
if (m.left().IsWord64And() && m.right().HasValue()) {
uint32_t lsb = m.right().Value() & 0x3F;
Int64BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue() && mleft.right().Value() != 0) {
// Select Dext for Shr(And(x, mask), imm) where the result of the mask is
// shifted into the least-significant bits.
uint64_t mask = (mleft.right().Value() >> lsb) << lsb;
unsigned mask_width = base::bits::CountPopulation(mask);
unsigned mask_msb = base::bits::CountLeadingZeros64(mask);
if ((mask_msb + mask_width + lsb) == 64) {
Mips64OperandGenerator g(this);
DCHECK_EQ(lsb, base::bits::CountTrailingZeros64(mask));
Emit(kMips64Dext, g.DefineAsRegister(node),
g.UseRegister(mleft.left().node()), g.TempImmediate(lsb),
g.TempImmediate(mask_width));
return;
}
}
}
VisitRRO(this, kMips64Dshr, node);
}
void InstructionSelector::VisitWord64Sar(Node* node) {
if (TryEmitExtendingLoad(this, node, node)) return;
VisitRRO(this, kMips64Dsar, node);
}
void InstructionSelector::VisitWord32Ror(Node* node) {
VisitRRO(this, kMips64Ror, node);
}
void InstructionSelector::VisitWord32Clz(Node* node) {
VisitRR(this, kMips64Clz, node);
}
void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord64ReverseBytes(Node* node) {
Mips64OperandGenerator g(this);
Emit(kMips64ByteSwap64, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitWord32ReverseBytes(Node* node) {
Mips64OperandGenerator g(this);
Emit(kMips64ByteSwap32, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitWord32Ctz(Node* node) {
Mips64OperandGenerator g(this);
Emit(kMips64Ctz, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitWord64Ctz(Node* node) {
Mips64OperandGenerator g(this);
Emit(kMips64Dctz, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitWord32Popcnt(Node* node) {
Mips64OperandGenerator g(this);
Emit(kMips64Popcnt, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitWord64Popcnt(Node* node) {
Mips64OperandGenerator g(this);
Emit(kMips64Dpopcnt, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitWord64Ror(Node* node) {
VisitRRO(this, kMips64Dror, node);
}
void InstructionSelector::VisitWord64Clz(Node* node) {
VisitRR(this, kMips64Dclz, node);
}
void InstructionSelector::VisitInt32Add(Node* node) {
Mips64OperandGenerator g(this);
Int32BinopMatcher m(node);
// Select Lsa for (left + (left_of_right << imm)).
if (m.right().opcode() == IrOpcode::kWord32Shl &&
CanCover(node, m.left().node()) && CanCover(node, m.right().node())) {
Int32BinopMatcher mright(m.right().node());
if (mright.right().HasValue() && !m.left().HasValue()) {
int32_t shift_value = static_cast<int32_t>(mright.right().Value());
Emit(kMips64Lsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(mright.left().node()), g.TempImmediate(shift_value));
return;
}
}
// Select Lsa for ((left_of_left << imm) + right).
if (m.left().opcode() == IrOpcode::kWord32Shl &&
CanCover(node, m.right().node()) && CanCover(node, m.left().node())) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue() && !m.right().HasValue()) {
int32_t shift_value = static_cast<int32_t>(mleft.right().Value());
Emit(kMips64Lsa, g.DefineAsRegister(node),
g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()),
g.TempImmediate(shift_value));
return;
}
}
VisitBinop(this, node, kMips64Add, true, kMips64Add);
}
void InstructionSelector::VisitInt64Add(Node* node) {
Mips64OperandGenerator g(this);
Int64BinopMatcher m(node);
// Select Dlsa for (left + (left_of_right << imm)).
if (m.right().opcode() == IrOpcode::kWord64Shl &&
CanCover(node, m.left().node()) && CanCover(node, m.right().node())) {
Int64BinopMatcher mright(m.right().node());
if (mright.right().HasValue() && !m.left().HasValue()) {
int32_t shift_value = static_cast<int32_t>(mright.right().Value());
Emit(kMips64Dlsa, g.DefineAsRegister(node),
g.UseRegister(m.left().node()), g.UseRegister(mright.left().node()),
g.TempImmediate(shift_value));
return;
}
}
// Select Dlsa for ((left_of_left << imm) + right).
if (m.left().opcode() == IrOpcode::kWord64Shl &&
CanCover(node, m.right().node()) && CanCover(node, m.left().node())) {
Int64BinopMatcher mleft(m.left().node());
if (mleft.right().HasValue() && !m.right().HasValue()) {
int32_t shift_value = static_cast<int32_t>(mleft.right().Value());
Emit(kMips64Dlsa, g.DefineAsRegister(node),
g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()),
g.TempImmediate(shift_value));
return;
}
}
VisitBinop(this, node, kMips64Dadd, true, kMips64Dadd);
}
void InstructionSelector::VisitInt32Sub(Node* node) {
VisitBinop(this, node, kMips64Sub);
}
void InstructionSelector::VisitInt64Sub(Node* node) {
VisitBinop(this, node, kMips64Dsub);
}
void InstructionSelector::VisitInt32Mul(Node* node) {
Mips64OperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.right().HasValue() && m.right().Value() > 0) {
uint32_t value = static_cast<uint32_t>(m.right().Value());
if (base::bits::IsPowerOfTwo(value)) {
Emit(kMips64Shl | AddressingModeField::encode(kMode_None),
g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.TempImmediate(WhichPowerOf2(value)));
return;
}
if (base::bits::IsPowerOfTwo(value - 1)) {
Emit(kMips64Lsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(m.left().node()),
g.TempImmediate(WhichPowerOf2(value - 1)));
return;
}
if (base::bits::IsPowerOfTwo(value + 1)) {
InstructionOperand temp = g.TempRegister();
Emit(kMips64Shl | AddressingModeField::encode(kMode_None), temp,
g.UseRegister(m.left().node()),
g.TempImmediate(WhichPowerOf2(value + 1)));
Emit(kMips64Sub | AddressingModeField::encode(kMode_None),
g.DefineAsRegister(node), temp, g.UseRegister(m.left().node()));
return;
}
}
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (CanCover(node, left) && CanCover(node, right)) {
if (left->opcode() == IrOpcode::kWord64Sar &&
right->opcode() == IrOpcode::kWord64Sar) {
Int64BinopMatcher leftInput(left), rightInput(right);
if (leftInput.right().Is(32) && rightInput.right().Is(32)) {
// Combine untagging shifts with Dmul high.
Emit(kMips64DMulHigh, g.DefineSameAsFirst(node),
g.UseRegister(leftInput.left().node()),
g.UseRegister(rightInput.left().node()));
return;
}
}
}
VisitRRR(this, kMips64Mul, node);
}
void InstructionSelector::VisitInt32MulHigh(Node* node) {
VisitRRR(this, kMips64MulHigh, node);
}
void InstructionSelector::VisitUint32MulHigh(Node* node) {
VisitRRR(this, kMips64MulHighU, node);
}
void InstructionSelector::VisitInt64Mul(Node* node) {
Mips64OperandGenerator g(this);
Int64BinopMatcher m(node);
// TODO(dusmil): Add optimization for shifts larger than 32.
if (m.right().HasValue() && m.right().Value() > 0) {
uint32_t value = static_cast<uint32_t>(m.right().Value());
if (base::bits::IsPowerOfTwo(value)) {
Emit(kMips64Dshl | AddressingModeField::encode(kMode_None),
g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.TempImmediate(WhichPowerOf2(value)));
return;
}
if (base::bits::IsPowerOfTwo(value - 1)) {
// Dlsa macro will handle the shifting value out of bound cases.
