blob: 611f02703b81f011c3d5ffd639bf97b4a2e9d4b8 [file] [log] [blame]
/*
* Copyright 2012 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/effects/SkMatrixConvolutionImageFilter.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkRect.h"
#include "include/core/SkTileMode.h"
#include "include/core/SkUnPreMultiply.h"
#include "include/private/SkColorData.h"
#include "src/core/SkImageFilter_Base.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkSpecialImage.h"
#include "src/core/SkWriteBuffer.h"
#if SK_SUPPORT_GPU
#include "include/gpu/GrContext.h"
#include "src/gpu/GrTextureProxy.h"
#include "src/gpu/effects/GrMatrixConvolutionEffect.h"
#endif
namespace {
class SkMatrixConvolutionImageFilterImpl final : public SkImageFilter_Base {
public:
SkMatrixConvolutionImageFilterImpl(const SkISize& kernelSize, const SkScalar* kernel,
SkScalar gain, SkScalar bias, const SkIPoint& kernelOffset,
SkTileMode tileMode, bool convolveAlpha,
sk_sp<SkImageFilter> input, const CropRect* cropRect)
: INHERITED(&input, 1, cropRect)
, fKernelSize(kernelSize)
, fGain(gain)
, fBias(bias)
, fKernelOffset(kernelOffset)
, fTileMode(tileMode)
, fConvolveAlpha(convolveAlpha) {
size_t size = (size_t) sk_64_mul(fKernelSize.width(), fKernelSize.height());
fKernel = new SkScalar[size];
memcpy(fKernel, kernel, size * sizeof(SkScalar));
SkASSERT(kernelSize.fWidth >= 1 && kernelSize.fHeight >= 1);
SkASSERT(kernelOffset.fX >= 0 && kernelOffset.fX < kernelSize.fWidth);
SkASSERT(kernelOffset.fY >= 0 && kernelOffset.fY < kernelSize.fHeight);
}
~SkMatrixConvolutionImageFilterImpl() override {
delete[] fKernel;
}
protected:
void flatten(SkWriteBuffer&) const override;
sk_sp<SkSpecialImage> onFilterImage(const Context&, SkIPoint* offset) const override;
SkIRect onFilterNodeBounds(const SkIRect&, const SkMatrix& ctm,
MapDirection, const SkIRect* inputRect) const override;
bool affectsTransparentBlack() const override;
private:
friend void SkMatrixConvolutionImageFilter::RegisterFlattenables();
SK_FLATTENABLE_HOOKS(SkMatrixConvolutionImageFilterImpl)
SkISize fKernelSize;
SkScalar* fKernel;
SkScalar fGain;
SkScalar fBias;
SkIPoint fKernelOffset;
SkTileMode fTileMode;
bool fConvolveAlpha;
template <class PixelFetcher, bool convolveAlpha>
void filterPixels(const SkBitmap& src,
SkBitmap* result,
SkIVector& offset,
const SkIRect& rect,
const SkIRect& bounds) const;
template <class PixelFetcher>
void filterPixels(const SkBitmap& src,
SkBitmap* result,
SkIVector& offset,
const SkIRect& rect,
const SkIRect& bounds) const;
void filterInteriorPixels(const SkBitmap& src,
SkBitmap* result,
SkIVector& offset,
const SkIRect& rect,
const SkIRect& bounds) const;
void filterBorderPixels(const SkBitmap& src,
SkBitmap* result,
SkIVector& offset,
const SkIRect& rect,
const SkIRect& bounds) const;
typedef SkImageFilter_Base INHERITED;
};
class UncheckedPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
return *src.getAddr32(x, y);
}
};
class ClampPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
x = SkTPin(x, bounds.fLeft, bounds.fRight - 1);
y = SkTPin(y, bounds.fTop, bounds.fBottom - 1);
return *src.getAddr32(x, y);
}
};
class RepeatPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
x = (x - bounds.left()) % bounds.width() + bounds.left();
y = (y - bounds.top()) % bounds.height() + bounds.top();
if (x < bounds.left()) {
x += bounds.width();
}
if (y < bounds.top()) {
y += bounds.height();
}
return *src.getAddr32(x, y);
}
};
