blob: 5cedcdc2827d6974ebfbea0f1624a4333de898c8 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cobalt/media/formats/webm/webm_cluster_parser.h"
#include <algorithm>
#include <utility>
#include <vector>
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/sys_byteorder.h"
#include "cobalt/media/base/decrypt_config.h"
#include "cobalt/media/base/timestamp_constants.h"
#include "cobalt/media/filters/webvtt_util.h"
#include "cobalt/media/formats/webm/webm_constants.h"
#include "cobalt/media/formats/webm/webm_crypto_helpers.h"
#include "cobalt/media/formats/webm/webm_webvtt_parser.h"
#include "starboard/memory.h"
namespace cobalt {
namespace media {
const uint16_t WebMClusterParser::kOpusFrameDurationsMu[] = {
10000, 20000, 40000, 60000, 10000, 20000, 40000, 60000, 10000, 20000, 40000,
60000, 10000, 20000, 10000, 20000, 2500, 5000, 10000, 20000, 2500, 5000,
10000, 20000, 2500, 5000, 10000, 20000, 2500, 5000, 10000, 20000};
enum {
// Limits the number of MEDIA_LOG() calls in the path of reading encoded
// duration to avoid spamming for corrupted data.
kMaxDurationErrorLogs = 10,
// Limits the number of MEDIA_LOG() calls warning the user that buffer
// durations have been estimated.
kMaxDurationEstimateLogs = 10,
};
WebMClusterParser::WebMClusterParser(
DecoderBuffer::Allocator* buffer_allocator, int64_t timecode_scale,
int audio_track_num, base::TimeDelta audio_default_duration,
int video_track_num, base::TimeDelta video_default_duration,
const WebMTracksParser::TextTracks& text_tracks,
const std::set<int64_t>& ignored_tracks,
const std::string& audio_encryption_key_id,
const std::string& video_encryption_key_id, const AudioCodec audio_codec,
const scoped_refptr<MediaLog>& media_log)
: buffer_allocator_(buffer_allocator),
num_duration_errors_(0),
timecode_multiplier_(timecode_scale / 1000.0),
ignored_tracks_(ignored_tracks),
audio_encryption_key_id_(audio_encryption_key_id),
video_encryption_key_id_(video_encryption_key_id),
audio_codec_(audio_codec),
parser_(kWebMIdCluster, this),
last_block_timecode_(-1),
block_data_size_(-1),
block_duration_(-1),
block_add_id_(-1),
block_additional_data_size_(0),
discard_padding_(-1),
discard_padding_set_(false),
reference_block_set_(false),
cluster_timecode_(-1),
cluster_start_time_(kNoTimestamp),
cluster_ended_(false),
audio_(audio_track_num, false, audio_default_duration, media_log),
video_(video_track_num, true, video_default_duration, media_log),
ready_buffer_upper_bound_(kNoDecodeTimestamp()),
media_log_(media_log) {
DCHECK(buffer_allocator_);
for (WebMTracksParser::TextTracks::const_iterator it = text_tracks.begin();
it != text_tracks.end(); ++it) {
text_track_map_.insert(std::make_pair(
it->first, Track(it->first, false, kNoTimestamp, media_log_)));
}
}
WebMClusterParser::~WebMClusterParser() {}
void WebMClusterParser::Reset() {
last_block_timecode_ = -1;
cluster_timecode_ = -1;
cluster_start_time_ = kNoTimestamp;
cluster_ended_ = false;
parser_.Reset();
audio_.Reset();
video_.Reset();
ResetTextTracks();
ready_buffer_upper_bound_ = kNoDecodeTimestamp();
}
int WebMClusterParser::Parse(const uint8_t* buf, int size) {
audio_.ClearReadyBuffers();
video_.ClearReadyBuffers();
ClearTextTrackReadyBuffers();
ready_buffer_upper_bound_ = kNoDecodeTimestamp();
int result = parser_.Parse(buf, size);
if (result < 0) {
cluster_ended_ = false;
return result;
}
cluster_ended_ = parser_.IsParsingComplete();
if (cluster_ended_) {
// If there were no buffers in this cluster, set the cluster start time to
// be the |cluster_timecode_|.