Emit(kMips64Dlsa, g.DefineAsRegister(node),
g.UseRegister(m.left().node()), g.UseRegister(m.left().node()),
g.TempImmediate(WhichPowerOf2(value - 1)));
return;
}
if (base::bits::IsPowerOfTwo(value + 1)) {
InstructionOperand temp = g.TempRegister();
Emit(kMips64Dshl | AddressingModeField::encode(kMode_None), temp,
g.UseRegister(m.left().node()),
g.TempImmediate(WhichPowerOf2(value + 1)));
Emit(kMips64Dsub | AddressingModeField::encode(kMode_None),
g.DefineAsRegister(node), temp, g.UseRegister(m.left().node()));
return;
}
}
Emit(kMips64Dmul, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(m.right().node()));
}
void InstructionSelector::VisitInt32Div(Node* node) {
Mips64OperandGenerator g(this);
Int32BinopMatcher m(node);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (CanCover(node, left) && CanCover(node, right)) {
if (left->opcode() == IrOpcode::kWord64Sar &&
right->opcode() == IrOpcode::kWord64Sar) {
Int64BinopMatcher rightInput(right), leftInput(left);
if (rightInput.right().Is(32) && leftInput.right().Is(32)) {
// Combine both shifted operands with Ddiv.
Emit(kMips64Ddiv, g.DefineSameAsFirst(node),
g.UseRegister(leftInput.left().node()),
g.UseRegister(rightInput.left().node()));
return;
}
}
}
Emit(kMips64Div, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
g.UseRegister(m.right().node()));
}
void InstructionSelector::VisitUint32Div(Node* node) {
Mips64OperandGenerator g(this);
Int32BinopMatcher m(node);
Emit(kMips64DivU, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
g.UseRegister(m.right().node()));
}
void InstructionSelector::VisitInt32Mod(Node* node) {
Mips64OperandGenerator g(this);
Int32BinopMatcher m(node);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (CanCover(node, left) && CanCover(node, right)) {
if (left->opcode() == IrOpcode::kWord64Sar &&
right->opcode() == IrOpcode::kWord64Sar) {
Int64BinopMatcher rightInput(right), leftInput(left);
if (rightInput.right().Is(32) && leftInput.right().Is(32)) {
// Combine both shifted operands with Dmod.
Emit(kMips64Dmod, g.DefineSameAsFirst(node),
g.UseRegister(leftInput.left().node()),
g.UseRegister(rightInput.left().node()));
return;
}
}
}
Emit(kMips64Mod, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(m.right().node()));
}
void InstructionSelector::VisitUint32Mod(Node* node) {
Mips64OperandGenerator g(this);
Int32BinopMatcher m(node);
Emit(kMips64ModU, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(m.right().node()));
}
void InstructionSelector::VisitInt64Div(Node* node) {
Mips64OperandGenerator g(this);
Int64BinopMatcher m(node);
Emit(kMips64Ddiv, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
g.UseRegister(m.right().node()));
}
void InstructionSelector::VisitUint64Div(Node* node) {
Mips64OperandGenerator g(this);
Int64BinopMatcher m(node);
Emit(kMips64DdivU, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()),
g.UseRegister(m.right().node()));
}
void InstructionSelector::VisitInt64Mod(Node* node) {
Mips64OperandGenerator g(this);
Int64BinopMatcher m(node);
Emit(kMips64Dmod, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(m.right().node()));
}
void InstructionSelector::VisitUint64Mod(Node* node) {
Mips64OperandGenerator g(this);
Int64BinopMatcher m(node);
Emit(kMips64DmodU, g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.UseRegister(m.right().node()));
}
void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) {
VisitRR(this, kMips64CvtDS, node);
}
void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) {
VisitRR(this, kMips64CvtSW, node);
}
void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) {
VisitRR(this, kMips64CvtSUw, node);
}
void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
VisitRR(this, kMips64CvtDW, node);
}
void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
VisitRR(this, kMips64CvtDUw, node);
}
void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) {
VisitRR(this, kMips64TruncWS, node);
}
void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) {
VisitRR(this, kMips64TruncUwS, node);
}
void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
Mips64OperandGenerator g(this);
Node* value = node->InputAt(0);
// Match ChangeFloat64ToInt32(Float64Round##OP) to corresponding instruction
// which does rounding and conversion to integer format.
if (CanCover(node, value)) {
switch (value->opcode()) {
case IrOpcode::kFloat64RoundDown:
Emit(kMips64FloorWD, g.DefineAsRegister(node),
g.UseRegister(value->InputAt(0)));
return;
case IrOpcode::kFloat64RoundUp:
Emit(kMips64CeilWD, g.DefineAsRegister(node),
g.UseRegister(value->InputAt(0)));
return;
case IrOpcode::kFloat64RoundTiesEven:
Emit(kMips64RoundWD, g.DefineAsRegister(node),
g.UseRegister(value->InputAt(0)));
return;
case IrOpcode::kFloat64RoundTruncate:
Emit(kMips64TruncWD, g.DefineAsRegister(node),
g.UseRegister(value->InputAt(0)));
return;
default:
break;
}
if (value->opcode() == IrOpcode::kChangeFloat32ToFloat64) {
Node* next = value->InputAt(0);
if (CanCover(value, next)) {
// Match ChangeFloat64ToInt32(ChangeFloat32ToFloat64(Float64Round##OP))
switch (next->opcode()) {
case IrOpcode::kFloat32RoundDown:
Emit(kMips64FloorWS, g.DefineAsRegister(node),
g.UseRegister(next->InputAt(0)));
return;
case IrOpcode::kFloat32RoundUp:
Emit(kMips64CeilWS, g.DefineAsRegister(node),
g.UseRegister(next->InputAt(0)));
return;
case IrOpcode::kFloat32RoundTiesEven:
Emit(kMips64RoundWS, g.DefineAsRegister(node),
g.UseRegister(next->InputAt(0)));
return;
case IrOpcode::kFloat32RoundTruncate:
Emit(kMips64TruncWS, g.DefineAsRegister(node),
g.UseRegister(next->InputAt(0)));
return;
default:
Emit(kMips64TruncWS, g.DefineAsRegister(node),
g.UseRegister(value->InputAt(0)));
return;
}
} else {
// Match float32 -> float64 -> int32 representation change path.
Emit(kMips64TruncWS, g.DefineAsRegister(node),
g.UseRegister(value->InputAt(0)));
return;
}
}
}
VisitRR(this, kMips64TruncWD, node);
}
void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
VisitRR(this, kMips64TruncUwD, node);
}
void InstructionSelector::VisitChangeFloat64ToUint64(Node* node) {
VisitRR(this, kMips64TruncUlD, node);
}
void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) {
VisitRR(this, kMips64TruncUwD, node);
}
void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) {
Mips64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
this->Emit(kMips64TruncLS, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) {
Mips64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
Emit(kMips64TruncLD, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) {
Mips64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
Emit(kMips64TruncUlS, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) {
Mips64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
Emit(kMips64TruncUlD, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitChangeInt32ToInt64(Node* node) {
Node* value = node->InputAt(0);
if (value->opcode() == IrOpcode::kLoad && CanCover(node, value)) {
// Generate sign-extending load.