class ClampToBlackPixelFetcher {
public:
static inline SkPMColor fetch(const SkBitmap& src, int x, int y, const SkIRect& bounds) {
if (x < bounds.fLeft || x >= bounds.fRight || y < bounds.fTop || y >= bounds.fBottom) {
return 0;
} else {
return *src.getAddr32(x, y);
}
}
};
} // end namespace
static SkTileMode to_sktilemode(SkMatrixConvolutionImageFilter::TileMode tileMode) {
switch(tileMode) {
case SkMatrixConvolutionImageFilter::kClamp_TileMode:
return SkTileMode::kClamp;
case SkMatrixConvolutionImageFilter::kRepeat_TileMode:
return SkTileMode::kRepeat;
case SkMatrixConvolutionImageFilter::kClampToBlack_TileMode:
// Fall through
default:
return SkTileMode::kDecal;
}
}
sk_sp<SkImageFilter> SkMatrixConvolutionImageFilter::Make(const SkISize& kernelSize,
const SkScalar* kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& kernelOffset,
TileMode tileMode,
bool convolveAlpha,
sk_sp<SkImageFilter> input,
const SkImageFilter::CropRect* cropRect) {
return Make(kernelSize, kernel, gain, bias, kernelOffset, to_sktilemode(tileMode),
convolveAlpha, std::move(input), cropRect);
}
sk_sp<SkImageFilter> SkMatrixConvolutionImageFilter::Make(const SkISize& kernelSize,
const SkScalar* kernel,
SkScalar gain,
SkScalar bias,
const SkIPoint& kernelOffset,
SkTileMode tileMode,
bool convolveAlpha,
sk_sp<SkImageFilter> input,
const SkImageFilter::CropRect* cropRect) {
// We need to be able to read at most SK_MaxS32 bytes, so divide that
// by the size of a scalar to know how many scalars we can read.
static constexpr int32_t kMaxKernelSize = SK_MaxS32 / sizeof(SkScalar);
if (kernelSize.width() < 1 || kernelSize.height() < 1) {
return nullptr;
}
if (kMaxKernelSize / kernelSize.fWidth < kernelSize.fHeight) {
return nullptr;
}
if (!kernel) {
return nullptr;
}
if ((kernelOffset.fX < 0) || (kernelOffset.fX >= kernelSize.fWidth) ||
(kernelOffset.fY < 0) || (kernelOffset.fY >= kernelSize.fHeight)) {
return nullptr;
}
return sk_sp<SkImageFilter>(new SkMatrixConvolutionImageFilterImpl(
kernelSize, kernel, gain, bias, kernelOffset, tileMode, convolveAlpha,
std::move(input), cropRect));
}
void SkMatrixConvolutionImageFilter::RegisterFlattenables() {
SK_REGISTER_FLATTENABLE(SkMatrixConvolutionImageFilterImpl);
// TODO (michaelludwig) - Remove after grace period for SKPs to stop using old name
SkFlattenable::Register("SkMatrixConvolutionImageFilter",
SkMatrixConvolutionImageFilterImpl::CreateProc);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
sk_sp<SkFlattenable> SkMatrixConvolutionImageFilterImpl::CreateProc(SkReadBuffer& buffer) {
SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 1);
SkISize kernelSize;
kernelSize.fWidth = buffer.readInt();
kernelSize.fHeight = buffer.readInt();
const int count = buffer.getArrayCount();
const int64_t kernelArea = sk_64_mul(kernelSize.width(), kernelSize.height());
if (!buffer.validate(kernelArea == count)) {
return nullptr;
}
if (!buffer.validateCanReadN<SkScalar>(count)) {
return nullptr;
}
SkAutoSTArray<16, SkScalar> kernel(count);
if (!buffer.readScalarArray(kernel.get(), count)) {
return nullptr;
}
SkScalar gain = buffer.readScalar();
SkScalar bias = buffer.readScalar();
SkIPoint kernelOffset;
kernelOffset.fX = buffer.readInt();
kernelOffset.fY = buffer.readInt();
SkTileMode tileMode;
if (buffer.isVersionLT(SkPicturePriv::kCleanupImageFilterEnums_Version)) {
tileMode = to_sktilemode(buffer.read32LE(SkMatrixConvolutionImageFilter::kLast_TileMode));
} else {
tileMode = buffer.read32LE(SkTileMode::kLastTileMode);
}
bool convolveAlpha = buffer.readBool();
if (!buffer.isValid()) {
return nullptr;
}
return SkMatrixConvolutionImageFilter::Make(
kernelSize, kernel.get(), gain, bias, kernelOffset, tileMode,
convolveAlpha, common.getInput(0), &common.cropRect());
}
void SkMatrixConvolutionImageFilterImpl::flatten(SkWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeInt(fKernelSize.fWidth);
buffer.writeInt(fKernelSize.fHeight);
buffer.writeScalarArray(fKernel, fKernelSize.fWidth * fKernelSize.fHeight);
buffer.writeScalar(fGain);
buffer.writeScalar(fBias);
buffer.writeInt(fKernelOffset.fX);
buffer.writeInt(fKernelOffset.fY);
buffer.writeInt((int) fTileMode);
buffer.writeBool(fConvolveAlpha);
}
template<class PixelFetcher, bool convolveAlpha>
void SkMatrixConvolutionImageFilterImpl::filterPixels(const SkBitmap& src,
SkBitmap* result,
SkIVector& offset,
const SkIRect& r,
const SkIRect& bounds) const {
SkIRect rect(r);
if (!rect.intersect(bounds)) {
return;
}
for (int y = rect.fTop; y < rect.fBottom; ++y) {
SkPMColor* dptr = result->getAddr32(rect.fLeft - offset.fX, y - offset.fY);
for (int x = rect.fLeft; x < rect.fRight; ++x) {
SkScalar sumA = 0, sumR = 0, sumG = 0, sumB = 0;
for (int cy = 0; cy < fKernelSize.fHeight; cy++) {
for (int cx = 0; cx < fKernelSize.fWidth; cx++) {
SkPMColor s = PixelFetcher::fetch(src,
x + cx - fKernelOffset.fX,
y + cy - fKernelOffset.fY,
bounds);
SkScalar k = fKernel[cy * fKernelSize.fWidth + cx];
if (convolveAlpha) {
sumA += SkGetPackedA32(s) * k;
}
sumR += SkGetPackedR32(s) * k;
sumG += SkGetPackedG32(s) * k;
sumB += SkGetPackedB32(s) * k;
}
}
int a = convolveAlpha
? SkClampMax(SkScalarFloorToInt(sumA * fGain + fBias), 255)
: 255;
int r = SkClampMax(SkScalarFloorToInt(sumR * fGain + fBias), a);
int g = SkClampMax(SkScalarFloorToInt(sumG * fGain + fBias), a);
int b = SkClampMax(SkScalarFloorToInt(sumB * fGain + fBias), a);
if (!convolveAlpha) {
a = SkGetPackedA32(PixelFetcher::fetch(src, x, y, bounds));
*dptr++ = SkPreMultiplyARGB(a, r, g, b);
} else {
*dptr++ = SkPackARGB32(a, r, g, b);
}
}
}
}
template<class PixelFetcher>
void SkMatrixConvolutionImageFilterImpl::filterPixels(const SkBitmap& src,
SkBitmap* result,
SkIVector& offset,
const SkIRect& rect,
const SkIRect& bounds) const {
if (fConvolveAlpha) {
filterPixels<PixelFetcher, true>(src, result, offset, rect, bounds);
} else {
filterPixels<PixelFetcher, false>(src, result, offset, rect, bounds);
}
}
void SkMatrixConvolutionImageFilterImpl::filterInteriorPixels(const SkBitmap& src,
SkBitmap* result,
SkIVector& offset,
const SkIRect& rect,
const SkIRect& bounds) const {
switch (fTileMode) {
case SkTileMode::kMirror:
// TODO (michaelludwig) - Implement mirror tiling, treat as repeat for now.
case SkTileMode::kRepeat:
// In repeat mode, we still need to wrap the samples around the src
filterPixels<RepeatPixelFetcher>(src, result, offset, rect, bounds);
break;
case SkTileMode::kClamp:
// Fall through
case SkTileMode::kDecal:
filterPixels<UncheckedPixelFetcher>(src, result, offset, rect, bounds);
break;
}
}
void SkMatrixConvolutionImageFilterImpl::filterBorderPixels(const SkBitmap& src,
SkBitmap* result,
SkIVector& offset,
const SkIRect& rect,
const SkIRect& srcBounds) const {
switch (fTileMode) {
case SkTileMode::kClamp:
filterPixels<ClampPixelFetcher>(src, result, offset, rect, srcBounds);
break;
case SkTileMode::kMirror:
// TODO (michaelludwig) - Implement mirror tiling, treat as repeat for now.
case SkTileMode::kRepeat:
filterPixels<RepeatPixelFetcher>(src, result, offset, rect, srcBounds);
break;
case SkTileMode::kDecal:
filterPixels<ClampToBlackPixelFetcher>(src, result, offset, rect, srcBounds);
break;
}
}
// FIXME: This should be refactored to SkImageFilterUtils for
// use by other filters. For now, we assume the input is always
// premultiplied and unpremultiply it
static SkBitmap unpremultiply_bitmap(const SkBitmap& src) {
if (!src.getPixels()) {
return SkBitmap();
}
const SkImageInfo info = SkImageInfo::MakeN32(src.width(), src.height(), src.alphaType());
SkBitmap result;
if (!result.tryAllocPixels(info)) {
return SkBitmap();
}
for (int y = 0; y < src.height(); ++y) {
const uint32_t* srcRow = src.getAddr32(0, y);
uint32_t* dstRow = result.getAddr32(0, y);
for (int x = 0; x < src.width(); ++x) {
dstRow[x] = SkUnPreMultiply::PMColorToColor(srcRow[x]);
}
}
return result;
}
#if SK_SUPPORT_GPU
static GrTextureDomain::Mode convert_tilemodes(SkTileMode tileMode) {
switch (tileMode) {
case SkTileMode::kClamp:
return GrTextureDomain::kClamp_Mode;
case SkTileMode::kMirror:
// TODO (michaelludwig) - Implement mirror tiling, treat as repeat for now.
case SkTileMode::kRepeat:
return GrTextureDomain::kRepeat_Mode;
case SkTileMode::kDecal:
return GrTextureDomain::kDecal_Mode;
default:
SkASSERT(false);
}
return GrTextureDomain::kIgnore_Mode;
}
#endif
sk_sp<SkSpecialImage> SkMatrixConvolutionImageFilterImpl::onFilterImage(const Context& ctx,
SkIPoint* offset) const {
SkIPoint inputOffset = SkIPoint::Make(0, 0);
sk_sp<SkSpecialImage> input(this->filterInput(0, ctx, &inputOffset));
if (!input) {
return nullptr;
}
SkIRect dstBounds;
input = this->applyCropRectAndPad(this->mapContext(ctx), input.get(), &inputOffset, &dstBounds);
if (!input) {
return nullptr;
}
const SkIRect originalSrcBounds = SkIRect::MakeXYWH(inputOffset.fX, inputOffset.fY,
input->width(), input->height());
SkIRect srcBounds = this->onFilterNodeBounds(dstBounds, ctx.ctm(), kReverse_MapDirection,
&originalSrcBounds);
if (SkTileMode::kRepeat == fTileMode || SkTileMode::kMirror == fTileMode) {
srcBounds = DetermineRepeatedSrcBound(srcBounds, fKernelOffset,
fKernelSize, originalSrcBounds);
} else {
if (!srcBounds.intersect(dstBounds)) {
return nullptr;
}
}
#if SK_SUPPORT_GPU
// Note: if the kernel is too big, the GPU path falls back to SW
if (ctx.gpuBacked() &&
fKernelSize.width() * fKernelSize.height() <= MAX_KERNEL_SIZE) {
auto context = ctx.getContext();
// Ensure the input is in the destination color space. Typically applyCropRect will have
// called pad_image to account for our dilation of bounds, so the result will already be
// moved to the destination color space. If a filter DAG avoids that, then we use this
// fall-back, which saves us from having to do the xform during the filter itself.
input = ImageToColorSpace(input.get(), ctx.colorType(), ctx.colorSpace());
sk_sp<GrTextureProxy> inputProxy(input->asTextureProxyRef(context));
SkASSERT(inputProxy);
const auto isProtected = inputProxy->isProtected();
offset->fX = dstBounds.left();
offset->fY = dstBounds.top();
dstBounds.offset(-inputOffset);
srcBounds.offset(-inputOffset);
// Map srcBounds from input's logical image domain to that of the proxy
srcBounds.offset(input->subset().x(), input->subset().y());
auto fp = GrMatrixConvolutionEffect::Make(std::move(inputProxy),
srcBounds,
fKernelSize,
fKernel,
fGain,
fBias,
fKernelOffset,
convert_tilemodes(fTileMode),
fConvolveAlpha);
if (!fp) {
return nullptr;
}
// FIXME (michaelludwig) - Clean this up as part of the imagefilter refactor, some filters
// instead require a coord transform on the FP. At very least, be consistent, at best make
// it so that filter impls don't need to worry about the subset origin.
