blob: f8075885a99523d00b74c984458394a0616107d3 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_MIPS64
#include "src/api-arguments.h"
#include "src/bootstrapper.h"
#include "src/code-stubs.h"
#include "src/frame-constants.h"
#include "src/frames.h"
#include "src/heap/heap-inl.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
#include "src/mips64/code-stubs-mips64.h" // Cannot be the first include.
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
__ dsll(t9, a0, kPointerSizeLog2);
__ Daddu(t9, sp, t9);
__ Sd(a1, MemOperand(t9, 0));
__ Push(a1);
__ Push(a2);
__ Daddu(a0, a0, 3);
__ TailCallRuntime(Runtime::kNewArray);
}
void DoubleToIStub::Generate(MacroAssembler* masm) {
Label out_of_range, only_low, negate, done;
Register result_reg = destination();
Register scratch = GetRegisterThatIsNotOneOf(result_reg);
Register scratch2 = GetRegisterThatIsNotOneOf(result_reg, scratch);
Register scratch3 = GetRegisterThatIsNotOneOf(result_reg, scratch, scratch2);
DoubleRegister double_scratch = kLithiumScratchDouble;
// Account for saved regs.
const int kArgumentOffset = 3 * kPointerSize;
__ Push(scratch, scratch2, scratch3);
// Load double input.
__ Ldc1(double_scratch, MemOperand(sp, kArgumentOffset));
// Clear cumulative exception flags and save the FCSR.
__ cfc1(scratch2, FCSR);
__ ctc1(zero_reg, FCSR);
// Try a conversion to a signed integer.
__ Trunc_w_d(double_scratch, double_scratch);
// Move the converted value into the result register.
__ mfc1(scratch3, double_scratch);
// Retrieve and restore the FCSR.
__ cfc1(scratch, FCSR);
__ ctc1(scratch2, FCSR);
// Check for overflow and NaNs.
__ And(
scratch, scratch,
kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask);
// If we had no exceptions then set result_reg and we are done.
Label error;
__ Branch(&error, ne, scratch, Operand(zero_reg));
__ Move(result_reg, scratch3);
__ Branch(&done);
__ bind(&error);
// Load the double value and perform a manual truncation.
Register input_high = scratch2;
Register input_low = scratch3;
__ Lw(input_low, MemOperand(sp, kArgumentOffset + Register::kMantissaOffset));
__ Lw(input_high,
MemOperand(sp, kArgumentOffset + Register::kExponentOffset));
Label normal_exponent, restore_sign;
// Extract the biased exponent in result.
__ Ext(result_reg,
input_high,
HeapNumber::kExponentShift,
HeapNumber::kExponentBits);
// Check for Infinity and NaNs, which should return 0.
__ Subu(scratch, result_reg, HeapNumber::kExponentMask);
__ Movz(result_reg, zero_reg, scratch);
__ Branch(&done, eq, scratch, Operand(zero_reg));
// Express exponent as delta to (number of mantissa bits + 31).
__ Subu(result_reg,
result_reg,
Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31));
// If the delta is strictly positive, all bits would be shifted away,
// which means that we can return 0.
__ Branch(&normal_exponent, le, result_reg, Operand(zero_reg));
__ mov(result_reg, zero_reg);
__ Branch(&done);
__ bind(&normal_exponent);
const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1;
// Calculate shift.
__ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits));
// Save the sign.
Register sign = result_reg;
result_reg = no_reg;
__ And(sign, input_high, Operand(HeapNumber::kSignMask));
// On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need
// to check for this specific case.
Label high_shift_needed, high_shift_done;
__ Branch(&high_shift_needed, lt, scratch, Operand(32));
__ mov(input_high, zero_reg);
__ Branch(&high_shift_done);
__ bind(&high_shift_needed);
// Set the implicit 1 before the mantissa part in input_high.
__ Or(input_high,
input_high,
Operand(1 << HeapNumber::kMantissaBitsInTopWord));
// Shift the mantissa bits to the correct position.
// We don't need to clear non-mantissa bits as they will be shifted away.
// If they weren't, it would mean that the answer is in the 32bit range.
__ sllv(input_high, input_high, scratch);
__ bind(&high_shift_done);
// Replace the shifted bits with bits from the lower mantissa word.
Label pos_shift, shift_done;
__ li(at, 32);
__ subu(scratch, at, scratch);
__ Branch(&pos_shift, ge, scratch, Operand(zero_reg));
// Negate scratch.