LoadRepresentation load_rep = LoadRepresentationOf(value->op());
InstructionCode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = load_rep.IsUnsigned() ? kMips64Lbu : kMips64Lb;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsUnsigned() ? kMips64Lhu : kMips64Lh;
break;
case MachineRepresentation::kWord32:
opcode = kMips64Lw;
break;
default:
UNREACHABLE();
return;
}
EmitLoad(this, value, opcode, node);
} else {
Mips64OperandGenerator g(this);
Emit(kMips64Shl, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)),
g.TempImmediate(0));
}
}
void InstructionSelector::VisitChangeUint32ToUint64(Node* node) {
Mips64OperandGenerator g(this);
Node* value = node->InputAt(0);
switch (value->opcode()) {
// 32-bit operations will write their result in a 64 bit register,
// clearing the top 32 bits of the destination register.
case IrOpcode::kUint32Div:
case IrOpcode::kUint32Mod:
case IrOpcode::kUint32MulHigh: {
Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value));
return;
}
case IrOpcode::kLoad: {
LoadRepresentation load_rep = LoadRepresentationOf(value->op());
if (load_rep.IsUnsigned()) {
switch (load_rep.representation()) {
case MachineRepresentation::kWord8:
case MachineRepresentation::kWord16:
case MachineRepresentation::kWord32:
Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value));
return;
default:
break;
}
}
}
default:
break;
}
Emit(kMips64Dext, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)),
g.TempImmediate(0), g.TempImmediate(32));
}
void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) {
Mips64OperandGenerator g(this);
Node* value = node->InputAt(0);
if (CanCover(node, value)) {
switch (value->opcode()) {
case IrOpcode::kWord64Sar: {
if (TryEmitExtendingLoad(this, value, node)) {
return;
} else {
Int64BinopMatcher m(value);
if (m.right().IsInRange(32, 63)) {
// After smi untagging no need for truncate. Combine sequence.
Emit(kMips64Dsar, g.DefineSameAsFirst(node),
g.UseRegister(m.left().node()),
g.UseImmediate(m.right().node()));
return;
}
}
break;
}
default:
break;
}
}
Emit(kMips64Ext, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)),
g.TempImmediate(0), g.TempImmediate(32));
}
void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) {
Mips64OperandGenerator g(this);
Node* value = node->InputAt(0);
// Match TruncateFloat64ToFloat32(ChangeInt32ToFloat64) to corresponding
// instruction.
if (CanCover(node, value) &&
value->opcode() == IrOpcode::kChangeInt32ToFloat64) {
Emit(kMips64CvtSW, g.DefineAsRegister(node),
g.UseRegister(value->InputAt(0)));
return;
}
VisitRR(this, kMips64CvtSD, node);
}
void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) {
VisitRR(this, kArchTruncateDoubleToI, node);
}
void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) {
VisitRR(this, kMips64TruncWD, node);
}
void InstructionSelector::VisitRoundInt64ToFloat32(Node* node) {
VisitRR(this, kMips64CvtSL, node);
}
void InstructionSelector::VisitRoundInt64ToFloat64(Node* node) {
VisitRR(this, kMips64CvtDL, node);
}
void InstructionSelector::VisitRoundUint64ToFloat32(Node* node) {
VisitRR(this, kMips64CvtSUl, node);
}
void InstructionSelector::VisitRoundUint64ToFloat64(Node* node) {
VisitRR(this, kMips64CvtDUl, node);
}
void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) {
VisitRR(this, kMips64Float64ExtractLowWord32, node);
}
void InstructionSelector::VisitBitcastFloat64ToInt64(Node* node) {
VisitRR(this, kMips64BitcastDL, node);
}
void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) {
Mips64OperandGenerator g(this);
Emit(kMips64Float64InsertLowWord32, g.DefineAsRegister(node),
ImmediateOperand(ImmediateOperand::INLINE, 0),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitBitcastInt64ToFloat64(Node* node) {
VisitRR(this, kMips64BitcastLD, node);
}
void InstructionSelector::VisitFloat32Add(Node* node) {
// Optimization with Madd.S(z, x, y) is intentionally removed.
// See explanation for madd_s in assembler-mips64.cc.
VisitRRR(this, kMips64AddS, node);
}
void InstructionSelector::VisitFloat64Add(Node* node) {
// Optimization with Madd.D(z, x, y) is intentionally removed.
// See explanation for madd_d in assembler-mips64.cc.
VisitRRR(this, kMips64AddD, node);
}
void InstructionSelector::VisitFloat32Sub(Node* node) {
// Optimization with Msub.S(z, x, y) is intentionally removed.
// See explanation for madd_s in assembler-mips64.cc.
VisitRRR(this, kMips64SubS, node);
}
void InstructionSelector::VisitFloat64Sub(Node* node) {
// Optimization with Msub.D(z, x, y) is intentionally removed.
// See explanation for madd_d in assembler-mips64.cc.
VisitRRR(this, kMips64SubD, node);
}
void InstructionSelector::VisitFloat32Mul(Node* node) {
VisitRRR(this, kMips64MulS, node);
}
void InstructionSelector::VisitFloat64Mul(Node* node) {
VisitRRR(this, kMips64MulD, node);
}
void InstructionSelector::VisitFloat32Div(Node* node) {
VisitRRR(this, kMips64DivS, node);
}
void InstructionSelector::VisitFloat64Div(Node* node) {
VisitRRR(this, kMips64DivD, node);
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
Mips64OperandGenerator g(this);
Emit(kMips64ModD, g.DefineAsFixed(node, f0),
g.UseFixed(node->InputAt(0), f12),
g.UseFixed(node->InputAt(1), f14))->MarkAsCall();
}
void InstructionSelector::VisitFloat32Max(Node* node) {
Mips64OperandGenerator g(this);
Emit(kMips64Float32Max, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
}
void InstructionSelector::VisitFloat64Max(Node* node) {
Mips64OperandGenerator g(this);
Emit(kMips64Float64Max, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
}
void InstructionSelector::VisitFloat32Min(Node* node) {
Mips64OperandGenerator g(this);
Emit(kMips64Float32Min, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
}
void InstructionSelector::VisitFloat64Min(Node* node) {
Mips64OperandGenerator g(this);
Emit(kMips64Float64Min, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)));
}
void InstructionSelector::VisitFloat32Abs(Node* node) {
VisitRR(this, kMips64AbsS, node);
}
void InstructionSelector::VisitFloat64Abs(Node* node) {
VisitRR(this, kMips64AbsD, node);
}
void InstructionSelector::VisitFloat32Sqrt(Node* node) {
VisitRR(this, kMips64SqrtS, node);
}
void InstructionSelector::VisitFloat64Sqrt(Node* node) {
VisitRR(this, kMips64SqrtD, node);
}
void InstructionSelector::VisitFloat32RoundDown(Node* node) {
VisitRR(this, kMips64Float32RoundDown, node);
}
void InstructionSelector::VisitFloat64RoundDown(Node* node) {
VisitRR(this, kMips64Float64RoundDown, node);
}
void InstructionSelector::VisitFloat32RoundUp(Node* node) {
VisitRR(this, kMips64Float32RoundUp, node);
}
void InstructionSelector::VisitFloat64RoundUp(Node* node) {
VisitRR(this, kMips64Float64RoundUp, node);
}
void InstructionSelector::VisitFloat32RoundTruncate(Node* node) {
VisitRR(this, kMips64Float32RoundTruncate, node);
}
void InstructionSelector::VisitFloat64RoundTruncate(Node* node) {
VisitRR(this, kMips64Float64RoundTruncate, node);
}
void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) {
VisitRR(this, kMips64Float32RoundTiesEven, node);
}
void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) {
VisitRR(this, kMips64Float64RoundTiesEven, node);
}
void InstructionSelector::VisitFloat32Neg(Node* node) {
VisitRR(this, kMips64NegS, node);
}
void InstructionSelector::VisitFloat64Neg(Node* node) {
VisitRR(this, kMips64NegD, node);
}
void InstructionSelector::VisitFloat64Ieee754Binop(Node* node,
InstructionCode opcode) {
Mips64OperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f2),
g.UseFixed(node->InputAt(1), f4))
->MarkAsCall();
}
void InstructionSelector::VisitFloat64Ieee754Unop(Node* node,
InstructionCode opcode) {
Mips64OperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f12))
->MarkAsCall();
}
void InstructionSelector::EmitPrepareArguments(
ZoneVector<PushParameter>* arguments, const CallDescriptor* descriptor,
Node* node) {
Mips64OperandGenerator g(this);
// Prepare for C function call.
