blob: 671aafdc4e276e6e30752fda3c6dded6e6f0bbfd [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This header defines the RepeatedFieldRef class template used to access
// repeated fields with protobuf reflection API.
#ifndef GOOGLE_PROTOBUF_REFLECTION_H__
#define GOOGLE_PROTOBUF_REFLECTION_H__
#include <memory>
#ifndef _SHARED_PTR_H
#include <google/protobuf/stubs/shared_ptr.h>
#endif
#include <google/protobuf/message.h>
#include <google/protobuf/generated_enum_util.h>
namespace google {
namespace protobuf {
namespace internal {
template<typename T, typename Enable = void>
struct RefTypeTraits;
} // namespace internal
template<typename T>
RepeatedFieldRef<T> Reflection::GetRepeatedFieldRef(
const Message& message, const FieldDescriptor* field) const {
return RepeatedFieldRef<T>(message, field);
}
template<typename T>
MutableRepeatedFieldRef<T> Reflection::GetMutableRepeatedFieldRef(
Message* message, const FieldDescriptor* field) const {
return MutableRepeatedFieldRef<T>(message, field);
}
// RepeatedFieldRef definition for non-message types.
template<typename T>
class RepeatedFieldRef<
T, typename internal::enable_if<!internal::is_base_of<Message, T>::value>::type> {
typedef typename internal::RefTypeTraits<T>::iterator IteratorType;
typedef typename internal::RefTypeTraits<T>::AccessorType AccessorType;
public:
bool empty() const {
return accessor_->IsEmpty(data_);
}
int size() const {
return accessor_->Size(data_);
}
T Get(int index) const {
return accessor_->template Get<T>(data_, index);
}
typedef IteratorType iterator;
typedef IteratorType const_iterator;
iterator begin() const {
return iterator(data_, accessor_, true);
}
iterator end() const {
return iterator(data_, accessor_, false);
}
private:
friend class Reflection;
RepeatedFieldRef(
const Message& message,
const FieldDescriptor* field) {
const Reflection* reflection = message.GetReflection();
data_ = reflection->RepeatedFieldData(
const_cast<Message*>(&message), field,
internal::RefTypeTraits<T>::cpp_type, NULL);
accessor_ = reflection->RepeatedFieldAccessor(field);
}
const void* data_;
const AccessorType* accessor_;
};
// MutableRepeatedFieldRef definition for non-message types.
template<typename T>
class MutableRepeatedFieldRef<
T, typename internal::enable_if<!internal::is_base_of<Message, T>::value>::type> {
typedef typename internal::RefTypeTraits<T>::AccessorType AccessorType;
public:
bool empty() const {
return accessor_->IsEmpty(data_);
}
int size() const {
return accessor_->Size(data_);
}
T Get(int index) const {
return accessor_->template Get<T>(data_, index);
}
void Set(int index, const T& value) const {
accessor_->template Set<T>(data_, index, value);
}
void Add(const T& value) const {
accessor_->template Add<T>(data_, value);
}
void RemoveLast() const {
accessor_->RemoveLast(data_);
}
void SwapElements(int index1, int index2) const {
accessor_->SwapElements(data_, index1, index2);
}
void Clear() const {
accessor_->Clear(data_);
}
void Swap(const MutableRepeatedFieldRef& other) const {
accessor_->Swap(data_, other.accessor_, other.data_);
}
template<typename Container>
void MergeFrom(const Container& container) const {
typedef typename Container::const_iterator Iterator;
for (Iterator it = container.begin(); it != container.end(); ++it) {
Add(*it);
}
}
template<typename Container>
void CopyFrom(const Container& container) const {
Clear();
MergeFrom(container);
}
private:
friend class Reflection;
MutableRepeatedFieldRef(
Message* message,
const FieldDescriptor* field) {
const Reflection* reflection = message->GetReflection();
data_ = reflection->RepeatedFieldData(
message, field, internal::RefTypeTraits<T>::cpp_type, NULL);
accessor_ = reflection->RepeatedFieldAccessor(field);
}
void* data_;
const AccessorType* accessor_;
};
// RepeatedFieldRef definition for message types.
template<typename T>
class RepeatedFieldRef<
T, typename internal::enable_if<internal::is_base_of<Message, T>::value>::type> {
typedef typename internal::RefTypeTraits<T>::iterator IteratorType;
typedef typename internal::RefTypeTraits<T>::AccessorType AccessorType;
public:
bool empty() const {
return accessor_->IsEmpty(data_);
}
int size() const {
return accessor_->Size(data_);
}
// This method returns a reference to the underlying message object if it
// exists. If a message object doesn't exist (e.g., data stored in serialized
// form), scratch_space will be filled with the data and a reference to it
// will be returned.
//
// Example:
// RepeatedFieldRef<Message> h = ...
// unique_ptr<Message> scratch_space(h.NewMessage());
// const Message& item = h.Get(index, scratch_space.get());
const T& Get(int index, T* scratch_space) const {
return *static_cast<const T*>(accessor_->Get(data_, index, scratch_space));
}
// Create a new message of the same type as the messages stored in this
// repeated field. Caller takes ownership of the returned object.
T* NewMessage() const {
return static_cast<T*>(default_instance_->New());
}
typedef IteratorType iterator;
typedef IteratorType const_iterator;
iterator begin() const {
return iterator(data_, accessor_, true, NewMessage());
}
iterator end() const {
return iterator(data_, accessor_, false, NewMessage());
}
private:
friend class Reflection;
RepeatedFieldRef(
const Message& message,
const FieldDescriptor* field) {
const Reflection* reflection = message.GetReflection();
data_ = reflection->RepeatedFieldData(
const_cast<Message*>(&message), field,
internal::RefTypeTraits<T>::cpp_type,
internal::RefTypeTraits<T>::GetMessageFieldDescriptor());
accessor_ = reflection->RepeatedFieldAccessor(field);
default_instance_ =
reflection->GetMessageFactory()->GetPrototype(field->message_type());
}
const void* data_;
const AccessorType* accessor_;
const Message* default_instance_;
};
// MutableRepeatedFieldRef definition for message types.
template<typename T>
class MutableRepeatedFieldRef<
T, typename internal::enable_if<internal::is_base_of<Message, T>::value>::type> {
typedef typename internal::RefTypeTraits<T>::AccessorType AccessorType;
public:
bool empty() const {
return accessor_->IsEmpty(data_);
}
int size() const {
return accessor_->Size(data_);
}
// See comments for RepeatedFieldRef<Message>::Get()
const T& Get(int index, T* scratch_space) const {
return *static_cast<const T*>(accessor_->Get(data_, index, scratch_space));
}
// Create a new message of the same type as the messages stored in this
// repeated field. Caller takes ownership of the returned object.
T* NewMessage() const {
return static_cast<T*>(default_instance_->New());
}
void Set(int index, const T& value) const {
accessor_->Set(data_, index, &value);
}
void Add(const T& value) const {
accessor_->Add(data_, &value);
}
void RemoveLast() const {
accessor_->RemoveLast(data_);
}
void SwapElements(int index1, int index2) const {
accessor_->SwapElements(data_, index1, index2);
}
void Clear() const {
accessor_->Clear(data_);
}
void Swap(const MutableRepeatedFieldRef& other) const {
accessor_->Swap(data_, other.accessor_, other.data_);
}
template<typename Container>
void MergeFrom(const Container& container) const {
typedef typename Container::const_iterator Iterator;
for (Iterator it = container.begin(); it != container.end(); ++it) {
Add(*it);
}
}
template<typename Container>
void CopyFrom(const Container& container) const {
Clear();
MergeFrom(container);
}
private:
friend class Reflection;
MutableRepeatedFieldRef(
Message* message,
const FieldDescriptor* field) {
const Reflection* reflection = message->GetReflection();
data_ = reflection->RepeatedFieldData(
message, field, internal::RefTypeTraits<T>::cpp_type,
internal::RefTypeTraits<T>::GetMessageFieldDescriptor());
accessor_ = reflection->RepeatedFieldAccessor(field);
default_instance_ =
reflection->GetMessageFactory()->GetPrototype(field->message_type());
}
void* data_;
const AccessorType* accessor_;
const Message* default_instance_;
};
namespace internal {
// Interfaces used to implement reflection RepeatedFieldRef API.
// Reflection::GetRepeatedAccessor() should return a pointer to an singleton
// object that implements the below interface.
//
// This interface passes/returns values using void pointers. The actual type
// of the value depends on the field's cpp_type. Following is a mapping from
// cpp_type to the type that should be used in this interface:
//
// field->cpp_type() T Actual type of void*
// CPPTYPE_INT32 int32 int32
// CPPTYPE_UINT32 uint32 uint32
// CPPTYPE_INT64 int64 int64
// CPPTYPE_UINT64 uint64 uint64
// CPPTYPE_DOUBLE double double
// CPPTYPE_FLOAT float float
// CPPTYPE_BOOL bool bool
// CPPTYPE_ENUM generated enum type int32
// CPPTYPE_STRING string string
// CPPTYPE_MESSAGE generated message type google::protobuf::Message
// or google::protobuf::Message
//
// Note that for enums we use int32 in the interface.
//
// You can map from T to the actual type using RefTypeTraits:
// typedef RefTypeTraits<T>::AccessorValueType ActualType;
class LIBPROTOBUF_EXPORT RepeatedFieldAccessor {
public:
// Typedefs for clarity.
typedef void Field;
typedef void Value;
typedef void Iterator;
virtual ~RepeatedFieldAccessor();
virtual bool IsEmpty(const Field* data) const = 0;
virtual int Size(const Field* data) const = 0;
// Depends on the underlying representation of the repeated field, this
// method can return a pointer to the underlying object if such an object
// exists, or fill the data into scratch_space and return scratch_space.
// Callers of this method must ensure scratch_space is a valid pointer
// to a mutable object of the correct type.
virtual const Value* Get(
const Field* data, int index, Value* scratch_space) const = 0;
virtual void Clear(Field* data) const = 0;
virtual void Set(Field* data, int index, const Value* value) const = 0;
virtual void Add(Field* data, const Value* value) const = 0;
virtual void RemoveLast(Field* data) const = 0;
virtual void SwapElements(Field* data, int index1, int index2) const = 0;
virtual void Swap(Field* data, const RepeatedFieldAccessor* other_mutator,
Field* other_data) const = 0;
// Create an iterator that points at the begining of the repeated field.
virtual Iterator* BeginIterator(const Field* data) const = 0;
// Create an iterator that points at the end of the repeated field.
virtual Iterator* EndIterator(const Field* data) const = 0;
// Make a copy of an iterator and return the new copy.
virtual Iterator* CopyIterator(const Field* data,
const Iterator* iterator) const = 0;
// Move an iterator to point to the next element.
virtual Iterator* AdvanceIterator(const Field* data,
Iterator* iterator) const = 0;
// Compare whether two iterators point to the same element.
virtual bool EqualsIterator(const Field* data, const Iterator* a,
const Iterator* b) const = 0;
// Delete an iterator created by BeginIterator(), EndIterator() and
// CopyIterator().
virtual void DeleteIterator(const Field* data, Iterator* iterator) const = 0;
// Like Get() but for iterators.
virtual const Value* GetIteratorValue(const Field* data,
const Iterator* iterator,
Value* scratch_space) const = 0;
// Templated methods that make using this interface easier for non-message
// types.
template<typename T>
T Get(const Field* data, int index) const {
typedef typename RefTypeTraits<T>::AccessorValueType ActualType;
ActualType scratch_space;
return static_cast<T>(
*reinterpret_cast<const ActualType*>(
Get(data, index, static_cast<Value*>(&scratch_space))));
}
template<typename T, typename ValueType>
void Set(Field* data, int index, const ValueType& value) const {
typedef typename RefTypeTraits<T>::AccessorValueType ActualType;
// In this RepeatedFieldAccessor interface we pass/return data using
// raw pointers. Type of the data these raw pointers point to should
// be ActualType. Here we have a ValueType object and want a ActualType
// pointer. We can't cast a ValueType pointer to an ActualType pointer
// directly because their type might be different (for enums ValueType
// may be a generated enum type while ActualType is int32). To be safe
// we make a copy to get a temporary ActualType object and use it.
ActualType tmp = static_cast<ActualType>(value);
Set(data, index, static_cast<const Value*>(&tmp));
}
template<typename T, typename ValueType>
void Add(Field* data, const ValueType& value) const {
typedef typename RefTypeTraits<T>::AccessorValueType ActualType;
// In this RepeatedFieldAccessor interface we pass/return data using
// raw pointers. Type of the data these raw pointers point to should
// be ActualType. Here we have a ValueType object and want a ActualType
// pointer. We can't cast a ValueType pointer to an ActualType pointer
// directly because their type might be different (for enums ValueType
// may be a generated enum type while ActualType is int32). To be safe
// we make a copy to get a temporary ActualType object and use it.
ActualType tmp = static_cast<ActualType>(value);
Add(data, static_cast<const Value*>(&tmp));
}
};
// Implement (Mutable)RepeatedFieldRef::iterator
template<typename T>
class RepeatedFieldRefIterator
: public std::iterator<std::forward_iterator_tag, T> {
typedef typename RefTypeTraits<T>::AccessorValueType AccessorValueType;
typedef typename RefTypeTraits<T>::IteratorValueType IteratorValueType;
typedef typename RefTypeTraits<T>::IteratorPointerType IteratorPointerType;
public:
// Constructor for non-message fields.
RepeatedFieldRefIterator(const void* data,
const RepeatedFieldAccessor* accessor,
bool begin)
: data_(data), accessor_(accessor),
iterator_(begin ? accessor->BeginIterator(data) :
accessor->EndIterator(data)),
scratch_space_(new AccessorValueType) {
}
// Constructor for message fields.
RepeatedFieldRefIterator(const void* data,
const RepeatedFieldAccessor* accessor,
bool begin,
AccessorValueType* scratch_space)
: data_(data), accessor_(accessor),
iterator_(begin ? accessor->BeginIterator(data) :
accessor->EndIterator(data)),
scratch_space_(scratch_space) {
}
~RepeatedFieldRefIterator() {
accessor_->DeleteIterator(data_, iterator_);
}
RepeatedFieldRefIterator operator++(int) {
RepeatedFieldRefIterator tmp(*this);
iterator_ = accessor_->AdvanceIterator(data_, iterator_);
return tmp;
}
RepeatedFieldRefIterator& operator++() {
iterator_ = accessor_->AdvanceIterator(data_, iterator_);
return *this;
}
IteratorValueType operator*() const {
return static_cast<IteratorValueType>(
*static_cast<const AccessorValueType*>(
accessor_->GetIteratorValue(
data_, iterator_, scratch_space_.get())));
}
IteratorPointerType operator->() const {
return static_cast<IteratorPointerType>(
accessor_->GetIteratorValue(
data_, iterator_, scratch_space_.get()));
}
bool operator!=(const RepeatedFieldRefIterator& other) const {
assert(data_ == other.data_);
assert(accessor_ == other.accessor_);
return !accessor_->EqualsIterator(data_, iterator_, other.iterator_);
}
bool operator==(const RepeatedFieldRefIterator& other) const {
return !this->operator!=(other);
}
RepeatedFieldRefIterator(const RepeatedFieldRefIterator& other)
: data_(other.data_), accessor_(other.accessor_),
iterator_(accessor_->CopyIterator(data_, other.iterator_)) {
}
RepeatedFieldRefIterator& operator=(const RepeatedFieldRefIterator& other) {
if (this != &other) {
accessor_->DeleteIterator(data_, iterator_);
data_ = other.data_;
accessor_ = other.accessor_;
iterator_ = accessor_->CopyIterator(data_, other.iterator_);
}
return *this;
}
protected:
const void* data_;
const RepeatedFieldAccessor* accessor_;
void* iterator_;
google::protobuf::scoped_ptr<AccessorValueType> scratch_space_;
};
// TypeTraits that maps the type parameter T of RepeatedFieldRef or
// MutableRepeatedFieldRef to corresponding iterator type,
// RepeatedFieldAccessor type, etc.
template<typename T>
struct PrimitiveTraits {
static const bool is_primitive = false;
};
#define DEFINE_PRIMITIVE(TYPE, type) \
template<> struct PrimitiveTraits<type> { \
static const bool is_primitive = true; \
static const FieldDescriptor::CppType cpp_type = \
FieldDescriptor::CPPTYPE_ ## TYPE; \
};
DEFINE_PRIMITIVE(INT32, int32)
DEFINE_PRIMITIVE(UINT32, uint32)
DEFINE_PRIMITIVE(INT64, int64)
DEFINE_PRIMITIVE(UINT64, uint64)
DEFINE_PRIMITIVE(FLOAT, float)
DEFINE_PRIMITIVE(DOUBLE, double)
DEFINE_PRIMITIVE(BOOL, bool)
#undef DEFINE_PRIMITIVE
template<typename T>
struct RefTypeTraits<
T, typename internal::enable_if<PrimitiveTraits<T>::is_primitive>::type> {
typedef RepeatedFieldRefIterator<T> iterator;
typedef RepeatedFieldAccessor AccessorType;
typedef T AccessorValueType;
typedef T IteratorValueType;
typedef T* IteratorPointerType;
static const FieldDescriptor::CppType cpp_type =
PrimitiveTraits<T>::cpp_type;
static const Descriptor* GetMessageFieldDescriptor() {
return NULL;
}
};
template<typename T>
struct RefTypeTraits<
T, typename internal::enable_if<is_proto_enum<T>::value>::type> {
typedef RepeatedFieldRefIterator<T> iterator;
typedef RepeatedFieldAccessor AccessorType;
// We use int32 for repeated enums in RepeatedFieldAccessor.
typedef int32 AccessorValueType;
typedef T IteratorValueType;
typedef int32* IteratorPointerType;
static const FieldDescriptor::CppType cpp_type =
FieldDescriptor::CPPTYPE_ENUM;
static const Descriptor* GetMessageFieldDescriptor() {
return NULL;
}
};
template<typename T>
struct RefTypeTraits<
T, typename internal::enable_if< ::google::protobuf::internal::is_same<string, T>::value>::type> {
typedef RepeatedFieldRefIterator<T> iterator;
typedef RepeatedFieldAccessor AccessorType;
typedef string AccessorValueType;
typedef string IteratorValueType;
typedef string* IteratorPointerType;
static const FieldDescriptor::CppType cpp_type =
FieldDescriptor::CPPTYPE_STRING;
static const Descriptor* GetMessageFieldDescriptor() {
return NULL;
}
};
template<typename T>
struct MessageDescriptorGetter {
static const Descriptor* get() {
return T::default_instance().GetDescriptor();
}
};
template<>
struct MessageDescriptorGetter<Message> {
static const Descriptor* get() {
return NULL;
}
};
template<typename T>
struct RefTypeTraits<
T, typename internal::enable_if<internal::is_base_of<Message, T>::value>::type> {
typedef RepeatedFieldRefIterator<T> iterator;
typedef RepeatedFieldAccessor AccessorType;
typedef Message AccessorValueType;
typedef const T& IteratorValueType;
typedef const T* IteratorPointerType;
static const FieldDescriptor::CppType cpp_type =
FieldDescriptor::CPPTYPE_MESSAGE;
static const Descriptor* GetMessageFieldDescriptor() {
return MessageDescriptorGetter<T>::get();
}
};
} // namespace internal
} // namespace protobuf
} // namespace google
#endif // GOOGLE_PROTOBUF_REFLECTION_H__