__ Subu(scratch, zero_reg, scratch);
__ sllv(input_low, input_low, scratch);
__ Branch(&shift_done);
__ bind(&pos_shift);
__ srlv(input_low, input_low, scratch);
__ bind(&shift_done);
__ Or(input_high, input_high, Operand(input_low));
// Restore sign if necessary.
__ mov(scratch, sign);
result_reg = sign;
sign = no_reg;
__ Subu(result_reg, zero_reg, input_high);
__ Movz(result_reg, input_high, scratch);
__ bind(&done);
__ Pop(scratch, scratch2, scratch3);
__ Ret();
}
void MathPowStub::Generate(MacroAssembler* masm) {
const Register exponent = MathPowTaggedDescriptor::exponent();
DCHECK(exponent == a2);
const DoubleRegister double_base = f2;
const DoubleRegister double_exponent = f4;
const DoubleRegister double_result = f0;
const DoubleRegister double_scratch = f6;
const FPURegister single_scratch = f8;
const Register scratch = t1;
const Register scratch2 = a7;
Label call_runtime, done, int_exponent;
if (exponent_type() == TAGGED) {
// Base is already in double_base.
__ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
__ Ldc1(double_exponent,
FieldMemOperand(exponent, HeapNumber::kValueOffset));
}
if (exponent_type() != INTEGER) {
Label int_exponent_convert;
// Detect integer exponents stored as double.
__ EmitFPUTruncate(kRoundToMinusInf,
scratch,
double_exponent,
at,
double_scratch,
scratch2,
kCheckForInexactConversion);
// scratch2 == 0 means there was no conversion error.
__ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
__ push(ra);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2, scratch2);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()),
0, 2);
}
__ pop(ra);
__ MovFromFloatResult(double_result);
__ jmp(&done);
__ bind(&int_exponent_convert);
}
// Calculate power with integer exponent.
__ bind(&int_exponent);
// Get two copies of exponent in the registers scratch and exponent.
if (exponent_type() == INTEGER) {
__ mov(scratch, exponent);
} else {
// Exponent has previously been stored into scratch as untagged integer.
__ mov(exponent, scratch);
}
__ mov_d(double_scratch, double_base); // Back up base.
__ Move(double_result, 1.0);
// Get absolute value of exponent.
Label positive_exponent, bail_out;
__ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
__ Dsubu(scratch, zero_reg, scratch);
// Check when Dsubu overflows and we get negative result
// (happens only when input is MIN_INT).
__ Branch(&bail_out, gt, zero_reg, Operand(scratch));
__ bind(&positive_exponent);
__ Assert(ge, AbortReason::kUnexpectedNegativeValue, scratch,
Operand(zero_reg));
Label while_true, no_carry, loop_end;
__ bind(&while_true);
__ And(scratch2, scratch, 1);
__ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
__ mul_d(double_result, double_result, double_scratch);
__ bind(&no_carry);
__ dsra(scratch, scratch, 1);
__ Branch(&loop_end, eq, scratch, Operand(zero_reg));
__ mul_d(double_scratch, double_scratch, double_scratch);
__ Branch(&while_true);
__ bind(&loop_end);
__ Branch(&done, ge, exponent, Operand(zero_reg));
__ Move(double_scratch, 1.0);
__ div_d(double_result, double_scratch, double_result);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ BranchF(&done, nullptr, ne, double_result, kDoubleRegZero);
// double_exponent may not contain the exponent value if the input was a
// smi. We set it with exponent value before bailing out.
__ bind(&bail_out);
__ mtc1(exponent, single_scratch);
__ cvt_d_w(double_exponent, single_scratch);
// Returning or bailing out.
__ push(ra);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2, scratch);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(ExternalReference::power_double_double_function(isolate()),
0, 2);
}
__ pop(ra);
__ MovFromFloatResult(double_result);
__ bind(&done);
__ Ret();
}
Movability CEntryStub::NeedsImmovableCode() { return kImmovable; }
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
CEntryStub::GenerateAheadOfTime(isolate);
CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
StoreFastElementStub::GenerateAheadOfTime(isolate);
}
void CodeStub::GenerateFPStubs(Isolate* isolate) {
// Generate if not already in cache.
SaveFPRegsMode mode = kSaveFPRegs;
CEntryStub(isolate, 1, mode).GetCode();
}
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
CEntryStub stub(isolate, 1, kDontSaveFPRegs);
stub.GetCode();
CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
save_doubles.GetCode();
}
void CEntryStub::Generate(MacroAssembler* masm) {
// Called from JavaScript; parameters are on stack as if calling JS function
// a0: number of arguments including receiver
// a1: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's sp after C call)
// cp: current context (C callee-saved)
//
// If argv_in_register():
// a2: pointer to the first argument
ProfileEntryHookStub::MaybeCallEntryHook(masm);
if (argv_in_register()) {
// Move argv into the correct register.