if (descriptor->IsCFunctionCall()) {
Emit(kArchPrepareCallCFunction |
MiscField::encode(static_cast<int>(descriptor->ParameterCount())),
0, nullptr, 0, nullptr);
// Poke any stack arguments.
int slot = kCArgSlotCount;
for (PushParameter input : (*arguments)) {
Emit(kMips64StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node),
g.TempImmediate(slot << kPointerSizeLog2));
++slot;
}
} else {
int push_count = static_cast<int>(descriptor->StackParameterCount());
if (push_count > 0) {
Emit(kMips64StackClaim, g.NoOutput(),
g.TempImmediate(push_count << kPointerSizeLog2));
}
for (size_t n = 0; n < arguments->size(); ++n) {
PushParameter input = (*arguments)[n];
if (input.node) {
Emit(kMips64StoreToStackSlot, g.NoOutput(), g.UseRegister(input.node),
g.TempImmediate(static_cast<int>(n << kPointerSizeLog2)));
}
}
}
}
void InstructionSelector::EmitPrepareResults(ZoneVector<PushParameter>* results,
const CallDescriptor* descriptor,
Node* node) {
Mips64OperandGenerator g(this);
int reverse_slot = 0;
for (PushParameter output : *results) {
if (!output.location.IsCallerFrameSlot()) continue;
// Skip any alignment holes in nodes.
if (output.node != nullptr) {
DCHECK(!descriptor->IsCFunctionCall());
if (output.location.GetType() == MachineType::Float32()) {
MarkAsFloat32(output.node);
} else if (output.location.GetType() == MachineType::Float64()) {
MarkAsFloat64(output.node);
}
InstructionOperand result = g.DefineAsRegister(output.node);
Emit(kMips64Peek | MiscField::encode(reverse_slot), result);
}
reverse_slot += output.location.GetSizeInPointers();
}
}
bool InstructionSelector::IsTailCallAddressImmediate() { return false; }
int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; }
void InstructionSelector::VisitUnalignedLoad(Node* node) {
UnalignedLoadRepresentation load_rep =
UnalignedLoadRepresentationOf(node->op());
Mips64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
ArchOpcode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kFloat32:
opcode = kMips64Ulwc1;
break;
case MachineRepresentation::kFloat64:
opcode = kMips64Uldc1;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
UNREACHABLE();
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsUnsigned() ? kMips64Ulhu : kMips64Ulh;
break;
case MachineRepresentation::kWord32:
opcode = load_rep.IsUnsigned() ? kMips64Ulwu : kMips64Ulw;
break;
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord64:
opcode = kMips64Uld;
break;
case MachineRepresentation::kSimd128:
opcode = kMips64MsaLd;
break;
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, opcode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
} else {
InstructionOperand addr_reg = g.TempRegister();
Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), addr_reg,
g.UseRegister(index), g.UseRegister(base));
// Emit desired load opcode, using temp addr_reg.
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), addr_reg, g.TempImmediate(0));
}
}
void InstructionSelector::VisitUnalignedStore(Node* node) {
Mips64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
UnalignedStoreRepresentation rep = UnalignedStoreRepresentationOf(node->op());
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kFloat32:
opcode = kMips64Uswc1;
break;
case MachineRepresentation::kFloat64:
opcode = kMips64Usdc1;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
UNREACHABLE();
break;
case MachineRepresentation::kWord16:
opcode = kMips64Ush;
break;
case MachineRepresentation::kWord32:
opcode = kMips64Usw;
break;
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord64:
opcode = kMips64Usd;
break;
case MachineRepresentation::kSimd128:
opcode = kMips64MsaSt;
break;
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, opcode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
g.UseRegister(base), g.UseImmediate(index),
g.UseRegisterOrImmediateZero(value));
} else {
InstructionOperand addr_reg = g.TempRegister();
Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), addr_reg,
g.UseRegister(index), g.UseRegister(base));
// Emit desired store opcode, using temp addr_reg.
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value));
}
}
namespace {
// Shared routine for multiple compare operations.
static void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand left, InstructionOperand right,
FlagsContinuation* cont) {
Mips64OperandGenerator g(selector);
opcode = cont->Encode(opcode);
if (cont->IsBranch()) {
selector->Emit(opcode, g.NoOutput(), left, right,
g.Label(cont->true_block()), g.Label(cont->false_block()));
} else if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, g.NoOutput(), left, right, cont->kind(),
cont->reason(), cont->feedback(),
cont->frame_state());
} else if (cont->IsSet()) {
selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right);
} else {
DCHECK(cont->IsTrap());
selector->Emit(opcode, g.NoOutput(), left, right,
g.TempImmediate(cont->trap_id()));
}
}
// Shared routine for multiple float32 compare operations.
void VisitFloat32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
Mips64OperandGenerator g(selector);
Float32BinopMatcher m(node);
InstructionOperand lhs, rhs;
lhs = m.left().IsZero() ? g.UseImmediate(m.left().node())
: g.UseRegister(m.left().node());
rhs = m.right().IsZero() ? g.UseImmediate(m.right().node())
: g.UseRegister(m.right().node());
VisitCompare(selector, kMips64CmpS, lhs, rhs, cont);
}
// Shared routine for multiple float64 compare operations.
void VisitFloat64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
Mips64OperandGenerator g(selector);
Float64BinopMatcher m(node);
InstructionOperand lhs, rhs;
lhs = m.left().IsZero() ? g.UseImmediate(m.left().node())
: g.UseRegister(m.left().node());
rhs = m.right().IsZero() ? g.UseImmediate(m.right().node())
: g.UseRegister(m.right().node());
VisitCompare(selector, kMips64CmpD, lhs, rhs, cont);
}
// Shared routine for multiple word compare operations.
void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont,
bool commutative) {
Mips64OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
// Match immediates on left or right side of comparison.
if (g.CanBeImmediate(right, opcode)) {
if (opcode == kMips64Tst) {
VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right),
cont);
} else {
switch (cont->condition()) {
case kEqual:
case kNotEqual:
if (cont->IsSet()) {
VisitCompare(selector, opcode, g.UseRegister(left),
g.UseImmediate(right), cont);
} else {
VisitCompare(selector, opcode, g.UseRegister(left),
g.UseRegister(right), cont);
}
break;
case kSignedLessThan:
case kSignedGreaterThanOrEqual:
case kUnsignedLessThan:
case kUnsignedGreaterThanOrEqual:
VisitCompare(selector, opcode, g.UseRegister(left),
g.UseImmediate(right), cont);
break;
default:
VisitCompare(selector, opcode, g.UseRegister(left),
g.UseRegister(right), cont);
}
}
} else if (g.CanBeImmediate(left, opcode)) {
if (!commutative) cont->Commute();
if (opcode == kMips64Tst) {
VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left),
cont);
} else {
switch (cont->condition()) {
case kEqual:
case kNotEqual:
if (cont->IsSet()) {
VisitCompare(selector, opcode, g.UseRegister(right),
g.UseImmediate(left), cont);
} else {
VisitCompare(selector, opcode, g.UseRegister(right),
g.UseRegister(left), cont);
}
break;
case kSignedLessThan:
case kSignedGreaterThanOrEqual:
case kUnsignedLessThan:
case kUnsignedGreaterThanOrEqual:
VisitCompare(selector, opcode, g.UseRegister(right),
g.UseImmediate(left), cont);
break;
default:
VisitCompare(selector, opcode, g.UseRegister(right),
g.UseRegister(left), cont);
}
}
} else {
VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right),
cont);
}
}
bool IsNodeUnsigned(Node* n) {
NodeMatcher m(n);
if (m.IsLoad()) {
LoadRepresentation load_rep = LoadRepresentationOf(n->op());
return load_rep.IsUnsigned();
} else if (m.IsUnalignedLoad()) {
UnalignedLoadRepresentation load_rep =
UnalignedLoadRepresentationOf(n->op());
return load_rep.IsUnsigned();
} else {
return m.IsUint32Div() || m.IsUint32LessThan() ||
m.IsUint32LessThanOrEqual() || m.IsUint32Mod() ||
m.IsUint32MulHigh() || m.IsChangeFloat64ToUint32() ||
m.IsTruncateFloat64ToUint32() || m.IsTruncateFloat32ToUint32();
}
}
// Shared routine for multiple word compare operations.