if (cluster_start_time_ == kNoTimestamp) {
// If the cluster did not even have a |cluster_timecode_|, signal parse
// error.
if (cluster_timecode_ < 0) return -1;
cluster_start_time_ = base::TimeDelta::FromMicroseconds(
cluster_timecode_ * timecode_multiplier_);
}
// Reset the parser if we're done parsing so that
// it is ready to accept another cluster on the next
// call.
parser_.Reset();
last_block_timecode_ = -1;
cluster_timecode_ = -1;
}
return result;
}
const WebMClusterParser::TextBufferQueueMap&
WebMClusterParser::GetTextBuffers() {
if (ready_buffer_upper_bound_ == kNoDecodeTimestamp()) UpdateReadyBuffers();
// Translate our |text_track_map_| into |text_buffers_map_|, inserting rows in
// the output only for non-empty ready_buffer() queues in |text_track_map_|.
text_buffers_map_.clear();
for (TextTrackMap::const_iterator itr = text_track_map_.begin();
itr != text_track_map_.end(); ++itr) {
const BufferQueue& text_buffers = itr->second.ready_buffers();
if (!text_buffers.empty())
text_buffers_map_.insert(std::make_pair(itr->first, text_buffers));
}
return text_buffers_map_;
}
void WebMClusterParser::GetBuffers(StreamParser::BufferQueueMap* buffers) {
DCHECK(buffers->empty());
if (ready_buffer_upper_bound_ == kNoDecodeTimestamp()) UpdateReadyBuffers();
const BufferQueue& audio_buffers = audio_.ready_buffers();
if (!audio_buffers.empty()) {
buffers->insert(std::make_pair(audio_.track_num(), audio_buffers));
}
const BufferQueue& video_buffers = video_.ready_buffers();
if (!video_buffers.empty()) {
buffers->insert(std::make_pair(video_.track_num(), video_buffers));
}
const WebMClusterParser::TextBufferQueueMap& text_buffers = GetTextBuffers();
for (WebMClusterParser::TextBufferQueueMap::const_iterator it =
text_buffers.begin();
it != text_buffers.end(); ++it) {
DCHECK(!it->second.empty());
buffers->insert(*it);
}
}
base::TimeDelta WebMClusterParser::TryGetEncodedAudioDuration(
const uint8_t* data, int size) {
// Duration is currently read assuming the *entire* stream is unencrypted.
// The special "Signal Byte" prepended to Blocks in encrypted streams is
// assumed to not be present.
// TODO(chcunningham): Consider parsing "Signal Byte" for encrypted streams
// to return duration for any unencrypted blocks.
if (audio_codec_ == kCodecOpus) {
return ReadOpusDuration(data, size);
}
// TODO(wolenetz/chcunningham): Implement duration reading for Vorbis. See
// motivations in http://crbug.com/396634.
return kNoTimestamp;
}
base::TimeDelta WebMClusterParser::ReadOpusDuration(const uint8_t* data,
int size) {
// Masks and constants for Opus packets. See
// https://tools.ietf.org/html/rfc6716#page-14
static const uint8_t kTocConfigMask = 0xf8;
static const uint8_t kTocFrameCountCodeMask = 0x03;
static const uint8_t kFrameCountMask = 0x3f;
static const base::TimeDelta kPacketDurationMax =
base::TimeDelta::FromMilliseconds(120);
if (size < 1) {
LIMITED_MEDIA_LOG(DEBUG, media_log_, num_duration_errors_,
kMaxDurationErrorLogs)
<< "Invalid zero-byte Opus packet; demuxed block duration may be "
"imprecise.";
return kNoTimestamp;
}
// Frame count type described by last 2 bits of Opus TOC byte.
int frame_count_type = data[0] & kTocFrameCountCodeMask;
int frame_count = 0;
switch (frame_count_type) {
case 0:
frame_count = 1;
break;
case 1:
case 2:
frame_count = 2;
break;
case 3:
// Type 3 indicates an arbitrary frame count described in the next byte.