__ mov(s1, a2);
} else {
// Compute the argv pointer in a callee-saved register.
__ Dlsa(s1, sp, a0, kPointerSizeLog2);
__ Dsubu(s1, s1, kPointerSize);
}
// Enter the exit frame that transitions from JavaScript to C++.
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(save_doubles(), 0, is_builtin_exit()
? StackFrame::BUILTIN_EXIT
: StackFrame::EXIT);
// s0: number of arguments including receiver (C callee-saved)
// s1: pointer to first argument (C callee-saved)
// s2: pointer to builtin function (C callee-saved)
// Prepare arguments for C routine.
// a0 = argc
__ mov(s0, a0);
__ mov(s2, a1);
// We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
// also need to reserve the 4 argument slots on the stack.
__ AssertStackIsAligned();
// a0 = argc, a1 = argv, a2 = isolate
__ li(a2, Operand(ExternalReference::isolate_address(isolate())));
__ mov(a1, s1);
// To let the GC traverse the return address of the exit frames, we need to
// know where the return address is. The CEntryStub is unmovable, so
// we can store the address on the stack to be able to find it again and
// we never have to restore it, because it will not change.
{ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
int kNumInstructionsToJump = 4;
Label find_ra;
// Adjust the value in ra to point to the correct return location, 2nd
// instruction past the real call into C code (the jalr(t9)), and push it.
// This is the return address of the exit frame.
if (kArchVariant >= kMips64r6) {
__ addiupc(ra, kNumInstructionsToJump + 1);
} else {
// This branch-and-link sequence is needed to find the current PC on mips
// before r6, saved to the ra register.
__ bal(&find_ra); // bal exposes branch delay slot.
__ Daddu(ra, ra, kNumInstructionsToJump * Instruction::kInstrSize);
}
__ bind(&find_ra);
// This spot was reserved in EnterExitFrame.
__ Sd(ra, MemOperand(sp));
// Stack space reservation moved to the branch delay slot below.
// Stack is still aligned.
// Call the C routine.
__ mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC.
__ jalr(t9);
// Set up sp in the delay slot.
__ daddiu(sp, sp, -kCArgsSlotsSize);
// Make sure the stored 'ra' points to this position.
DCHECK_EQ(kNumInstructionsToJump,
masm->InstructionsGeneratedSince(&find_ra));
}
// Result returned in v0 or v1:v0 - do not destroy these registers!
// Check result for exception sentinel.
Label exception_returned;
__ LoadRoot(a4, Heap::kExceptionRootIndex);
__ Branch(&exception_returned, eq, a4, Operand(v0));
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
Label okay;
ExternalReference pending_exception_address(
IsolateAddressId::kPendingExceptionAddress, isolate());
__ li(a2, Operand(pending_exception_address));
__ Ld(a2, MemOperand(a2));
__ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
// Cannot use check here as it attempts to generate call into runtime.
__ Branch(&okay, eq, a4, Operand(a2));
__ stop("Unexpected pending exception");
__ bind(&okay);
}
// Exit C frame and return.
// v0:v1: result
// sp: stack pointer
// fp: frame pointer
Register argc = argv_in_register()
// We don't want to pop arguments so set argc to no_reg.
? no_reg
// s0: still holds argc (callee-saved).
: s0;
__ LeaveExitFrame(save_doubles(), argc, EMIT_RETURN);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address(
IsolateAddressId::kPendingHandlerContextAddress, isolate());
ExternalReference pending_handler_entrypoint_address(
IsolateAddressId::kPendingHandlerEntrypointAddress, isolate());
ExternalReference pending_handler_fp_address(
IsolateAddressId::kPendingHandlerFPAddress, isolate());
ExternalReference pending_handler_sp_address(
IsolateAddressId::kPendingHandlerSPAddress, isolate());
// Ask the runtime for help to determine the handler. This will set v0 to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
isolate());
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(3, 0, a0);
__ mov(a0, zero_reg);
__ mov(a1, zero_reg);
__ li(a2, Operand(ExternalReference::isolate_address(isolate())));
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ li(cp, Operand(pending_handler_context_address));
__ Ld(cp, MemOperand(cp));
__ li(sp, Operand(pending_handler_sp_address));
__ Ld(sp, MemOperand(sp));
__ li(fp, Operand(pending_handler_fp_address));
__ Ld(fp, MemOperand(fp));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (cp == 0) for non-JS frames.
Label zero;
__ Branch(&zero, eq, cp, Operand(zero_reg));
__ Sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ bind(&zero);
// Compute the handler entry address and jump to it.