void VisitFullWord32Compare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
Mips64OperandGenerator g(selector);
InstructionOperand leftOp = g.TempRegister();
InstructionOperand rightOp = g.TempRegister();
selector->Emit(kMips64Dshl, leftOp, g.UseRegister(node->InputAt(0)),
g.TempImmediate(32));
selector->Emit(kMips64Dshl, rightOp, g.UseRegister(node->InputAt(1)),
g.TempImmediate(32));
VisitCompare(selector, opcode, leftOp, rightOp, cont);
}
void VisitOptimizedWord32Compare(InstructionSelector* selector, Node* node,
InstructionCode opcode,
FlagsContinuation* cont) {
if (FLAG_debug_code) {
Mips64OperandGenerator g(selector);
InstructionOperand leftOp = g.TempRegister();
InstructionOperand rightOp = g.TempRegister();
InstructionOperand optimizedResult = g.TempRegister();
InstructionOperand fullResult = g.TempRegister();
FlagsCondition condition = cont->condition();
InstructionCode testOpcode = opcode |
FlagsConditionField::encode(condition) |
FlagsModeField::encode(kFlags_set);
selector->Emit(testOpcode, optimizedResult, g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)));
selector->Emit(kMips64Dshl, leftOp, g.UseRegister(node->InputAt(0)),
g.TempImmediate(32));
selector->Emit(kMips64Dshl, rightOp, g.UseRegister(node->InputAt(1)),
g.TempImmediate(32));
selector->Emit(testOpcode, fullResult, leftOp, rightOp);
selector->Emit(
kMips64AssertEqual, g.NoOutput(), optimizedResult, fullResult,
g.TempImmediate(
static_cast<int>(AbortReason::kUnsupportedNonPrimitiveCompare)));
}
VisitWordCompare(selector, node, opcode, cont, false);
}
void VisitWord32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
// MIPS64 doesn't support Word32 compare instructions. Instead it relies
// that the values in registers are correctly sign-extended and uses
// Word64 comparison instead. This behavior is correct in most cases,
// but doesn't work when comparing signed with unsigned operands.
// We could simulate full Word32 compare in all cases but this would
// create an unnecessary overhead since unsigned integers are rarely
// used in JavaScript.
// The solution proposed here tries to match a comparison of signed
// with unsigned operand, and perform full Word32Compare only
// in those cases. Unfortunately, the solution is not complete because
// it might skip cases where Word32 full compare is needed, so
// basically it is a hack.
if (IsNodeUnsigned(node->InputAt(0)) != IsNodeUnsigned(node->InputAt(1))) {
VisitFullWord32Compare(selector, node, kMips64Cmp, cont);
} else {
VisitOptimizedWord32Compare(selector, node, kMips64Cmp, cont);
}
}
void VisitWord64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
VisitWordCompare(selector, node, kMips64Cmp, cont, false);
}
void EmitWordCompareZero(InstructionSelector* selector, Node* value,
FlagsContinuation* cont) {
Mips64OperandGenerator g(selector);
InstructionCode opcode = cont->Encode(kMips64Cmp);
InstructionOperand const value_operand = g.UseRegister(value);
if (cont->IsBranch()) {
selector->Emit(opcode, g.NoOutput(), value_operand, g.TempImmediate(0),
g.Label(cont->true_block()), g.Label(cont->false_block()));
} else if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, g.NoOutput(), value_operand,
g.TempImmediate(0), cont->kind(), cont->reason(),
cont->feedback(), cont->frame_state());
} else if (cont->IsTrap()) {
selector->Emit(opcode, g.NoOutput(), value_operand, g.TempImmediate(0),
g.TempImmediate(cont->trap_id()));
} else {
selector->Emit(opcode, g.DefineAsRegister(cont->result()), value_operand,
g.TempImmediate(0));
}
}
// Shared routine for word comparisons against zero.
void VisitWordCompareZero(InstructionSelector* selector, Node* user,
Node* value, FlagsContinuation* cont) {
// Try to combine with comparisons against 0 by simply inverting the branch.
while (selector->CanCover(user, value)) {
if (value->opcode() == IrOpcode::kWord32Equal) {
Int32BinopMatcher m(value);
if (!m.right().Is(0)) break;
user = value;
value = m.left().node();
} else if (value->opcode() == IrOpcode::kWord64Equal) {
Int64BinopMatcher m(value);
if (!m.right().Is(0)) break;
user = value;
value = m.left().node();
} else {
break;
}
cont->Negate();
}
if (selector->CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kWord32Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitWord32Compare(selector, value, cont);
case IrOpcode::kInt32LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWord32Compare(selector, value, cont);
case IrOpcode::kInt32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWord32Compare(selector, value, cont);
case IrOpcode::kUint32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWord32Compare(selector, value, cont);
case IrOpcode::kUint32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWord32Compare(selector, value, cont);
case IrOpcode::kWord64Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kInt64LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kInt64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kUint64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kUint64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kFloat32Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat64Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kProjection:
// Check if this is the overflow output projection of an
// <Operation>WithOverflow node.
if (ProjectionIndexOf(value->op()) == 1u) {
// We cannot combine the <Operation>WithOverflow with this branch
// unless the 0th projection (the use of the actual value of the
// <Operation> is either nullptr, which means there's no use of the
// actual value, or was already defined, which means it is scheduled
// *AFTER* this branch).
Node* const node = value->InputAt(0);
Node* const result = NodeProperties::FindProjection(node, 0);
if (result == nullptr || selector->IsDefined(result)) {
switch (node->opcode()) {
case IrOpcode::kInt32AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kMips64Dadd, cont);
case IrOpcode::kInt32SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kMips64Dsub, cont);
case IrOpcode::kInt32MulWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kMips64MulOvf, cont);
case IrOpcode::kInt64AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kMips64DaddOvf, cont);
case IrOpcode::kInt64SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kMips64DsubOvf, cont);
default:
break;
}
}
}
break;
case IrOpcode::kWord32And:
case IrOpcode::kWord64And:
return VisitWordCompare(selector, value, kMips64Tst, cont, true);
default:
break;
}
}
// Continuation could not be combined with a compare, emit compare against 0.