if (size < 2) {
LIMITED_MEDIA_LOG(DEBUG, media_log_, num_duration_errors_,
kMaxDurationErrorLogs)
<< "Second byte missing from 'Code 3' Opus packet; demuxed block "
"duration may be imprecise.";
return kNoTimestamp;
}
frame_count = data[1] & kFrameCountMask;
if (frame_count == 0) {
LIMITED_MEDIA_LOG(DEBUG, media_log_, num_duration_errors_,
kMaxDurationErrorLogs)
<< "Illegal 'Code 3' Opus packet with frame count zero; demuxed "
"block duration may be imprecise.";
return kNoTimestamp;
}
break;
default:
LIMITED_MEDIA_LOG(DEBUG, media_log_, num_duration_errors_,
kMaxDurationErrorLogs)
<< "Unexpected Opus frame count type: " << frame_count_type << "; "
<< "demuxed block duration may be imprecise.";
return kNoTimestamp;
}
int opusConfig = (data[0] & kTocConfigMask) >> 3;
CHECK_GE(opusConfig, 0);
CHECK_LT(opusConfig, static_cast<int>(arraysize(kOpusFrameDurationsMu)));
DCHECK_GT(frame_count, 0);
base::TimeDelta duration = base::TimeDelta::FromMicroseconds(
kOpusFrameDurationsMu[opusConfig] * frame_count);
if (duration > kPacketDurationMax) {
// Intentionally allowing packet to pass through for now. Decoder should
// either handle or fail gracefully. MEDIA_LOG as breadcrumbs in case
// things go sideways.
LIMITED_MEDIA_LOG(DEBUG, media_log_, num_duration_errors_,
kMaxDurationErrorLogs)
<< "Warning, demuxed Opus packet with encoded duration: "
<< duration.InMilliseconds() << "ms. Should be no greater than "
<< kPacketDurationMax.InMilliseconds() << "ms.";
}
return duration;
}
WebMParserClient* WebMClusterParser::OnListStart(int id) {
if (id == kWebMIdCluster) {
cluster_timecode_ = -1;
cluster_start_time_ = kNoTimestamp;
} else if (id == kWebMIdBlockGroup) {
block_data_.reset();
block_data_size_ = -1;
block_duration_ = -1;
discard_padding_ = -1;
discard_padding_set_ = false;
reference_block_set_ = false;
} else if (id == kWebMIdBlockAdditions) {
block_add_id_ = -1;
block_additional_data_.reset();
block_additional_data_size_ = 0;
}
return this;
}
bool WebMClusterParser::OnListEnd(int id) {
if (id != kWebMIdBlockGroup) return true;
// Make sure the BlockGroup actually had a Block.
if (block_data_size_ == -1) {
MEDIA_LOG(ERROR, media_log_) << "Block missing from BlockGroup.";
return false;
}
bool result = ParseBlock(
false, block_data_.get(), block_data_size_, block_additional_data_.get(),
block_additional_data_size_, block_duration_,
discard_padding_set_ ? discard_padding_ : 0, reference_block_set_);
block_data_.reset();
block_data_size_ = -1;
block_duration_ = -1;
block_add_id_ = -1;
block_additional_data_.reset();
block_additional_data_size_ = 0;
discard_padding_ = -1;
discard_padding_set_ = false;
reference_block_set_ = false;
return result;
}
bool WebMClusterParser::OnUInt(int id, int64_t val) {
int64_t* dst;
switch (id) {
case kWebMIdTimecode:
dst = &cluster_timecode_;
break;
case kWebMIdBlockDuration:
dst = &block_duration_;
break;
case kWebMIdBlockAddID:
dst = &block_add_id_;
break;
default:
return true;
}
if (*dst != -1) return false;
*dst = val;
return true;
}
bool WebMClusterParser::ParseBlock(bool is_simple_block, const uint8_t* buf,
int size, const uint8_t* additional,
int additional_size, int duration,
int64_t discard_padding,
bool reference_block_set) {
if (size < 4) return false;
// Return an error if the trackNum > 127. We just aren't
// going to support large track numbers right now.
if (!(buf[0] & 0x80)) {
MEDIA_LOG(ERROR, media_log_) << "TrackNumber over 127 not supported";
return false;
}
int track_num = buf[0] & 0x7f;
int timecode = buf[1] << 8 | buf[2];
int flags = buf[3] & 0xff;
int lacing = (flags >> 1) & 0x3;
if (lacing) {
MEDIA_LOG(ERROR, media_log_) << "Lacing " << lacing
<< " is not supported yet.";
return false;
}
// Sign extend negative timecode offsets.
if (timecode & 0x8000) timecode |= ~0xffff;
// The first bit of the flags is set when a SimpleBlock contains only
// keyframes. If this is a Block, then keyframe is inferred by the absence of
// the ReferenceBlock Element.
// http://www.matroska.org/technical/specs/index.html
bool is_keyframe =
is_simple_block ? (flags & 0x80) != 0 : !reference_block_set;
const uint8_t* frame_data = buf + 4;
int frame_size = size - (frame_data - buf);
return OnBlock(is_simple_block, track_num, timecode, duration, frame_data,
frame_size, additional, additional_size, discard_padding,
is_keyframe);
}
bool WebMClusterParser::OnBinary(int id, const uint8_t* data, int size) {
switch (id) {
case kWebMIdSimpleBlock:
return ParseBlock(true, data, size, NULL, 0, -1, 0, false);
case kWebMIdBlock:
if (block_data_) {
MEDIA_LOG(ERROR, media_log_)
<< "More than 1 Block in a BlockGroup is not "
"supported.";
return false;
}
block_data_.reset(new uint8_t[size]);
SbMemoryCopy(block_data_.get(), data, size);
block_data_size_ = size;
return true;
case kWebMIdBlockAdditional: {
uint64_t block_add_id = base::HostToNet64(block_add_id_);
if (block_additional_data_) {
// TODO(vigneshv): Technically, more than 1 BlockAdditional is allowed
// as per matroska spec. But for now we don't have a use case to
// support parsing of such files. Take a look at this again when such a
// case arises.
MEDIA_LOG(ERROR, media_log_) << "More than 1 BlockAdditional in a "
"BlockGroup is not supported.";
return false;
}
// First 8 bytes of side_data in DecoderBuffer is the BlockAddID
// element's value in Big Endian format. This is done to mimic ffmpeg
// demuxer's behavior.
block_additional_data_size_ = size + sizeof(block_add_id);
block_additional_data_.reset(new uint8_t[block_additional_data_size_]);
SbMemoryCopy(block_additional_data_.get(), &block_add_id,
sizeof(block_add_id));
SbMemoryCopy(block_additional_data_.get() + 8, data, size);
return true;
}
case kWebMIdDiscardPadding: {
if (discard_padding_set_ || size <= 0 || size > 8) return false;
discard_padding_set_ = true;
// Read in the big-endian integer.
discard_padding_ = static_cast<int8_t>(data[0]);
for (int i = 1; i < size; ++i)
discard_padding_ = (discard_padding_ << 8) | data[i];
return true;
}
case kWebMIdReferenceBlock: {
// We use ReferenceBlock to determine whether the current Block contains a
// keyframe or not. Other than that, we don't care about the value of the
// ReferenceBlock element itself.
reference_block_set_ = true;
return true;
}
default:
return true;
}
}
bool WebMClusterParser::OnBlock(bool is_simple_block, int track_num,
int timecode, int block_duration,
const uint8_t* data, int size,
const uint8_t* additional, int additional_size,
int64_t discard_padding, bool is_keyframe) {
DCHECK_GE(size, 0);
if (cluster_timecode_ == -1) {
MEDIA_LOG(ERROR, media_log_) << "Got a block before cluster timecode.";
return false;
}
// TODO(acolwell): Should relative negative timecode offsets be rejected? Or
// only when the absolute timecode is negative? See http://crbug.com/271794
if (timecode < 0) {
MEDIA_LOG(ERROR, media_log_) << "Got a block with negative timecode offset "
<< timecode;
return false;
}
if (last_block_timecode_ != -1 && timecode < last_block_timecode_) {
MEDIA_LOG(ERROR, media_log_)
<< "Got a block with a timecode before the previous block.";
return false;
}
Track* track = NULL;
StreamParserBuffer::Type buffer_type = DemuxerStream::AUDIO;
std::string encryption_key_id;
base::TimeDelta encoded_duration = kNoTimestamp;
if (track_num == audio_.track_num()) {
track = &audio_;
encryption_key_id = audio_encryption_key_id_;
if (encryption_key_id.empty()) {
encoded_duration = TryGetEncodedAudioDuration(data, size);
}
} else if (track_num == video_.track_num()) {
track = &video_;
encryption_key_id = video_encryption_key_id_;
buffer_type = DemuxerStream::VIDEO;
} else if (ignored_tracks_.find(track_num) != ignored_tracks_.end()) {
return true;
} else if (Track* const text_track = FindTextTrack(track_num)) {
if (is_simple_block) // BlockGroup is required for WebVTT cues
return false;
if (block_duration < 0) // not specified
return false;
track = text_track;
buffer_type = DemuxerStream::TEXT;
} else {
MEDIA_LOG(ERROR, media_log_) << "Unexpected track number " << track_num;
return false;
}
last_block_timecode_ = timecode;
base::TimeDelta timestamp = base::TimeDelta::FromMicroseconds(
(cluster_timecode_ + timecode) * timecode_multiplier_);
scoped_refptr<StreamParserBuffer> buffer;
if (buffer_type != DemuxerStream::TEXT) {
// Every encrypted Block has a signal byte and IV prepended to it. Current
// encrypted WebM request for comments specification is here
// http://wiki.webmproject.org/encryption/webm-encryption-rfc
scoped_ptr<DecryptConfig> decrypt_config;
int data_offset = 0;
if (!encryption_key_id.empty() &&
!WebMCreateDecryptConfig(
data, size,
reinterpret_cast<const uint8_t*>(encryption_key_id.data()),
encryption_key_id.size(), &decrypt_config, &data_offset)) {
return false;
}
// TODO(wolenetz/acolwell): Validate and use a common cross-parser TrackId
// type with remapped bytestream track numbers and allow multiple tracks as
// applicable. See https://crbug.com/341581.
buffer = StreamParserBuffer::CopyFrom(buffer_allocator_, data + data_offset,
size - data_offset, is_keyframe,
buffer_type, track_num);
// This will cause a playback error.
if (!buffer) {
MEDIA_LOG(ERROR, media_log_) << "Failed to allocate StreamParserBuffer";
return false;
}
if (decrypt_config) buffer->set_decrypt_config(decrypt_config.Pass());
} else {
std::string id, settings, content;
WebMWebVTTParser::Parse(data, size, &id, &settings, &content);
std::vector<uint8_t> side_data;
MakeSideData(id.begin(), id.end(), settings.begin(), settings.end(),
&side_data);
// TODO(wolenetz/acolwell): Validate and use a common cross-parser TrackId
// type with remapped bytestream track numbers and allow multiple tracks as
// applicable. See https://crbug.com/341581.
buffer = StreamParserBuffer::CopyFrom(
buffer_allocator_, reinterpret_cast<const uint8_t*>(content.data()),
content.length(), true, buffer_type, track_num);
// This will cause a playback error.
if (!buffer) {
MEDIA_LOG(ERROR, media_log_) << "Failed to allocate StreamParserBuffer";
return false;
}
}
buffer->set_timestamp(timestamp);
if (cluster_start_time_ == kNoTimestamp) cluster_start_time_ = timestamp;
base::TimeDelta block_duration_time_delta = kNoTimestamp;
if (block_duration >= 0) {
block_duration_time_delta = base::TimeDelta::FromMicroseconds(
block_duration * timecode_multiplier_);
}
// Prefer encoded duration over BlockGroup->BlockDuration or
// TrackEntry->DefaultDuration when available. This layering violation is a
// workaround for http://crbug.com/396634, decreasing the likelihood of
// fall-back to rough estimation techniques for Blocks that lack a
// BlockDuration at the end of a cluster. Cross cluster durations are not
// feasible given flexibility of cluster ordering and MSE APIs. Duration
// estimation may still apply in cases of encryption and codecs for which
// we do not extract encoded duration. Within a cluster, estimates are applied
// as Block Timecode deltas, or once the whole cluster is parsed in the case
// of the last Block in the cluster. See Track::AddBuffer and
// ApplyDurationEstimateIfNeeded().
if (encoded_duration != kNoTimestamp) {
DCHECK(encoded_duration != kInfiniteDuration);
DCHECK(encoded_duration > base::TimeDelta());
buffer->set_duration(encoded_duration);
DVLOG(3) << __func__ << " : "
<< "Using encoded duration " << encoded_duration.InSecondsF();
if (block_duration_time_delta != kNoTimestamp) {
base::TimeDelta duration_difference =
block_duration_time_delta - encoded_duration;
const base::TimeDelta kWarnDurationDiff =
base::TimeDelta::FromMicroseconds(timecode_multiplier_ * 2);
if (duration_difference.magnitude() > kWarnDurationDiff) {
LIMITED_MEDIA_LOG(DEBUG, media_log_, num_duration_errors_,
kMaxDurationErrorLogs)
<< "BlockDuration (" << block_duration_time_delta.InMilliseconds()
<< "ms) differs significantly from encoded duration ("
<< encoded_duration.InMilliseconds() << "ms).";
}
}
} else if (block_duration_time_delta != kNoTimestamp) {
buffer->set_duration(block_duration_time_delta);
} else {
DCHECK_NE(buffer_type, DemuxerStream::TEXT);
buffer->set_duration(track->default_duration());
}
if (discard_padding != 0) {
buffer->set_discard_padding(std::make_pair(
base::TimeDelta(),
base::TimeDelta::FromMicroseconds(discard_padding / 1000)));
}
return track->AddBuffer(buffer);
}
WebMClusterParser::Track::Track(int track_num, bool is_video,
base::TimeDelta default_duration,
const scoped_refptr<MediaLog>& media_log)
: num_duration_estimates_(0),
track_num_(track_num),
is_video_(is_video),
default_duration_(default_duration),
estimated_next_frame_duration_(kNoTimestamp),
media_log_(media_log) {
DCHECK(default_duration_ == kNoTimestamp ||
default_duration_ > base::TimeDelta());
}
WebMClusterParser::Track::~Track() {}
DecodeTimestamp WebMClusterParser::Track::GetReadyUpperBound() {
DCHECK(ready_buffers_.empty());
if (last_added_buffer_missing_duration_.get())
return last_added_buffer_missing_duration_->GetDecodeTimestamp();
return DecodeTimestamp::FromPresentationTime(base::TimeDelta::Max());
}
void WebMClusterParser::Track::ExtractReadyBuffers(
const DecodeTimestamp before_timestamp) {
DCHECK(ready_buffers_.empty());
DCHECK(DecodeTimestamp() <= before_timestamp);
DCHECK(kNoDecodeTimestamp() != before_timestamp);
if (buffers_.empty()) return;
if (buffers_.back()->GetDecodeTimestamp() < before_timestamp) {
// All of |buffers_| are ready.
ready_buffers_.swap(buffers_);
DVLOG(3) << __func__ << " : " << track_num_ << " All "
<< ready_buffers_.size() << " are ready: before upper bound ts "
<< before_timestamp.InSecondsF();
return;
}
// Not all of |buffers_| are ready yet. Move any that are ready to
// |ready_buffers_|.
while (true) {
const scoped_refptr<StreamParserBuffer>& buffer = buffers_.front();
if (buffer->GetDecodeTimestamp() >= before_timestamp) break;
ready_buffers_.push_back(buffer);
buffers_.pop_front();
DCHECK(!buffers_.empty());
}
DVLOG(3) << __func__ << " : " << track_num_ << " Only "
<< ready_buffers_.size() << " ready, " << buffers_.size()
<< " at or after upper bound ts " << before_timestamp.InSecondsF();
}
bool WebMClusterParser::Track::AddBuffer(
const scoped_refptr<StreamParserBuffer>& buffer) {
DVLOG(2) << "AddBuffer() : " << track_num_ << " ts "
<< buffer->timestamp().InSecondsF() << " dur "
<< buffer->duration().InSecondsF() << " kf "
<< buffer->is_key_frame() << " size " << buffer->data_size();
if (last_added_buffer_missing_duration_.get()) {
base::TimeDelta derived_duration =
buffer->timestamp() - last_added_buffer_missing_duration_->timestamp();
last_added_buffer_missing_duration_->set_duration(derived_duration);
DVLOG(2) << "AddBuffer() : applied derived duration to held-back buffer : "
<< " ts "
<< last_added_buffer_missing_duration_->timestamp().InSecondsF()
<< " dur "
<< last_added_buffer_missing_duration_->duration().InSecondsF()
<< " kf " << last_added_buffer_missing_duration_->is_key_frame()
<< " size " << last_added_buffer_missing_duration_->data_size();
scoped_refptr<StreamParserBuffer> updated_buffer =
last_added_buffer_missing_duration_;
last_added_buffer_missing_duration_ = NULL;
if (!QueueBuffer(updated_buffer)) return false;
}
if (buffer->duration() == kNoTimestamp) {
last_added_buffer_missing_duration_ = buffer;
DVLOG(2) << "AddBuffer() : holding back buffer that is missing duration";
return true;
}
return QueueBuffer(buffer);
}
void WebMClusterParser::Track::ApplyDurationEstimateIfNeeded() {
if (!last_added_buffer_missing_duration_.get()) return;
base::TimeDelta estimated_duration = GetDurationEstimate();
last_added_buffer_missing_duration_->set_duration(estimated_duration);
if (is_video_) {
// Exposing estimation so splicing/overlap frame processing can make
// informed decisions downstream.
// TODO(chcunningham): Set this for audio as well in later change where
// audio is switched to max estimation and splicing is disabled.
last_added_buffer_missing_duration_->set_is_duration_estimated(true);
}
LIMITED_MEDIA_LOG(INFO, media_log_, num_duration_estimates_,
kMaxDurationEstimateLogs)
<< "Estimating WebM block duration to be "
<< estimated_duration.InMilliseconds()
<< "ms for the last (Simple)Block in the Cluster for this Track. Use "
"BlockGroups with BlockDurations at the end of each Track in a "
"Cluster to avoid estimation.";
DVLOG(2) << __func__ << " new dur : ts "
<< last_added_buffer_missing_duration_->timestamp().InSecondsF()
<< " dur "
<< last_added_buffer_missing_duration_->duration().InSecondsF()
<< " kf " << last_added_buffer_missing_duration_->is_key_frame()
<< " size " << last_added_buffer_missing_duration_->data_size();
// Don't use the applied duration as a future estimation (don't use
// QueueBuffer() here.)
buffers_.push_back(last_added_buffer_missing_duration_);
last_added_buffer_missing_duration_ = NULL;
}
void WebMClusterParser::Track::ClearReadyBuffers() {
// Note that |buffers_| are kept and |estimated_next_frame_duration_| is not
// reset here.
ready_buffers_.clear();
}
void WebMClusterParser::Track::Reset() {
ClearReadyBuffers();
buffers_.clear();
last_added_buffer_missing_duration_ = NULL;
}
bool WebMClusterParser::Track::QueueBuffer(
const scoped_refptr<StreamParserBuffer>& buffer) {
DCHECK(!last_added_buffer_missing_duration_.get());
// WebMClusterParser::OnBlock() gives MEDIA_LOG and parse error on decreasing
// block timecode detection within a cluster. Therefore, we should not see
// those here.
DecodeTimestamp previous_buffers_timestamp =
buffers_.empty() ? DecodeTimestamp()
: buffers_.back()->GetDecodeTimestamp();
CHECK(previous_buffers_timestamp <= buffer->GetDecodeTimestamp());
base::TimeDelta duration = buffer->duration();
if (duration < base::TimeDelta() || duration == kNoTimestamp) {
MEDIA_LOG(ERROR, media_log_) << "Invalid buffer duration: "
<< duration.InSecondsF();
return false;
}
// The estimated frame duration is the minimum (for audio) or the maximum
// (for video) non-zero duration since the last initialization segment. The
// minimum is used for audio to ensure frame durations aren't overestimated,
// triggering unnecessary frame splicing. For video, splicing does not apply,
// so maximum is used and overlap is simply resolved by showing the
// later of the overlapping frames at its given PTS, effectively trimming down
// the over-estimated duration of the previous frame.
// TODO(chcunningham): Use max for audio and disable splicing whenever
// estimated buffers are encountered.
if (duration > base::TimeDelta()) {
base::TimeDelta orig_duration_estimate = estimated_next_frame_duration_;
if (estimated_next_frame_duration_ == kNoTimestamp) {
estimated_next_frame_duration_ = duration;
} else if (is_video_) {
estimated_next_frame_duration_ =
std::max(duration, estimated_next_frame_duration_);
} else {
estimated_next_frame_duration_ =
std::min(duration, estimated_next_frame_duration_);
}
if (orig_duration_estimate != estimated_next_frame_duration_) {
DVLOG(3) << "Updated duration estimate:"
<< orig_duration_estimate.InSecondsF() << " -> "
<< estimated_next_frame_duration_.InSecondsF()
<< " at timestamp: "
<< buffer->GetDecodeTimestamp().InSecondsF();
}
}
buffers_.push_back(buffer);
return true;
}
base::TimeDelta WebMClusterParser::Track::GetDurationEstimate() {
base::TimeDelta duration = estimated_next_frame_duration_;
if (duration != kNoTimestamp) {
DVLOG(3) << __func__ << " : using estimated duration";
} else {
DVLOG(3) << __func__ << " : using hardcoded default duration";
if (is_video_) {
duration =
base::TimeDelta::FromMilliseconds(kDefaultVideoBufferDurationInMs);
} else {
duration =
base::TimeDelta::FromMilliseconds(kDefaultAudioBufferDurationInMs);
}
}
DCHECK(duration > base::TimeDelta());
DCHECK(duration != kNoTimestamp);
return duration;
}
void WebMClusterParser::ClearTextTrackReadyBuffers() {
text_buffers_map_.clear();
for (TextTrackMap::iterator it = text_track_map_.begin();
it != text_track_map_.end(); ++it) {
it->second.ClearReadyBuffers();
}
}
void WebMClusterParser::ResetTextTracks() {
ClearTextTrackReadyBuffers();
for (TextTrackMap::iterator it = text_track_map_.begin();
it != text_track_map_.end(); ++it) {
it->second.Reset();
}
}
void WebMClusterParser::UpdateReadyBuffers() {
DCHECK(ready_buffer_upper_bound_ == kNoDecodeTimestamp());
DCHECK(text_buffers_map_.empty());
if (cluster_ended_) {
audio_.ApplyDurationEstimateIfNeeded();
video_.ApplyDurationEstimateIfNeeded();
// Per OnBlock(), all text buffers should already have valid durations, so
// there is no need to call ApplyDurationEstimateIfNeeded() on text tracks
// here.
ready_buffer_upper_bound_ =
DecodeTimestamp::FromPresentationTime(base::TimeDelta::Max());
DCHECK(ready_buffer_upper_bound_ == audio_.GetReadyUpperBound());
DCHECK(ready_buffer_upper_bound_ == video_.GetReadyUpperBound());
} else {
ready_buffer_upper_bound_ =
std::min(audio_.GetReadyUpperBound(), video_.GetReadyUpperBound());
DCHECK(DecodeTimestamp() <= ready_buffer_upper_bound_);
DCHECK(kNoDecodeTimestamp() != ready_buffer_upper_bound_);
}
// Prepare each track's ready buffers for retrieval.
audio_.ExtractReadyBuffers(ready_buffer_upper_bound_);
video_.ExtractReadyBuffers(ready_buffer_upper_bound_);
for (TextTrackMap::iterator itr = text_track_map_.begin();
itr != text_track_map_.end(); ++itr) {
itr->second.ExtractReadyBuffers(ready_buffer_upper_bound_);
}
}
WebMClusterParser::Track* WebMClusterParser::FindTextTrack(int track_num) {
const TextTrackMap::iterator it = text_track_map_.find(track_num);
if (it == text_track_map_.end()) return NULL;
return &it->second;
}
} // namespace media
} // namespace cobalt