__ li(t9, Operand(pending_handler_entrypoint_address));
__ Ld(t9, MemOperand(t9));
__ Jump(t9);
}
void JSEntryStub::Generate(MacroAssembler* masm) {
Label invoke, handler_entry, exit;
Isolate* isolate = masm->isolate();
// TODO(plind): unify the ABI description here.
// Registers:
// a0: entry address
// a1: function
// a2: receiver
// a3: argc
// a4 (a4): on mips64
// Stack:
// 0 arg slots on mips64 (4 args slots on mips)
// args -- in a4/a4 on mips64, on stack on mips
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Save callee saved registers on the stack.
__ MultiPush(kCalleeSaved | ra.bit());
// Save callee-saved FPU registers.
__ MultiPushFPU(kCalleeSavedFPU);
// Set up the reserved register for 0.0.
__ Move(kDoubleRegZero, 0.0);
// Load argv in s0 register.
__ mov(s0, a4); // 5th parameter in mips64 a4 (a4) register.
__ InitializeRootRegister();
// We build an EntryFrame.
__ li(a7, Operand(-1)); // Push a bad frame pointer to fail if it is used.
StackFrame::Type marker = type();
__ li(a6, Operand(StackFrame::TypeToMarker(marker)));
__ li(a5, Operand(StackFrame::TypeToMarker(marker)));
ExternalReference c_entry_fp(IsolateAddressId::kCEntryFPAddress, isolate);
__ li(a4, Operand(c_entry_fp));
__ Ld(a4, MemOperand(a4));
__ Push(a7, a6, a5, a4);
// Set up frame pointer for the frame to be pushed.
__ daddiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
// Registers:
// a0: entry_address
// a1: function
// a2: receiver_pointer
// a3: argc
// s0: argv
//
// Stack:
// caller fp |
// function slot | entry frame
// context slot |
// bad fp (0xFF...F) |
// callee saved registers + ra
// [ O32: 4 args slots]
// args
// If this is the outermost JS call, set js_entry_sp value.
Label non_outermost_js;
ExternalReference js_entry_sp(IsolateAddressId::kJSEntrySPAddress, isolate);
__ li(a5, Operand(ExternalReference(js_entry_sp)));
__ Ld(a6, MemOperand(a5));
__ Branch(&non_outermost_js, ne, a6, Operand(zero_reg));
__ Sd(fp, MemOperand(a5));
__ li(a4, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
Label cont;
__ b(&cont);
__ nop(); // Branch delay slot nop.
__ bind(&non_outermost_js);
__ li(a4, Operand(StackFrame::INNER_JSENTRY_FRAME));
__ bind(&cont);
__ push(a4);
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel. Coming in here the
// fp will be invalid because the PushStackHandler below sets it to 0 to
// signal the existence of the JSEntry frame.
__ li(a4, Operand(ExternalReference(
IsolateAddressId::kPendingExceptionAddress, isolate)));
__ Sd(v0, MemOperand(a4)); // We come back from 'invoke'. result is in v0.
__ LoadRoot(v0, Heap::kExceptionRootIndex);
__ b(&exit); // b exposes branch delay slot.
__ nop(); // Branch delay slot nop.
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushStackHandler();
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the bal(&invoke) above, which
// restores all kCalleeSaved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Invoke the function by calling through JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Registers:
// a0: entry_address
// a1: function
// a2: receiver_pointer
// a3: argc
// s0: argv
//
// Stack:
// handler frame
// entry frame
// callee saved registers + ra
// [ O32: 4 args slots]
// args
__ Call(EntryTrampoline(), RelocInfo::CODE_TARGET);
// Unlink this frame from the handler chain.
__ PopStackHandler();
__ bind(&exit); // v0 holds result
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
__ pop(a5);
__ Branch(&non_outermost_js_2, ne, a5,
Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ li(a5, Operand(ExternalReference(js_entry_sp)));
__ Sd(zero_reg, MemOperand(a5));
__ bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ pop(a5);
__ li(a4, Operand(ExternalReference(IsolateAddressId::kCEntryFPAddress,
isolate)));
__ Sd(a5, MemOperand(a4));
// Reset the stack to the callee saved registers.
__ daddiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
// Restore callee-saved fpu registers.
__ MultiPopFPU(kCalleeSavedFPU);
// Restore callee saved registers from the stack.
__ MultiPop(kCalleeSaved | ra.bit());
// Return.