// Must also map the dstBounds since it is used as the src rect in DrawWithFP when
// evaluating the FP, and the dst rect just uses the size of dstBounds.
dstBounds.offset(input->subset().x(), input->subset().y());
return DrawWithFP(context, std::move(fp), dstBounds, ctx.colorType(), ctx.colorSpace(),
isProtected ? GrProtected::kYes : GrProtected::kNo);
}
#endif
SkBitmap inputBM;
if (!input->getROPixels(&inputBM)) {
return nullptr;
}
if (inputBM.colorType() != kN32_SkColorType) {
return nullptr;
}
if (!fConvolveAlpha && !inputBM.isOpaque()) {
inputBM = unpremultiply_bitmap(inputBM);
}
if (!inputBM.getPixels()) {
return nullptr;
}
const SkImageInfo info = SkImageInfo::MakeN32(dstBounds.width(), dstBounds.height(),
inputBM.alphaType());
SkBitmap dst;
if (!dst.tryAllocPixels(info)) {
return nullptr;
}
offset->fX = dstBounds.fLeft;
offset->fY = dstBounds.fTop;
dstBounds.offset(-inputOffset);
srcBounds.offset(-inputOffset);
SkIRect interior;
if (SkTileMode::kRepeat == fTileMode || SkTileMode::kMirror == fTileMode) {
// In repeat mode, the filterPixels calls will wrap around
// so we just need to render 'dstBounds'
interior = dstBounds;
} else {
interior = SkIRect::MakeXYWH(dstBounds.left() + fKernelOffset.fX,
dstBounds.top() + fKernelOffset.fY,
dstBounds.width() - fKernelSize.fWidth + 1,
dstBounds.height() - fKernelSize.fHeight + 1);
}
SkIRect top = SkIRect::MakeLTRB(dstBounds.left(), dstBounds.top(),
dstBounds.right(), interior.top());
SkIRect bottom = SkIRect::MakeLTRB(dstBounds.left(), interior.bottom(),
dstBounds.right(), dstBounds.bottom());
SkIRect left = SkIRect::MakeLTRB(dstBounds.left(), interior.top(),
interior.left(), interior.bottom());
SkIRect right = SkIRect::MakeLTRB(interior.right(), interior.top(),
dstBounds.right(), interior.bottom());
SkIVector dstContentOffset = { offset->fX - inputOffset.fX, offset->fY - inputOffset.fY };
this->filterBorderPixels(inputBM, &dst, dstContentOffset, top, srcBounds);
this->filterBorderPixels(inputBM, &dst, dstContentOffset, left, srcBounds);
this->filterInteriorPixels(inputBM, &dst, dstContentOffset, interior, srcBounds);
this->filterBorderPixels(inputBM, &dst, dstContentOffset, right, srcBounds);
this->filterBorderPixels(inputBM, &dst, dstContentOffset, bottom, srcBounds);
return SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(dstBounds.width(), dstBounds.height()),
dst);
}
SkIRect SkMatrixConvolutionImageFilterImpl::onFilterNodeBounds(
const SkIRect& src, const SkMatrix& ctm, MapDirection dir, const SkIRect* inputRect) const {
if (kReverse_MapDirection == dir && inputRect &&
(SkTileMode::kRepeat == fTileMode || SkTileMode::kMirror == fTileMode)) {
SkASSERT(inputRect);
return DetermineRepeatedSrcBound(src, fKernelOffset, fKernelSize, *inputRect);
}
SkIRect dst = src;
int w = fKernelSize.width() - 1, h = fKernelSize.height() - 1;
if (kReverse_MapDirection == dir) {
dst.adjust(-fKernelOffset.fX, -fKernelOffset.fY,
w - fKernelOffset.fX, h - fKernelOffset.fY);
} else {
dst.adjust(fKernelOffset.fX - w, fKernelOffset.fY - h, fKernelOffset.fX, fKernelOffset.fY);
}
return dst;
}
bool SkMatrixConvolutionImageFilterImpl::affectsTransparentBlack() const {
// It seems that the only rational way for repeat sample mode to work is if the caller
// explicitly restricts the input in which case the input range is explicitly known and
// specified.
// TODO: is seems that this should be true for clamp mode too.
// For the other modes, because the kernel is applied in device-space, we have no idea what
// pixels it will affect in object-space.
return SkTileMode::kRepeat != fTileMode && SkTileMode::kMirror != fTileMode;
}