EmitWordCompareZero(selector, value, cont);
}
} // namespace
void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch,
BasicBlock* fbranch) {
FlagsContinuation cont(kNotEqual, tbranch, fbranch);
VisitWordCompareZero(this, branch, branch->InputAt(0), &cont);
}
void InstructionSelector::VisitDeoptimizeIf(Node* node) {
DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
kNotEqual, p.kind(), p.reason(), p.feedback(), node->InputAt(1));
VisitWordCompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitDeoptimizeUnless(Node* node) {
DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
kEqual, p.kind(), p.reason(), p.feedback(), node->InputAt(1));
VisitWordCompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitTrapIf(Node* node, Runtime::FunctionId func_id) {
FlagsContinuation cont =
FlagsContinuation::ForTrap(kNotEqual, func_id, node->InputAt(1));
VisitWordCompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitTrapUnless(Node* node,
Runtime::FunctionId func_id) {
FlagsContinuation cont =
FlagsContinuation::ForTrap(kEqual, func_id, node->InputAt(1));
VisitWordCompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
Mips64OperandGenerator g(this);
InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
// Emit either ArchTableSwitch or ArchLookupSwitch.
static const size_t kMaxTableSwitchValueRange = 2 << 16;
size_t table_space_cost = 10 + 2 * sw.value_range;
size_t table_time_cost = 3;
size_t lookup_space_cost = 2 + 2 * sw.case_count;
size_t lookup_time_cost = sw.case_count;
if (sw.case_count > 0 &&
table_space_cost + 3 * table_time_cost <=
lookup_space_cost + 3 * lookup_time_cost &&
sw.min_value > std::numeric_limits<int32_t>::min() &&
sw.value_range <= kMaxTableSwitchValueRange) {
InstructionOperand index_operand = value_operand;
if (sw.min_value) {
index_operand = g.TempRegister();
Emit(kMips64Sub, index_operand, value_operand,
g.TempImmediate(sw.min_value));
}
// Generate a table lookup.
return EmitTableSwitch(sw, index_operand);
}
// Generate a sequence of conditional jumps.
return EmitLookupSwitch(sw, value_operand);
}
void InstructionSelector::VisitWord32Equal(Node* const node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
Int32BinopMatcher m(node);
if (m.right().Is(0)) {
return VisitWordCompareZero(this, m.node(), m.left().node(), &cont);
}
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWord32Compare(this, node, &cont);
}
void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kMips64Dadd, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kMips64Dadd, &cont);
}
void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kMips64Dsub, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kMips64Dsub, &cont);
}
void InstructionSelector::VisitInt32MulWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kMips64MulOvf, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kMips64MulOvf, &cont);
}
void InstructionSelector::VisitInt64AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kMips64DaddOvf, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kMips64DaddOvf, &cont);
}
void InstructionSelector::VisitInt64SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kMips64DsubOvf, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kMips64DsubOvf, &cont);
}
void InstructionSelector::VisitWord64Equal(Node* const node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
Int64BinopMatcher m(node);
if (m.right().Is(0)) {
return VisitWordCompareZero(this, m.node(), m.left().node(), &cont);
}
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitInt64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitUint64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) {
VisitRR(this, kMips64Float64ExtractLowWord32, node);
}
void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) {
VisitRR(this, kMips64Float64ExtractHighWord32, node);
}
void InstructionSelector::VisitFloat64SilenceNaN(Node* node) {
VisitRR(this, kMips64Float64SilenceNaN, node);
}
void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
Mips64OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
Emit(kMips64Float64InsertLowWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.UseRegister(right));
}
void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
Mips64OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
Emit(kMips64Float64InsertHighWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.UseRegister(right));
}
void InstructionSelector::VisitAtomicLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
Mips64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
ArchOpcode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kAtomicLoadInt8 : kAtomicLoadUint8;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kAtomicLoadInt16 : kAtomicLoadUint16;
break;
case MachineRepresentation::kWord32:
opcode = kAtomicLoadWord32;
break;
default:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, opcode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index));
} else {
InstructionOperand addr_reg = g.TempRegister();
Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), addr_reg,
g.UseRegister(index), g.UseRegister(base));
// Emit desired load opcode, using temp addr_reg.
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), addr_reg, g.TempImmediate(0));
}
}
void InstructionSelector::VisitAtomicStore(Node* node) {
MachineRepresentation rep = AtomicStoreRepresentationOf(node->op());
Mips64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kWord8:
opcode = kAtomicStoreWord8;
break;
case MachineRepresentation::kWord16:
opcode = kAtomicStoreWord16;
break;
case MachineRepresentation::kWord32:
opcode = kAtomicStoreWord32;
break;
default:
UNREACHABLE();
return;
}
if (g.CanBeImmediate(index, opcode)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
g.UseRegister(base), g.UseImmediate(index),
g.UseRegisterOrImmediateZero(value));
} else {
InstructionOperand addr_reg = g.TempRegister();
Emit(kMips64Dadd | AddressingModeField::encode(kMode_None), addr_reg,
g.UseRegister(index), g.UseRegister(base));
// Emit desired store opcode, using temp addr_reg.
Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(),
addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value));
}
}
void InstructionSelector::VisitAtomicExchange(Node* node) {
Mips64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
ArchOpcode opcode = kArchNop;
MachineType type = AtomicOpRepresentationOf(node->op());
if (type == MachineType::Int8()) {
opcode = kAtomicExchangeInt8;
} else if (type == MachineType::Uint8()) {
opcode = kAtomicExchangeUint8;
} else if (type == MachineType::Int16()) {
opcode = kAtomicExchangeInt16;
} else if (type == MachineType::Uint16()) {
opcode = kAtomicExchangeUint16;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = kAtomicExchangeWord32;
} else {
UNREACHABLE();
return;
}
AddressingMode addressing_mode = kMode_MRI;
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] = g.UseUniqueRegister(index);
inputs[input_count++] = g.UseUniqueRegister(value);
InstructionOperand outputs[1];
outputs[0] = g.UseUniqueRegister(node);
InstructionOperand temp[3];
temp[0] = g.TempRegister();
temp[1] = g.TempRegister();
temp[2] = g.TempRegister();
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
Emit(code, 1, outputs, input_count, inputs, 3, temp);
}
void InstructionSelector::VisitAtomicCompareExchange(Node* node) {
Mips64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* old_value = node->InputAt(2);
Node* new_value = node->InputAt(3);
ArchOpcode opcode = kArchNop;
MachineType type = AtomicOpRepresentationOf(node->op());
if (type == MachineType::Int8()) {
opcode = kAtomicCompareExchangeInt8;
} else if (type == MachineType::Uint8()) {
opcode = kAtomicCompareExchangeUint8;
} else if (type == MachineType::Int16()) {
opcode = kAtomicCompareExchangeInt16;
} else if (type == MachineType::Uint16()) {
opcode = kAtomicCompareExchangeUint16;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = kAtomicCompareExchangeWord32;
} else {
UNREACHABLE();
return;
}
AddressingMode addressing_mode = kMode_MRI;
InstructionOperand inputs[4];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] = g.UseUniqueRegister(index);
inputs[input_count++] = g.UseUniqueRegister(old_value);
inputs[input_count++] = g.UseUniqueRegister(new_value);
InstructionOperand outputs[1];
outputs[0] = g.UseUniqueRegister(node);
InstructionOperand temp[3];
temp[0] = g.TempRegister();
temp[1] = g.TempRegister();
temp[2] = g.TempRegister();
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
Emit(code, 1, outputs, input_count, inputs, 3, temp);
}
void InstructionSelector::VisitAtomicBinaryOperation(
Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op,
ArchOpcode uint16_op, ArchOpcode word32_op) {
Mips64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
ArchOpcode opcode = kArchNop;
MachineType type = AtomicOpRepresentationOf(node->op());
if (type == MachineType::Int8()) {
opcode = int8_op;
} else if (type == MachineType::Uint8()) {
opcode = uint8_op;
} else if (type == MachineType::Int16()) {
opcode = int16_op;
} else if (type == MachineType::Uint16()) {
opcode = uint16_op;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = word32_op;
} else {
UNREACHABLE();
return;
}
AddressingMode addressing_mode = kMode_MRI;
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
inputs[input_count++] = g.UseUniqueRegister(index);
inputs[input_count++] = g.UseUniqueRegister(value);
InstructionOperand outputs[1];
outputs[0] = g.UseUniqueRegister(node);
InstructionOperand temps[4];
temps[0] = g.TempRegister();
temps[1] = g.TempRegister();
temps[2] = g.TempRegister();
temps[3] = g.TempRegister();
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
Emit(code, 1, outputs, input_count, inputs, 4, temps);
}
#define VISIT_ATOMIC_BINOP(op) \
void InstructionSelector::VisitAtomic##op(Node* node) { \
VisitAtomicBinaryOperation(node, kAtomic##op##Int8, kAtomic##op##Uint8, \
kAtomic##op##Int16, kAtomic##op##Uint16, \
kAtomic##op##Word32); \
}
VISIT_ATOMIC_BINOP(Add)
VISIT_ATOMIC_BINOP(Sub)
VISIT_ATOMIC_BINOP(And)
VISIT_ATOMIC_BINOP(Or)
VISIT_ATOMIC_BINOP(Xor)
#undef VISIT_ATOMIC_BINOP
void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitSpeculationFence(Node* node) { UNREACHABLE(); }
#define SIMD_TYPE_LIST(V) \
V(F32x4) \
V(I32x4) \
V(I16x8) \
V(I8x16)
// TODO(mostynb@opera.com): this is never used, remove it?
#define SIMD_FORMAT_LIST(V) \
V(32x4) \
V(16x8) \
V(8x16)
#define SIMD_UNOP_LIST(V) \
V(F32x4SConvertI32x4, kMips64F32x4SConvertI32x4) \
V(F32x4UConvertI32x4, kMips64F32x4UConvertI32x4) \
V(F32x4Abs, kMips64F32x4Abs) \
V(F32x4Neg, kMips64F32x4Neg) \
V(F32x4RecipApprox, kMips64F32x4RecipApprox) \
V(F32x4RecipSqrtApprox, kMips64F32x4RecipSqrtApprox) \
V(I32x4SConvertF32x4, kMips64I32x4SConvertF32x4) \
V(I32x4UConvertF32x4, kMips64I32x4UConvertF32x4) \
V(I32x4Neg, kMips64I32x4Neg) \
V(I32x4SConvertI16x8Low, kMips64I32x4SConvertI16x8Low) \
V(I32x4SConvertI16x8High, kMips64I32x4SConvertI16x8High) \
V(I32x4UConvertI16x8Low, kMips64I32x4UConvertI16x8Low) \
V(I32x4UConvertI16x8High, kMips64I32x4UConvertI16x8High) \
V(I16x8Neg, kMips64I16x8Neg) \
V(I16x8SConvertI8x16Low, kMips64I16x8SConvertI8x16Low) \
V(I16x8SConvertI8x16High, kMips64I16x8SConvertI8x16High) \
V(I16x8UConvertI8x16Low, kMips64I16x8UConvertI8x16Low) \
V(I16x8UConvertI8x16High, kMips64I16x8UConvertI8x16High) \
V(I8x16Neg, kMips64I8x16Neg) \
V(S128Not, kMips64S128Not) \
V(S1x4AnyTrue, kMips64S1x4AnyTrue) \
V(S1x4AllTrue, kMips64S1x4AllTrue) \
V(S1x8AnyTrue, kMips64S1x8AnyTrue) \
V(S1x8AllTrue, kMips64S1x8AllTrue) \
V(S1x16AnyTrue, kMips64S1x16AnyTrue) \
V(S1x16AllTrue, kMips64S1x16AllTrue)
#define SIMD_SHIFT_OP_LIST(V) \
V(I32x4Shl) \
V(I32x4ShrS) \
V(I32x4ShrU) \
V(I16x8Shl) \
V(I16x8ShrS) \
V(I16x8ShrU) \
V(I8x16Shl) \
V(I8x16ShrS) \
V(I8x16ShrU)
#define SIMD_BINOP_LIST(V) \
V(F32x4Add, kMips64F32x4Add) \
V(F32x4AddHoriz, kMips64F32x4AddHoriz) \
V(F32x4Sub, kMips64F32x4Sub) \
V(F32x4Mul, kMips64F32x4Mul) \
V(F32x4Max, kMips64F32x4Max) \
V(F32x4Min, kMips64F32x4Min) \
V(F32x4Eq, kMips64F32x4Eq) \
V(F32x4Ne, kMips64F32x4Ne) \
V(F32x4Lt, kMips64F32x4Lt) \
V(F32x4Le, kMips64F32x4Le) \
V(I32x4Add, kMips64I32x4Add) \
V(I32x4AddHoriz, kMips64I32x4AddHoriz) \
V(I32x4Sub, kMips64I32x4Sub) \
V(I32x4Mul, kMips64I32x4Mul) \
V(I32x4MaxS, kMips64I32x4MaxS) \
V(I32x4MinS, kMips64I32x4MinS) \
V(I32x4MaxU, kMips64I32x4MaxU) \
V(I32x4MinU, kMips64I32x4MinU) \
V(I32x4Eq, kMips64I32x4Eq) \
V(I32x4Ne, kMips64I32x4Ne) \
V(I32x4GtS, kMips64I32x4GtS) \
V(I32x4GeS, kMips64I32x4GeS) \
V(I32x4GtU, kMips64I32x4GtU) \
V(I32x4GeU, kMips64I32x4GeU) \
V(I16x8Add, kMips64I16x8Add) \
V(I16x8AddSaturateS, kMips64I16x8AddSaturateS) \
V(I16x8AddSaturateU, kMips64I16x8AddSaturateU) \
V(I16x8AddHoriz, kMips64I16x8AddHoriz) \
V(I16x8Sub, kMips64I16x8Sub) \
V(I16x8SubSaturateS, kMips64I16x8SubSaturateS) \
V(I16x8SubSaturateU, kMips64I16x8SubSaturateU) \
V(I16x8Mul, kMips64I16x8Mul) \
V(I16x8MaxS, kMips64I16x8MaxS) \
V(I16x8MinS, kMips64I16x8MinS) \
V(I16x8MaxU, kMips64I16x8MaxU) \
V(I16x8MinU, kMips64I16x8MinU) \
V(I16x8Eq, kMips64I16x8Eq) \
V(I16x8Ne, kMips64I16x8Ne) \
V(I16x8GtS, kMips64I16x8GtS) \
V(I16x8GeS, kMips64I16x8GeS) \
V(I16x8GtU, kMips64I16x8GtU) \
V(I16x8GeU, kMips64I16x8GeU) \
V(I16x8SConvertI32x4, kMips64I16x8SConvertI32x4) \
V(I16x8UConvertI32x4, kMips64I16x8UConvertI32x4) \
V(I8x16Add, kMips64I8x16Add) \
V(I8x16AddSaturateS, kMips64I8x16AddSaturateS) \
V(I8x16AddSaturateU, kMips64I8x16AddSaturateU) \
V(I8x16Sub, kMips64I8x16Sub) \
V(I8x16SubSaturateS, kMips64I8x16SubSaturateS) \
V(I8x16SubSaturateU, kMips64I8x16SubSaturateU) \
V(I8x16Mul, kMips64I8x16Mul) \
V(I8x16MaxS, kMips64I8x16MaxS) \
V(I8x16MinS, kMips64I8x16MinS) \
V(I8x16MaxU, kMips64I8x16MaxU) \
V(I8x16MinU, kMips64I8x16MinU) \
V(I8x16Eq, kMips64I8x16Eq) \
V(I8x16Ne, kMips64I8x16Ne) \
V(I8x16GtS, kMips64I8x16GtS) \
V(I8x16GeS, kMips64I8x16GeS) \
V(I8x16GtU, kMips64I8x16GtU) \
V(I8x16GeU, kMips64I8x16GeU) \
V(I8x16SConvertI16x8, kMips64I8x16SConvertI16x8) \
V(I8x16UConvertI16x8, kMips64I8x16UConvertI16x8) \
V(S128And, kMips64S128And) \
V(S128Or, kMips64S128Or) \
V(S128Xor, kMips64S128Xor)
void InstructionSelector::VisitS128Zero(Node* node) {
Mips64OperandGenerator g(this);
Emit(kMips64S128Zero, g.DefineSameAsFirst(node));
}
#define SIMD_VISIT_SPLAT(Type) \
void InstructionSelector::Visit##Type##Splat(Node* node) { \
VisitRR(this, kMips64##Type##Splat, node); \
}
SIMD_TYPE_LIST(SIMD_VISIT_SPLAT)
#undef SIMD_VISIT_SPLAT
#define SIMD_VISIT_EXTRACT_LANE(Type) \
void InstructionSelector::Visit##Type##ExtractLane(Node* node) { \
VisitRRI(this, kMips64##Type##ExtractLane, node); \
}
SIMD_TYPE_LIST(SIMD_VISIT_EXTRACT_LANE)
#undef SIMD_VISIT_EXTRACT_LANE
#define SIMD_VISIT_REPLACE_LANE(Type) \
void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \
VisitRRIR(this, kMips64##Type##ReplaceLane, node); \
}
SIMD_TYPE_LIST(SIMD_VISIT_REPLACE_LANE)
#undef SIMD_VISIT_REPLACE_LANE
#define SIMD_VISIT_UNOP(Name, instruction) \
void InstructionSelector::Visit##Name(Node* node) { \
VisitRR(this, instruction, node); \
}
SIMD_UNOP_LIST(SIMD_VISIT_UNOP)
#undef SIMD_VISIT_UNOP
#define SIMD_VISIT_SHIFT_OP(Name) \
void InstructionSelector::Visit##Name(Node* node) { \
VisitRRI(this, kMips64##Name, node); \
}
SIMD_SHIFT_OP_LIST(SIMD_VISIT_SHIFT_OP)
#undef SIMD_VISIT_SHIFT_OP
#define SIMD_VISIT_BINOP(Name, instruction) \
void InstructionSelector::Visit##Name(Node* node) { \
VisitRRR(this, instruction, node); \
}
SIMD_BINOP_LIST(SIMD_VISIT_BINOP)
#undef SIMD_VISIT_BINOP
void InstructionSelector::VisitS128Select(Node* node) {
VisitRRRR(this, kMips64S128Select, node);
}
namespace {
struct ShuffleEntry {
uint8_t shuffle[kSimd128Size];
ArchOpcode opcode;
};
static const ShuffleEntry arch_shuffles[] = {
{{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23},
kMips64S32x4InterleaveRight},
{{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31},
kMips64S32x4InterleaveLeft},
{{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27},
kMips64S32x4PackEven},
{{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31},
kMips64S32x4PackOdd},
{{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27},
kMips64S32x4InterleaveEven},
{{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31},
kMips64S32x4InterleaveOdd},
{{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23},
kMips64S16x8InterleaveRight},
{{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31},
kMips64S16x8InterleaveLeft},
{{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29},
kMips64S16x8PackEven},
{{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31},
kMips64S16x8PackOdd},
{{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29},
kMips64S16x8InterleaveEven},
{{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31},
kMips64S16x8InterleaveOdd},
{{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9},
kMips64S16x4Reverse},
{{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13},
kMips64S16x2Reverse},
{{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23},
kMips64S8x16InterleaveRight},
{{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31},
kMips64S8x16InterleaveLeft},
{{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30},
kMips64S8x16PackEven},
{{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31},
kMips64S8x16PackOdd},
{{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30},
kMips64S8x16InterleaveEven},
{{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31},
kMips64S8x16InterleaveOdd},
{{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8},
kMips64S8x8Reverse},
{{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12},
kMips64S8x4Reverse},
{{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14},
kMips64S8x2Reverse}};
bool TryMatchArchShuffle(const uint8_t* shuffle, const ShuffleEntry* table,
size_t num_entries, uint8_t mask, ArchOpcode* opcode) {
for (size_t i = 0; i < num_entries; ++i) {
const ShuffleEntry& entry = table[i];
int j = 0;
for (; j < kSimd128Size; ++j) {
if ((entry.shuffle[j] & mask) != (shuffle[j] & mask)) {
break;
}
}
if (j == kSimd128Size) {
*opcode = entry.opcode;
return true;
}
}
return false;
}
} // namespace
void InstructionSelector::VisitS8x16Shuffle(Node* node) {
const uint8_t* shuffle = OpParameter<uint8_t*>(node);
uint8_t mask = CanonicalizeShuffle(node);
uint8_t shuffle32x4[4];
ArchOpcode opcode;
if (TryMatchArchShuffle(shuffle, arch_shuffles, arraysize(arch_shuffles),
mask, &opcode)) {
VisitRRR(this, opcode, node);
return;
}
uint8_t offset;
Mips64OperandGenerator g(this);
if (TryMatchConcat(shuffle, mask, &offset)) {
Emit(kMips64S8x16Concat, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)),
g.UseImmediate(offset));
return;
}
if (TryMatch32x4Shuffle(shuffle, shuffle32x4)) {
Emit(kMips64S32x4Shuffle, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)),
g.UseImmediate(Pack4Lanes(shuffle32x4, mask)));
return;
}
Emit(kMips64S8x16Shuffle, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)),
g.UseImmediate(Pack4Lanes(shuffle, mask)),
g.UseImmediate(Pack4Lanes(shuffle + 4, mask)),
g.UseImmediate(Pack4Lanes(shuffle + 8, mask)),
g.UseImmediate(Pack4Lanes(shuffle + 12, mask)));
}
// static
MachineOperatorBuilder::Flags
InstructionSelector::SupportedMachineOperatorFlags() {
MachineOperatorBuilder::Flags flags = MachineOperatorBuilder::kNoFlags;
return flags | MachineOperatorBuilder::kWord32Ctz |
MachineOperatorBuilder::kWord64Ctz |
MachineOperatorBuilder::kWord32Popcnt |
MachineOperatorBuilder::kWord64Popcnt |
MachineOperatorBuilder::kWord32ShiftIsSafe |
MachineOperatorBuilder::kInt32DivIsSafe |
MachineOperatorBuilder::kUint32DivIsSafe |
MachineOperatorBuilder::kFloat64RoundDown |
MachineOperatorBuilder::kFloat32RoundDown |
MachineOperatorBuilder::kFloat64RoundUp |
MachineOperatorBuilder::kFloat32RoundUp |
MachineOperatorBuilder::kFloat64RoundTruncate |
MachineOperatorBuilder::kFloat32RoundTruncate |
MachineOperatorBuilder::kFloat64RoundTiesEven |
MachineOperatorBuilder::kFloat32RoundTiesEven |
MachineOperatorBuilder::kWord32ReverseBytes |
MachineOperatorBuilder::kWord64ReverseBytes;
}
// static
MachineOperatorBuilder::AlignmentRequirements
InstructionSelector::AlignmentRequirements() {
if (kArchVariant == kMips64r6) {
return MachineOperatorBuilder::AlignmentRequirements::
FullUnalignedAccessSupport();
} else {
DCHECK_EQ(kMips64r2, kArchVariant);
return MachineOperatorBuilder::AlignmentRequirements::
NoUnalignedAccessSupport();
}
}
#undef SIMD_BINOP_LIST
#undef SIMD_SHIFT_OP_LIST
#undef SIMD_UNOP_LIST
#undef SIMD_FORMAT_LIST
#undef SIMD_TYPE_LIST
#undef TRACE_UNIMPL
#undef TRACE
} // namespace compiler
} // namespace internal
} // namespace v8