__ Jump(ra);
}
void DirectCEntryStub::Generate(MacroAssembler* masm) {
// Make place for arguments to fit C calling convention. Most of the callers
// of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame
// so they handle stack restoring and we don't have to do that here.
// Any caller of DirectCEntryStub::GenerateCall must take care of dropping
// kCArgsSlotsSize stack space after the call.
__ daddiu(sp, sp, -kCArgsSlotsSize);
// Place the return address on the stack, making the call
// GC safe. The RegExp backend also relies on this.
__ Sd(ra, MemOperand(sp, kCArgsSlotsSize));
__ Call(t9); // Call the C++ function.
__ Ld(t9, MemOperand(sp, kCArgsSlotsSize));
if (FLAG_debug_code && FLAG_enable_slow_asserts) {
// In case of an error the return address may point to a memory area
// filled with kZapValue by the GC.
// Dereference the address and check for this.
__ Uld(a4, MemOperand(t9));
__ Assert(ne, AbortReason::kReceivedInvalidReturnAddress, a4,
Operand(reinterpret_cast<uint64_t>(kZapValue)));
}
__ Jump(t9);
}
void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
Register target) {
intptr_t loc =
reinterpret_cast<intptr_t>(GetCode().location());
__ Move(t9, target);
__ li(at, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE);
__ Call(at);
}
void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm,
Zone* zone) {
if (tasm->isolate()->function_entry_hook() != nullptr) {
tasm->push(ra);
tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr));
tasm->pop(ra);
}
}
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
if (masm->isolate()->function_entry_hook() != nullptr) {
ProfileEntryHookStub stub(masm->isolate());
__ push(ra);
__ CallStub(&stub);
__ pop(ra);
}
}
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
// The entry hook is a "push ra" instruction, followed by a call.
// Note: on MIPS "push" is 2 instruction
const int32_t kReturnAddressDistanceFromFunctionStart =
Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize);
// This should contain all kJSCallerSaved registers.
const RegList kSavedRegs =
kJSCallerSaved | // Caller saved registers.
s5.bit(); // Saved stack pointer.
// We also save ra, so the count here is one higher than the mask indicates.
const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
// Save all caller-save registers as this may be called from anywhere.
__ MultiPush(kSavedRegs | ra.bit());
// Compute the function's address for the first argument.
__ Dsubu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart));
// The caller's return address is above the saved temporaries.
// Grab that for the second argument to the hook.
__ Daddu(a1, sp, Operand(kNumSavedRegs * kPointerSize));
// Align the stack if necessary.
int frame_alignment = masm->ActivationFrameAlignment();
if (frame_alignment > kPointerSize) {
__ mov(s5, sp);
DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
__ And(sp, sp, Operand(-frame_alignment));
}
__ Dsubu(sp, sp, kCArgsSlotsSize);
#if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
int64_t entry_hook =
reinterpret_cast<int64_t>(isolate()->function_entry_hook());
__ li(t9, Operand(entry_hook));
#else
// Under the simulator we need to indirect the entry hook through a
// trampoline function at a known address.
// It additionally takes an isolate as a third parameter.
__ li(a2, Operand(ExternalReference::isolate_address(isolate())));
ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
__ li(t9, Operand(ExternalReference(&dispatcher,
ExternalReference::BUILTIN_CALL,
isolate())));
#endif
// Call C function through t9 to conform ABI for PIC.
__ Call(t9);
// Restore the stack pointer if needed.
if (frame_alignment > kPointerSize) {
__ mov(sp, s5);
} else {
__ Daddu(sp, sp, kCArgsSlotsSize);
}
// Also pop ra to get Ret(0).
__ MultiPop(kSavedRegs | ra.bit());
__ Ret();
}
template<class T>
static void CreateArrayDispatch(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
if (mode == DISABLE_ALLOCATION_SITES) {
T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
T stub(masm->isolate(), kind);
__ TailCallStub(&stub, eq, a3, Operand(kind));
}
// If we reached this point there is a problem.
__ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
// a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
// a3 - kind (if mode != DISABLE_ALLOCATION_SITES)
// a0 - number of arguments
// a1 - constructor?
// sp[0] - last argument
STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0);
STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(PACKED_ELEMENTS == 2);
STATIC_ASSERT(HOLEY_ELEMENTS == 3);
STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4);
STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5);
if (mode == DISABLE_ALLOCATION_SITES) {
ElementsKind initial = GetInitialFastElementsKind();
ElementsKind holey_initial = GetHoleyElementsKind(initial);
ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
holey_initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub_holey);
} else if (mode == DONT_OVERRIDE) {
// is the low bit set? If so, we are holey and that is good.
Label normal_sequence;
__ And(at, a3, Operand(1));
__ Branch(&normal_sequence, ne, at, Operand(zero_reg));
// We are going to create a holey array, but our kind is non-holey.
// Fix kind and retry (only if we have an allocation site in the slot).
__ Daddu(a3, a3, Operand(1));
if (FLAG_debug_code) {
__ Ld(a5, FieldMemOperand(a2, 0));
__ LoadRoot(at, Heap::kAllocationSiteMapRootIndex);
__ Assert(eq, AbortReason::kExpectedAllocationSite, a5, Operand(at));
}
// Save the resulting elements kind in type info. We can't just store a3
// in the AllocationSite::transition_info field because elements kind is
// restricted to a portion of the field...upper bits need to be left alone.
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ Ld(a4, FieldMemOperand(
a2, AllocationSite::kTransitionInfoOrBoilerplateOffset));
__ Daddu(a4, a4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
__ Sd(a4, FieldMemOperand(
a2, AllocationSite::kTransitionInfoOrBoilerplateOffset));
__ bind(&normal_sequence);
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
__ TailCallStub(&stub, eq, a3, Operand(kind));
}
// If we reached this point there is a problem.
__ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
template<class T>
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
int to_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= to_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
T stub(isolate, kind);
stub.GetCode();
if (AllocationSite::ShouldTrack(kind)) {
T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
stub1.GetCode();
}
}
}
void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
isolate);
ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
isolate);
ArrayNArgumentsConstructorStub stub(isolate);
stub.GetCode();
ElementsKind kinds[2] = {PACKED_ELEMENTS, HOLEY_ELEMENTS};
for (int i = 0; i < 2; i++) {
// For internal arrays we only need a few things.
InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
stubh1.GetCode();
InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
stubh2.GetCode();
}
}
void ArrayConstructorStub::GenerateDispatchToArrayStub(
MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
Label not_zero_case, not_one_case;
__ And(at, a0, a0);
__ Branch(&not_zero_case, ne, at, Operand(zero_reg));
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
__ bind(&not_zero_case);
__ Branch(&not_one_case, gt, a0, Operand(1));
CreateArrayDispatchOneArgument(masm, mode);
__ bind(&not_one_case);
ArrayNArgumentsConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void ArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argc (only if argument_count() == ANY)
// -- a1 : constructor
// -- a2 : AllocationSite or undefined
// -- a3 : new target
// -- sp[0] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ Ld(a4, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a nullptr and a Smi.
__ SmiTst(a4, at);
__ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, at,
Operand(zero_reg));
__ GetObjectType(a4, a4, a5);
__ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction, a5,
Operand(MAP_TYPE));
// We should either have undefined in a2 or a valid AllocationSite
__ AssertUndefinedOrAllocationSite(a2, a4);
}
// Enter the context of the Array function.
__ Ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
Label subclassing;
__ Branch(&subclassing, ne, a1, Operand(a3));
Label no_info;
// Get the elements kind and case on that.
__ LoadRoot(at, Heap::kUndefinedValueRootIndex);
__ Branch(&no_info, eq, a2, Operand(at));
__ Ld(a3, FieldMemOperand(
a2, AllocationSite::kTransitionInfoOrBoilerplateOffset));
__ SmiUntag(a3);
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask));
GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
__ bind(&no_info);
GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
// Subclassing.
__ bind(&subclassing);
__ Dlsa(at, sp, a0, kPointerSizeLog2);
__ Sd(a1, MemOperand(at));
__ li(at, Operand(3));
__ Daddu(a0, a0, at);
__ Push(a3, a2);
__ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
}
void InternalArrayConstructorStub::GenerateCase(
MacroAssembler* masm, ElementsKind kind) {
InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
__ TailCallStub(&stub0, lo, a0, Operand(1));
ArrayNArgumentsConstructorStub stubN(isolate());
__ TailCallStub(&stubN, hi, a0, Operand(1));
if (IsFastPackedElementsKind(kind)) {
// We might need to create a holey array
// look at the first argument.
__ Ld(at, MemOperand(sp, 0));
InternalArraySingleArgumentConstructorStub
stub1_holey(isolate(), GetHoleyElementsKind(kind));
__ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg));
}
InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
__ TailCallStub(&stub1);
}
void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : argc
// -- a1 : constructor
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ Ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a nullptr and a Smi.
__ SmiTst(a3, at);
__ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, at,
Operand(zero_reg));
__ GetObjectType(a3, a3, a4);
__ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction, a4,
Operand(MAP_TYPE));
}
// Figure out the right elements kind.
__ Ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
// Load the map's "bit field 2" into a3. We only need the first byte,
// but the following bit field extraction takes care of that anyway.
__ Lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ DecodeField<Map::ElementsKindBits>(a3);
if (FLAG_debug_code) {
Label done;
__ Branch(&done, eq, a3, Operand(PACKED_ELEMENTS));
__ Assert(
eq,
AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray,
a3, Operand(HOLEY_ELEMENTS));
__ bind(&done);
}
Label fast_elements_case;
__ Branch(&fast_elements_case, eq, a3, Operand(PACKED_ELEMENTS));
GenerateCase(masm, HOLEY_ELEMENTS);
__ bind(&fast_elements_case);
GenerateCase(masm, PACKED_ELEMENTS);
}
static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
int64_t offset = (ref0.address() - ref1.address());
DCHECK(static_cast<int>(offset) == offset);
return static_cast<int>(offset);
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Restores context. stack_space
// - space to be unwound on exit (includes the call JS arguments space and
// the additional space allocated for the fast call).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
Register function_address,
ExternalReference thunk_ref,
int stack_space,
int32_t stack_space_offset,
MemOperand return_value_operand) {
Isolate* isolate = masm->isolate();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
const int kNextOffset = 0;
const int kLimitOffset = AddressOffset(
ExternalReference::handle_scope_limit_address(isolate), next_address);
const int kLevelOffset = AddressOffset(
ExternalReference::handle_scope_level_address(isolate), next_address);
DCHECK(function_address == a1 || function_address == a2);
Label profiler_disabled;
Label end_profiler_check;
__ li(t9, Operand(ExternalReference::is_profiling_address(isolate)));
__ Lb(t9, MemOperand(t9, 0));
__ Branch(&profiler_disabled, eq, t9, Operand(zero_reg));
// Additional parameter is the address of the actual callback.
__ li(t9, Operand(thunk_ref));
__ jmp(&end_profiler_check);
__ bind(&profiler_disabled);
__ mov(t9, function_address);
__ bind(&end_profiler_check);
// Allocate HandleScope in callee-save registers.
__ li(s3, Operand(next_address));
__ Ld(s0, MemOperand(s3, kNextOffset));
__ Ld(s1, MemOperand(s3, kLimitOffset));
__ Lw(s2, MemOperand(s3, kLevelOffset));
__ Addu(s2, s2, Operand(1));
__ Sw(s2, MemOperand(s3, kLevelOffset));
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, a0);
__ li(a0, Operand(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::log_enter_external_function(isolate),
1);
__ PopSafepointRegisters();
}
// Native call returns to the DirectCEntry stub which redirects to the
// return address pushed on stack (could have moved after GC).
// DirectCEntry stub itself is generated early and never moves.
DirectCEntryStub stub(isolate);
stub.GenerateCall(masm, t9);
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, a0);
__ li(a0, Operand(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::log_leave_external_function(isolate),
1);
__ PopSafepointRegisters();
}
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
Label return_value_loaded;
// Load value from ReturnValue.
__ Ld(v0, return_value_operand);
__ bind(&return_value_loaded);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ Sd(s0, MemOperand(s3, kNextOffset));
if (__ emit_debug_code()) {
__ Lw(a1, MemOperand(s3, kLevelOffset));
__ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall, a1,
Operand(s2));
}
__ Subu(s2, s2, Operand(1));
__ Sw(s2, MemOperand(s3, kLevelOffset));
__ Ld(at, MemOperand(s3, kLimitOffset));
__ Branch(&delete_allocated_handles, ne, s1, Operand(at));
// Leave the API exit frame.
__ bind(&leave_exit_frame);
if (stack_space_offset != kInvalidStackOffset) {
DCHECK_EQ(kCArgsSlotsSize, 0);
__ Ld(s0, MemOperand(sp, stack_space_offset));
} else {
__ li(s0, Operand(stack_space));
}
__ LeaveExitFrame(false, s0, NO_EMIT_RETURN,
stack_space_offset != kInvalidStackOffset);
// Check if the function scheduled an exception.
__ LoadRoot(a4, Heap::kTheHoleValueRootIndex);
__ li(at, Operand(ExternalReference::scheduled_exception_address(isolate)));
__ Ld(a5, MemOperand(at));
__ Branch(&promote_scheduled_exception, ne, a4, Operand(a5));
__ Ret();
// Re-throw by promoting a scheduled exception.
__ bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
__ bind(&delete_allocated_handles);
__ Sd(s1, MemOperand(s3, kLimitOffset));
__ mov(s0, v0);
__ mov(a0, v0);
__ PrepareCallCFunction(1, s1);
__ li(a0, Operand(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
1);
__ mov(v0, s0);
__ jmp(&leave_exit_frame);
}
void CallApiCallbackStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a4 : call_data
// -- a2 : holder
// -- a1 : api_function_address
// -- cp : context
// --
// -- sp[0] : last argument
// -- ...
// -- sp[(argc - 1) * 8] : first argument
// -- sp[argc * 8] : receiver
// -----------------------------------
Register call_data = a4;
Register holder = a2;
Register api_function_address = a1;
typedef FunctionCallbackArguments FCA;
STATIC_ASSERT(FCA::kArgsLength == 6);
STATIC_ASSERT(FCA::kNewTargetIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
// new target
__ PushRoot(Heap::kUndefinedValueRootIndex);
// call data.
__ Push(call_data);
Register scratch = call_data;
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
// Push return value and default return value.
__ Push(scratch, scratch);
__ li(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
// Push isolate and holder.
__ Push(scratch, holder);
// Prepare arguments.
__ mov(scratch, sp);
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
const int kApiStackSpace = 3;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
DCHECK(api_function_address != a0 && scratch != a0);
// a0 = FunctionCallbackInfo&
// Arguments is after the return address.
__ Daddu(a0, sp, Operand(1 * kPointerSize));
// FunctionCallbackInfo::implicit_args_
__ Sd(scratch, MemOperand(a0, 0 * kPointerSize));
// FunctionCallbackInfo::values_
__ Daddu(at, scratch,
Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
__ Sd(at, MemOperand(a0, 1 * kPointerSize));
// FunctionCallbackInfo::length_ = argc
// Stored as int field, 32-bit integers within struct on stack always left
// justified by n64 ABI.
__ li(at, Operand(argc()));
__ Sw(at, MemOperand(a0, 2 * kPointerSize));
ExternalReference thunk_ref =
ExternalReference::invoke_function_callback(masm->isolate());
AllowExternalCallThatCantCauseGC scope(masm);
// Stores return the first js argument.
int return_value_offset = 2 + FCA::kReturnValueOffset;
MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
const int stack_space = argc() + FCA::kArgsLength + 1;
// TODO(adamk): Why are we clobbering this immediately?
const int32_t stack_space_offset = kInvalidStackOffset;
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
stack_space_offset, return_value_operand);
}
void CallApiGetterStub::Generate(MacroAssembler* masm) {
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = a4;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
Register api_function_address = a2;
// Here and below +1 is for name() pushed after the args_ array.
typedef PropertyCallbackArguments PCA;
__ Dsubu(sp, sp, (PCA::kArgsLength + 1) * kPointerSize);
__ Sd(receiver, MemOperand(sp, (PCA::kThisIndex + 1) * kPointerSize));
__ Ld(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
__ Sd(scratch, MemOperand(sp, (PCA::kDataIndex + 1) * kPointerSize));
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
__ Sd(scratch, MemOperand(sp, (PCA::kReturnValueOffset + 1) * kPointerSize));
__ Sd(scratch, MemOperand(sp, (PCA::kReturnValueDefaultValueIndex + 1) *
kPointerSize));
__ li(scratch, Operand(ExternalReference::isolate_address(isolate())));
__ Sd(scratch, MemOperand(sp, (PCA::kIsolateIndex + 1) * kPointerSize));
__ Sd(holder, MemOperand(sp, (PCA::kHolderIndex + 1) * kPointerSize));
// should_throw_on_error -> false
DCHECK_NULL(Smi::kZero);
__ Sd(zero_reg,
MemOperand(sp, (PCA::kShouldThrowOnErrorIndex + 1) * kPointerSize));
__ Ld(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
__ Sd(scratch, MemOperand(sp, 0 * kPointerSize));
// v8::PropertyCallbackInfo::args_ array and name handle.
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
// Load address of v8::PropertyAccessorInfo::args_ array and name handle.
__ mov(a0, sp); // a0 = Handle<Name>
__ Daddu(a1, a0, Operand(1 * kPointerSize)); // a1 = v8::PCI::args_
const int kApiStackSpace = 1;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
__ Sd(a1, MemOperand(sp, 1 * kPointerSize));
__ Daddu(a1, sp, Operand(1 * kPointerSize));
// a1 = v8::PropertyCallbackInfo&
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback(isolate());
__ Ld(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
__ Ld(api_function_address,
FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
// +3 is to skip prolog, return address and name handle.
MemOperand return_value_operand(
fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
kStackUnwindSpace, kInvalidStackOffset,
return_value_operand);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS64