| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2012 the V8 project authors. All rights reserved. |
| |
| #include "src/assembler.h" |
| |
| #include <math.h> |
| #include <string.h> |
| #include <cmath> |
| |
| #include "src/api.h" |
| #include "src/assembler-inl.h" |
| #include "src/base/cpu.h" |
| #include "src/base/functional.h" |
| #include "src/base/ieee754.h" |
| #include "src/base/lazy-instance.h" |
| #include "src/base/platform/platform.h" |
| #include "src/base/utils/random-number-generator.h" |
| #include "src/codegen.h" |
| #include "src/compiler/code-assembler.h" |
| #include "src/counters.h" |
| #include "src/debug/debug.h" |
| #include "src/deoptimizer.h" |
| #include "src/disassembler.h" |
| #include "src/elements.h" |
| #include "src/execution.h" |
| #include "src/ic/ic.h" |
| #include "src/ic/stub-cache.h" |
| #include "src/interpreter/bytecodes.h" |
| #include "src/interpreter/interpreter.h" |
| #include "src/isolate.h" |
| #include "src/ostreams.h" |
| #include "src/regexp/jsregexp.h" |
| #include "src/regexp/regexp-macro-assembler.h" |
| #include "src/regexp/regexp-stack.h" |
| #include "src/register-configuration.h" |
| #include "src/runtime/runtime.h" |
| #include "src/simulator.h" // For flushing instruction cache. |
| #include "src/snapshot/serializer-common.h" |
| #include "src/string-search.h" |
| #include "src/wasm/wasm-external-refs.h" |
| |
| // Include native regexp-macro-assembler. |
| #ifndef V8_INTERPRETED_REGEXP |
| #if V8_TARGET_ARCH_IA32 |
| #include "src/regexp/ia32/regexp-macro-assembler-ia32.h" // NOLINT |
| #elif V8_TARGET_ARCH_X64 |
| #include "src/regexp/x64/regexp-macro-assembler-x64.h" // NOLINT |
| #elif V8_TARGET_ARCH_ARM64 |
| #include "src/regexp/arm64/regexp-macro-assembler-arm64.h" // NOLINT |
| #elif V8_TARGET_ARCH_ARM |
| #include "src/regexp/arm/regexp-macro-assembler-arm.h" // NOLINT |
| #elif V8_TARGET_ARCH_PPC |
| #include "src/regexp/ppc/regexp-macro-assembler-ppc.h" // NOLINT |
| #elif V8_TARGET_ARCH_MIPS |
| #include "src/regexp/mips/regexp-macro-assembler-mips.h" // NOLINT |
| #elif V8_TARGET_ARCH_MIPS64 |
| #include "src/regexp/mips64/regexp-macro-assembler-mips64.h" // NOLINT |
| #elif V8_TARGET_ARCH_S390 |
| #include "src/regexp/s390/regexp-macro-assembler-s390.h" // NOLINT |
| #else // Unknown architecture. |
| #error "Unknown architecture." |
| #endif // Target architecture. |
| #endif // V8_INTERPRETED_REGEXP |
| |
| #ifdef V8_INTL_SUPPORT |
| #include "src/intl.h" |
| #endif // V8_INTL_SUPPORT |
| |
| namespace v8 { |
| namespace internal { |
| |
| // ----------------------------------------------------------------------------- |
| // Common double constants. |
| |
| struct DoubleConstant BASE_EMBEDDED { |
| double min_int; |
| double one_half; |
| double minus_one_half; |
| double negative_infinity; |
| uint64_t the_hole_nan; |
| double uint32_bias; |
| }; |
| |
| static DoubleConstant double_constants; |
| |
| static struct V8_ALIGNED(16) { |
| uint32_t a; |
| uint32_t b; |
| uint32_t c; |
| uint32_t d; |
| } float_absolute_constant = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF}; |
| |
| static struct V8_ALIGNED(16) { |
| uint32_t a; |
| uint32_t b; |
| uint32_t c; |
| uint32_t d; |
| } float_negate_constant = {0x80000000, 0x80000000, 0x80000000, 0x80000000}; |
| |
| static struct V8_ALIGNED(16) { |
| uint64_t a; |
| uint64_t b; |
| } double_absolute_constant = {uint64_t{0x7FFFFFFFFFFFFFFF}, |
| uint64_t{0x7FFFFFFFFFFFFFFF}}; |
| |
| static struct V8_ALIGNED(16) { |
| uint64_t a; |
| uint64_t b; |
| } double_negate_constant = {uint64_t{0x8000000000000000}, |
| uint64_t{0x8000000000000000}}; |
| |
| const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING"; |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of AssemblerBase |
| |
| AssemblerBase::IsolateData::IsolateData(Isolate* isolate) |
| : serializer_enabled_(isolate->serializer_enabled()) |
| #if V8_TARGET_ARCH_X64 |
| , |
| code_range_start_( |
| isolate->heap()->memory_allocator()->code_range()->start()) |
| #endif |
| { |
| } |
| |
| AssemblerBase::AssemblerBase(IsolateData isolate_data, void* buffer, |
| int buffer_size) |
| : isolate_data_(isolate_data), |
| enabled_cpu_features_(0), |
| emit_debug_code_(FLAG_debug_code), |
| predictable_code_size_(false), |
| constant_pool_available_(false), |
| jump_optimization_info_(nullptr) { |
| own_buffer_ = buffer == nullptr; |
| if (buffer_size == 0) buffer_size = kMinimalBufferSize; |
| DCHECK_GT(buffer_size, 0); |
| if (own_buffer_) buffer = NewArray<byte>(buffer_size); |
| buffer_ = static_cast<byte*>(buffer); |
| buffer_size_ = buffer_size; |
| pc_ = buffer_; |
| } |
| |
| AssemblerBase::~AssemblerBase() { |
| if (own_buffer_) DeleteArray(buffer_); |
| } |
| |
| void AssemblerBase::FlushICache(Isolate* isolate, void* start, size_t size) { |
| if (size == 0) return; |
| |
| #if defined(USE_SIMULATOR) |
| base::LockGuard<base::Mutex> lock_guard(isolate->simulator_i_cache_mutex()); |
| Simulator::FlushICache(isolate->simulator_i_cache(), start, size); |
| #else |
| CpuFeatures::FlushICache(start, size); |
| #endif // USE_SIMULATOR |
| } |
| |
| void AssemblerBase::Print(Isolate* isolate) { |
| OFStream os(stdout); |
| v8::internal::Disassembler::Decode(isolate, &os, buffer_, pc_, nullptr); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of PredictableCodeSizeScope |
| |
| PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler) |
| : PredictableCodeSizeScope(assembler, -1) {} |
| |
| PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler, |
| int expected_size) |
| : assembler_(assembler), |
| expected_size_(expected_size), |
| start_offset_(assembler->pc_offset()), |
| old_value_(assembler->predictable_code_size()) { |
| assembler_->set_predictable_code_size(true); |
| } |
| |
| PredictableCodeSizeScope::~PredictableCodeSizeScope() { |
| // TODO(svenpanne) Remove the 'if' when everything works. |
| if (expected_size_ >= 0) { |
| CHECK_EQ(expected_size_, assembler_->pc_offset() - start_offset_); |
| } |
| assembler_->set_predictable_code_size(old_value_); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of CpuFeatureScope |
| |
| #ifdef DEBUG |
| CpuFeatureScope::CpuFeatureScope(AssemblerBase* assembler, CpuFeature f, |
| CheckPolicy check) |
| : assembler_(assembler) { |
| DCHECK_IMPLIES(check == kCheckSupported, CpuFeatures::IsSupported(f)); |
| old_enabled_ = assembler_->enabled_cpu_features(); |
| assembler_->EnableCpuFeature(f); |
| } |
| |
| CpuFeatureScope::~CpuFeatureScope() { |
| assembler_->set_enabled_cpu_features(old_enabled_); |
| } |
| #endif |
| |
| bool CpuFeatures::initialized_ = false; |
| unsigned CpuFeatures::supported_ = 0; |
| unsigned CpuFeatures::icache_line_size_ = 0; |
| unsigned CpuFeatures::dcache_line_size_ = 0; |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfoWriter and RelocIterator |
| // |
| // Relocation information is written backwards in memory, from high addresses |
| // towards low addresses, byte by byte. Therefore, in the encodings listed |
| // below, the first byte listed it at the highest address, and successive |
| // bytes in the record are at progressively lower addresses. |
| // |
| // Encoding |
| // |
| // The most common modes are given single-byte encodings. Also, it is |
| // easy to identify the type of reloc info and skip unwanted modes in |
| // an iteration. |
| // |
| // The encoding relies on the fact that there are fewer than 14 |
| // different relocation modes using standard non-compact encoding. |
| // |
| // The first byte of a relocation record has a tag in its low 2 bits: |
| // Here are the record schemes, depending on the low tag and optional higher |
| // tags. |
| // |
| // Low tag: |
| // 00: embedded_object: [6-bit pc delta] 00 |
| // |
| // 01: code_target: [6-bit pc delta] 01 |
| // |
| // 10: short_data_record: [6-bit pc delta] 10 followed by |
| // [8-bit data delta] |
| // |
| // 11: long_record [6 bit reloc mode] 11 |
| // followed by pc delta |
| // followed by optional data depending on type. |
| // |
| // If a pc delta exceeds 6 bits, it is split into a remainder that fits into |
| // 6 bits and a part that does not. The latter is encoded as a long record |
| // with PC_JUMP as pseudo reloc info mode. The former is encoded as part of |
| // the following record in the usual way. The long pc jump record has variable |
| // length: |
| // pc-jump: [PC_JUMP] 11 |
| // [7 bits data] 0 |
| // ... |
| // [7 bits data] 1 |
| // (Bits 6..31 of pc delta, with leading zeroes |
| // dropped, and last non-zero chunk tagged with 1.) |
| |
| const int kTagBits = 2; |
| const int kTagMask = (1 << kTagBits) - 1; |
| const int kLongTagBits = 6; |
| |
| const int kEmbeddedObjectTag = 0; |
| const int kCodeTargetTag = 1; |
| const int kLocatableTag = 2; |
| const int kDefaultTag = 3; |
| |
| const int kSmallPCDeltaBits = kBitsPerByte - kTagBits; |
| const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1; |
| const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask; |
| |
| const int kChunkBits = 7; |
| const int kChunkMask = (1 << kChunkBits) - 1; |
| const int kLastChunkTagBits = 1; |
| const int kLastChunkTagMask = 1; |
| const int kLastChunkTag = 1; |
| |
| void RelocInfo::set_wasm_context_reference(Isolate* isolate, Address address, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK(IsWasmContextReference(rmode_)); |
| set_embedded_address(isolate, address, icache_flush_mode); |
| } |
| |
| void RelocInfo::set_global_handle(Isolate* isolate, Address address, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK_EQ(rmode_, WASM_GLOBAL_HANDLE); |
| set_embedded_address(isolate, address, icache_flush_mode); |
| } |
| |
| Address RelocInfo::wasm_call_address() const { |
| DCHECK_EQ(rmode_, WASM_CALL); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| |
| void RelocInfo::set_wasm_call_address(Isolate* isolate, Address address, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK_EQ(rmode_, WASM_CALL); |
| Assembler::set_target_address_at(isolate, pc_, constant_pool_, address, |
| icache_flush_mode); |
| } |
| |
| Address RelocInfo::global_handle() const { |
| DCHECK_EQ(rmode_, WASM_GLOBAL_HANDLE); |
| return embedded_address(); |
| } |
| |
| uint32_t RelocInfo::wasm_function_table_size_reference() const { |
| DCHECK(IsWasmFunctionTableSizeReference(rmode_)); |
| return embedded_size(); |
| } |
| |
| Address RelocInfo::wasm_context_reference() const { |
| DCHECK(IsWasmContextReference(rmode_)); |
| return embedded_address(); |
| } |
| |
| void RelocInfo::update_wasm_function_table_size_reference( |
| Isolate* isolate, uint32_t old_size, uint32_t new_size, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK(IsWasmFunctionTableSizeReference(rmode_)); |
| set_embedded_size(isolate, new_size, icache_flush_mode); |
| } |
| |
| void RelocInfo::set_target_address(Isolate* isolate, Address target, |
| WriteBarrierMode write_barrier_mode, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_)); |
| Assembler::set_target_address_at(isolate, pc_, constant_pool_, target, |
| icache_flush_mode); |
| if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr && |
| IsCodeTarget(rmode_)) { |
| Code* target_code = Code::GetCodeFromTargetAddress(target); |
| host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this, |
| target_code); |
| } |
| } |
| |
| uint32_t RelocInfoWriter::WriteLongPCJump(uint32_t pc_delta) { |
| // Return if the pc_delta can fit in kSmallPCDeltaBits bits. |
| // Otherwise write a variable length PC jump for the bits that do |
| // not fit in the kSmallPCDeltaBits bits. |
| if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta; |
| WriteMode(RelocInfo::PC_JUMP); |
| uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits; |
| DCHECK_GT(pc_jump, 0); |
| // Write kChunkBits size chunks of the pc_jump. |
| for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) { |
| byte b = pc_jump & kChunkMask; |
| *--pos_ = b << kLastChunkTagBits; |
| } |
| // Tag the last chunk so it can be identified. |
| *pos_ = *pos_ | kLastChunkTag; |
| // Return the remaining kSmallPCDeltaBits of the pc_delta. |
| return pc_delta & kSmallPCDeltaMask; |
| } |
| |
| void RelocInfoWriter::WriteShortTaggedPC(uint32_t pc_delta, int tag) { |
| // Write a byte of tagged pc-delta, possibly preceded by an explicit pc-jump. |
| pc_delta = WriteLongPCJump(pc_delta); |
| *--pos_ = pc_delta << kTagBits | tag; |
| } |
| |
| void RelocInfoWriter::WriteShortData(intptr_t data_delta) { |
| *--pos_ = static_cast<byte>(data_delta); |
| } |
| |
| void RelocInfoWriter::WriteMode(RelocInfo::Mode rmode) { |
| STATIC_ASSERT(RelocInfo::NUMBER_OF_MODES <= (1 << kLongTagBits)); |
| *--pos_ = static_cast<int>((rmode << kTagBits) | kDefaultTag); |
| } |
| |
| void RelocInfoWriter::WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode) { |
| // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump. |
| pc_delta = WriteLongPCJump(pc_delta); |
| WriteMode(rmode); |
| *--pos_ = pc_delta; |
| } |
| |
| void RelocInfoWriter::WriteIntData(int number) { |
| for (int i = 0; i < kIntSize; i++) { |
| *--pos_ = static_cast<byte>(number); |
| // Signed right shift is arithmetic shift. Tested in test-utils.cc. |
| number = number >> kBitsPerByte; |
| } |
| } |
| |
| void RelocInfoWriter::WriteData(intptr_t data_delta) { |
| for (int i = 0; i < kIntptrSize; i++) { |
| *--pos_ = static_cast<byte>(data_delta); |
| // Signed right shift is arithmetic shift. Tested in test-utils.cc. |
| data_delta = data_delta >> kBitsPerByte; |
| } |
| } |
| |
| void RelocInfoWriter::Write(const RelocInfo* rinfo) { |
| RelocInfo::Mode rmode = rinfo->rmode(); |
| #ifdef DEBUG |
| byte* begin_pos = pos_; |
| #endif |
| DCHECK(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES); |
| DCHECK_GE(rinfo->pc() - last_pc_, 0); |
| // Use unsigned delta-encoding for pc. |
| uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_); |
| |
| // The two most common modes are given small tags, and usually fit in a byte. |
| if (rmode == RelocInfo::EMBEDDED_OBJECT) { |
| WriteShortTaggedPC(pc_delta, kEmbeddedObjectTag); |
| } else if (rmode == RelocInfo::CODE_TARGET) { |
| WriteShortTaggedPC(pc_delta, kCodeTargetTag); |
| DCHECK_LE(begin_pos - pos_, RelocInfo::kMaxCallSize); |
| } else if (rmode == RelocInfo::DEOPT_REASON) { |
| DCHECK(rinfo->data() < (1 << kBitsPerByte)); |
| WriteShortTaggedPC(pc_delta, kLocatableTag); |
| WriteShortData(rinfo->data()); |
| } else { |
| WriteModeAndPC(pc_delta, rmode); |
| if (RelocInfo::IsComment(rmode)) { |
| WriteData(rinfo->data()); |
| } else if (RelocInfo::IsConstPool(rmode) || |
| RelocInfo::IsVeneerPool(rmode) || RelocInfo::IsDeoptId(rmode) || |
| RelocInfo::IsDeoptPosition(rmode)) { |
| WriteIntData(static_cast<int>(rinfo->data())); |
| } |
| } |
| last_pc_ = rinfo->pc(); |
| last_mode_ = rmode; |
| #ifdef DEBUG |
| DCHECK_LE(begin_pos - pos_, kMaxSize); |
| #endif |
| } |
| |
| inline int RelocIterator::AdvanceGetTag() { |
| return *--pos_ & kTagMask; |
| } |
| |
| inline RelocInfo::Mode RelocIterator::GetMode() { |
| return static_cast<RelocInfo::Mode>((*pos_ >> kTagBits) & |
| ((1 << kLongTagBits) - 1)); |
| } |
| |
| inline void RelocIterator::ReadShortTaggedPC() { |
| rinfo_.pc_ += *pos_ >> kTagBits; |
| } |
| |
| inline void RelocIterator::AdvanceReadPC() { |
| rinfo_.pc_ += *--pos_; |
| } |
| |
| void RelocIterator::AdvanceReadInt() { |
| int x = 0; |
| for (int i = 0; i < kIntSize; i++) { |
| x |= static_cast<int>(*--pos_) << i * kBitsPerByte; |
| } |
| rinfo_.data_ = x; |
| } |
| |
| void RelocIterator::AdvanceReadData() { |
| intptr_t x = 0; |
| for (int i = 0; i < kIntptrSize; i++) { |
| x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte; |
| } |
| rinfo_.data_ = x; |
| } |
| |
| void RelocIterator::AdvanceReadLongPCJump() { |
| // Read the 32-kSmallPCDeltaBits most significant bits of the |
| // pc jump in kChunkBits bit chunks and shift them into place. |
| // Stop when the last chunk is encountered. |
| uint32_t pc_jump = 0; |
| for (int i = 0; i < kIntSize; i++) { |
| byte pc_jump_part = *--pos_; |
| pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits; |
| if ((pc_jump_part & kLastChunkTagMask) == 1) break; |
| } |
| // The least significant kSmallPCDeltaBits bits will be added |
| // later. |
| rinfo_.pc_ += pc_jump << kSmallPCDeltaBits; |
| } |
| |
| inline void RelocIterator::ReadShortData() { |
| uint8_t unsigned_b = *pos_; |
| rinfo_.data_ = unsigned_b; |
| } |
| |
| void RelocIterator::next() { |
| DCHECK(!done()); |
| // Basically, do the opposite of RelocInfoWriter::Write. |
| // Reading of data is as far as possible avoided for unwanted modes, |
| // but we must always update the pc. |
| // |
| // We exit this loop by returning when we find a mode we want. |
| while (pos_ > end_) { |
| int tag = AdvanceGetTag(); |
| if (tag == kEmbeddedObjectTag) { |
| ReadShortTaggedPC(); |
| if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return; |
| } else if (tag == kCodeTargetTag) { |
| ReadShortTaggedPC(); |
| if (SetMode(RelocInfo::CODE_TARGET)) return; |
| } else if (tag == kLocatableTag) { |
| ReadShortTaggedPC(); |
| Advance(); |
| if (SetMode(RelocInfo::DEOPT_REASON)) { |
| ReadShortData(); |
| return; |
| } |
| } else { |
| DCHECK_EQ(tag, kDefaultTag); |
| RelocInfo::Mode rmode = GetMode(); |
| if (rmode == RelocInfo::PC_JUMP) { |
| AdvanceReadLongPCJump(); |
| } else { |
| AdvanceReadPC(); |
| if (RelocInfo::IsComment(rmode)) { |
| if (SetMode(rmode)) { |
| AdvanceReadData(); |
| return; |
| } |
| Advance(kIntptrSize); |
| } else if (RelocInfo::IsConstPool(rmode) || |
| RelocInfo::IsVeneerPool(rmode) || |
| RelocInfo::IsDeoptId(rmode) || |
| RelocInfo::IsDeoptPosition(rmode)) { |
| if (SetMode(rmode)) { |
| AdvanceReadInt(); |
| return; |
| } |
| Advance(kIntSize); |
| } else if (SetMode(static_cast<RelocInfo::Mode>(rmode))) { |
| return; |
| } |
| } |
| } |
| } |
| done_ = true; |
| } |
| |
| RelocIterator::RelocIterator(Code* code, int mode_mask) { |
| rinfo_.host_ = code; |
| rinfo_.pc_ = code->instruction_start(); |
| rinfo_.data_ = 0; |
| rinfo_.constant_pool_ = code->constant_pool(); |
| // Relocation info is read backwards. |
| pos_ = code->relocation_start() + code->relocation_size(); |
| end_ = code->relocation_start(); |
| done_ = false; |
| mode_mask_ = mode_mask; |
| if (mode_mask_ == 0) pos_ = end_; |
| next(); |
| } |
| |
| RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) { |
| rinfo_.pc_ = desc.buffer; |
| rinfo_.data_ = 0; |
| // Relocation info is read backwards. |
| pos_ = desc.buffer + desc.buffer_size; |
| end_ = pos_ - desc.reloc_size; |
| done_ = false; |
| mode_mask_ = mode_mask; |
| if (mode_mask_ == 0) pos_ = end_; |
| next(); |
| } |
| |
| RelocIterator::RelocIterator(Vector<byte> instructions, |
| Vector<const byte> reloc_info, Address const_pool, |
| int mode_mask) { |
| rinfo_.pc_ = instructions.start(); |
| rinfo_.data_ = 0; |
| rinfo_.constant_pool_ = const_pool; |
| // Relocation info is read backwards. |
| pos_ = reloc_info.start() + reloc_info.size(); |
| end_ = reloc_info.start(); |
| done_ = false; |
| mode_mask_ = mode_mask; |
| if (mode_mask_ == 0) pos_ = end_; |
| next(); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfo |
| |
| #ifdef DEBUG |
| bool RelocInfo::RequiresRelocation(Isolate* isolate, const CodeDesc& desc) { |
| // Ensure there are no code targets or embedded objects present in the |
| // deoptimization entries, they would require relocation after code |
| // generation. |
| int mode_mask = RelocInfo::kCodeTargetMask | |
| RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | |
| RelocInfo::kApplyMask; |
| RelocIterator it(desc, mode_mask); |
| return !it.done(); |
| } |
| #endif |
| |
| #ifdef ENABLE_DISASSEMBLER |
| const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) { |
| switch (rmode) { |
| case NONE32: |
| return "no reloc 32"; |
| case NONE64: |
| return "no reloc 64"; |
| case EMBEDDED_OBJECT: |
| return "embedded object"; |
| case CODE_TARGET: |
| return "code target"; |
| case RUNTIME_ENTRY: |
| return "runtime entry"; |
| case COMMENT: |
| return "comment"; |
| case EXTERNAL_REFERENCE: |
| return "external reference"; |
| case INTERNAL_REFERENCE: |
| return "internal reference"; |
| case INTERNAL_REFERENCE_ENCODED: |
| return "encoded internal reference"; |
| case DEOPT_SCRIPT_OFFSET: |
| return "deopt script offset"; |
| case DEOPT_INLINING_ID: |
| return "deopt inlining id"; |
| case DEOPT_REASON: |
| return "deopt reason"; |
| case DEOPT_ID: |
| return "deopt index"; |
| case CONST_POOL: |
| return "constant pool"; |
| case VENEER_POOL: |
| return "veneer pool"; |
| case WASM_CONTEXT_REFERENCE: |
| return "wasm context reference"; |
| case WASM_FUNCTION_TABLE_SIZE_REFERENCE: |
| return "wasm function table size reference"; |
| case WASM_GLOBAL_HANDLE: |
| return "global handle"; |
| case WASM_CALL: |
| return "internal wasm call"; |
| case JS_TO_WASM_CALL: |
| return "js to wasm call"; |
| case NUMBER_OF_MODES: |
| case PC_JUMP: |
| UNREACHABLE(); |
| } |
| return "unknown relocation type"; |
| } |
| |
| void RelocInfo::Print(Isolate* isolate, std::ostream& os) { // NOLINT |
| os << static_cast<const void*>(pc_) << " " << RelocModeName(rmode_); |
| if (IsComment(rmode_)) { |
| os << " (" << reinterpret_cast<char*>(data_) << ")"; |
| } else if (rmode_ == DEOPT_SCRIPT_OFFSET || rmode_ == DEOPT_INLINING_ID) { |
| os << " (" << data() << ")"; |
| } else if (rmode_ == DEOPT_REASON) { |
| os << " (" |
| << DeoptimizeReasonToString(static_cast<DeoptimizeReason>(data_)) << ")"; |
| } else if (rmode_ == EMBEDDED_OBJECT) { |
| os << " (" << Brief(target_object()) << ")"; |
| } else if (rmode_ == EXTERNAL_REFERENCE) { |
| ExternalReferenceEncoder ref_encoder(isolate); |
| os << " (" |
| << ref_encoder.NameOfAddress(isolate, target_external_reference()) |
| << ") (" << static_cast<const void*>(target_external_reference()) |
| << ")"; |
| } else if (IsCodeTarget(rmode_)) { |
| Code* code = Code::GetCodeFromTargetAddress(target_address()); |
| os << " (" << Code::Kind2String(code->kind()) << ") (" |
| << static_cast<const void*>(target_address()) << ")"; |
| } else if (IsRuntimeEntry(rmode_) && isolate->deoptimizer_data() != nullptr) { |
| // Depotimization bailouts are stored as runtime entries. |
| int id = Deoptimizer::GetDeoptimizationId( |
| isolate, target_address(), Deoptimizer::EAGER); |
| if (id != Deoptimizer::kNotDeoptimizationEntry) { |
| os << " (deoptimization bailout " << id << ")"; |
| } |
| } else if (IsConstPool(rmode_)) { |
| os << " (size " << static_cast<int>(data_) << ")"; |
| } |
| |
| os << "\n"; |
| } |
| #endif // ENABLE_DISASSEMBLER |
| |
| #ifdef VERIFY_HEAP |
| void RelocInfo::Verify(Isolate* isolate) { |
| switch (rmode_) { |
| case EMBEDDED_OBJECT: |
| Object::VerifyPointer(target_object()); |
| break; |
| case CODE_TARGET: { |
| // convert inline target address to code object |
| Address addr = target_address(); |
| CHECK_NOT_NULL(addr); |
| // Check that we can find the right code object. |
| Code* code = Code::GetCodeFromTargetAddress(addr); |
| Object* found = isolate->FindCodeObject(addr); |
| CHECK(found->IsCode()); |
| CHECK(code->address() == HeapObject::cast(found)->address()); |
| break; |
| } |
| case INTERNAL_REFERENCE: |
| case INTERNAL_REFERENCE_ENCODED: { |
| Address target = target_internal_reference(); |
| Address pc = target_internal_reference_address(); |
| Code* code = Code::cast(isolate->FindCodeObject(pc)); |
| CHECK(target >= code->instruction_start()); |
| CHECK(target <= code->instruction_end()); |
| break; |
| } |
| case RUNTIME_ENTRY: |
| case COMMENT: |
| case EXTERNAL_REFERENCE: |
| case DEOPT_SCRIPT_OFFSET: |
| case DEOPT_INLINING_ID: |
| case DEOPT_REASON: |
| case DEOPT_ID: |
| case CONST_POOL: |
| case VENEER_POOL: |
| case WASM_CONTEXT_REFERENCE: |
| case WASM_FUNCTION_TABLE_SIZE_REFERENCE: |
| case WASM_GLOBAL_HANDLE: |
| case WASM_CALL: |
| case JS_TO_WASM_CALL: |
| case NONE32: |
| case NONE64: |
| break; |
| case NUMBER_OF_MODES: |
| case PC_JUMP: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| #endif // VERIFY_HEAP |
| |
| // Implementation of ExternalReference |
| |
| static ExternalReference::Type BuiltinCallTypeForResultSize(int result_size) { |
| switch (result_size) { |
| case 1: |
| return ExternalReference::BUILTIN_CALL; |
| case 2: |
| return ExternalReference::BUILTIN_CALL_PAIR; |
| } |
| UNREACHABLE(); |
| } |
| |
| void ExternalReference::SetUp() { |
| double_constants.min_int = kMinInt; |
| double_constants.one_half = 0.5; |
| double_constants.minus_one_half = -0.5; |
| double_constants.the_hole_nan = kHoleNanInt64; |
| double_constants.negative_infinity = -V8_INFINITY; |
| double_constants.uint32_bias = |
| static_cast<double>(static_cast<uint32_t>(0xFFFFFFFF)) + 1; |
| } |
| |
| ExternalReference::ExternalReference(Address address, Isolate* isolate) |
| : address_(Redirect(isolate, address)) {} |
| |
| ExternalReference::ExternalReference( |
| ApiFunction* fun, Type type = ExternalReference::BUILTIN_CALL, |
| Isolate* isolate = nullptr) |
| : address_(Redirect(isolate, fun->address(), type)) {} |
| |
| ExternalReference::ExternalReference(Runtime::FunctionId id, Isolate* isolate) |
| : ExternalReference(Runtime::FunctionForId(id), isolate) {} |
| |
| ExternalReference::ExternalReference(const Runtime::Function* f, |
| Isolate* isolate) |
| : address_(Redirect(isolate, f->entry, |
| BuiltinCallTypeForResultSize(f->result_size))) {} |
| |
| ExternalReference ExternalReference::isolate_address(Isolate* isolate) { |
| return ExternalReference(isolate); |
| } |
| |
| ExternalReference ExternalReference::builtins_address(Isolate* isolate) { |
| return ExternalReference(isolate->builtins()->builtins_table_address()); |
| } |
| |
| ExternalReference ExternalReference::handle_scope_implementer_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->handle_scope_implementer_address()); |
| } |
| |
| ExternalReference ExternalReference::pending_microtask_count_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->pending_microtask_count_address()); |
| } |
| |
| ExternalReference ExternalReference::interpreter_dispatch_table_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->interpreter()->dispatch_table_address()); |
| } |
| |
| ExternalReference ExternalReference::interpreter_dispatch_counters( |
| Isolate* isolate) { |
| return ExternalReference( |
| isolate->interpreter()->bytecode_dispatch_counters_table()); |
| } |
| |
| ExternalReference ExternalReference::bytecode_size_table_address( |
| Isolate* isolate) { |
| return ExternalReference( |
| interpreter::Bytecodes::bytecode_size_table_address()); |
| } |
| |
| ExternalReference::ExternalReference(StatsCounter* counter) |
| : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {} |
| |
| ExternalReference::ExternalReference(IsolateAddressId id, Isolate* isolate) |
| : address_(isolate->get_address_from_id(id)) {} |
| |
| ExternalReference::ExternalReference(const SCTableReference& table_ref) |
| : address_(table_ref.address()) {} |
| |
| ExternalReference ExternalReference:: |
| incremental_marking_record_write_function(Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, |
| FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode))); |
| } |
| |
| ExternalReference ExternalReference::store_buffer_overflow_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, |
| FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow))); |
| } |
| |
| ExternalReference ExternalReference::delete_handle_scope_extensions( |
| Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, |
| FUNCTION_ADDR(HandleScope::DeleteExtensions))); |
| } |
| |
| ExternalReference ExternalReference::get_date_field_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField))); |
| } |
| |
| ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) { |
| return ExternalReference(isolate->date_cache()->stamp_address()); |
| } |
| |
| void ExternalReference::set_redirector( |
| Isolate* isolate, ExternalReferenceRedirector* redirector) { |
| // We can't stack them. |
| DCHECK_NULL(isolate->external_reference_redirector()); |
| isolate->set_external_reference_redirector( |
| reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector)); |
| } |
| |
| ExternalReference ExternalReference::stress_deopt_count(Isolate* isolate) { |
| return ExternalReference(isolate->stress_deopt_count_address()); |
| } |
| |
| ExternalReference ExternalReference::force_slow_path(Isolate* isolate) { |
| return ExternalReference(isolate->force_slow_path_address()); |
| } |
| |
| ExternalReference ExternalReference::new_deoptimizer_function( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New))); |
| } |
| |
| ExternalReference ExternalReference::compute_output_frames_function( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames))); |
| } |
| |
| ExternalReference ExternalReference::wasm_f32_trunc(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::f32_trunc_wrapper))); |
| } |
| ExternalReference ExternalReference::wasm_f32_floor(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::f32_floor_wrapper))); |
| } |
| ExternalReference ExternalReference::wasm_f32_ceil(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::f32_ceil_wrapper))); |
| } |
| ExternalReference ExternalReference::wasm_f32_nearest_int(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::f32_nearest_int_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_f64_trunc(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::f64_trunc_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_f64_floor(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::f64_floor_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_f64_ceil(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::f64_ceil_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_f64_nearest_int(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::f64_nearest_int_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_int64_to_float32(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::int64_to_float32_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_uint64_to_float32(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::uint64_to_float32_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_int64_to_float64(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::int64_to_float64_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_uint64_to_float64(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::uint64_to_float64_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_float32_to_int64(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::float32_to_int64_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_float32_to_uint64(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::float32_to_uint64_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_float64_to_int64(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::float64_to_int64_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_float64_to_uint64(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::float64_to_uint64_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_int64_div(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::int64_div_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_int64_mod(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::int64_mod_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_uint64_div(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::uint64_div_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_uint64_mod(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::uint64_mod_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_word32_ctz(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::word32_ctz_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_word64_ctz(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::word64_ctz_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_word32_popcnt(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::word32_popcnt_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_word64_popcnt(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::word64_popcnt_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_word32_rol(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::word32_rol_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_word32_ror(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::word32_ror_wrapper))); |
| } |
| |
| static void f64_acos_wrapper(double* param) { |
| WriteDoubleValue(param, base::ieee754::acos(ReadDoubleValue(param))); |
| } |
| |
| ExternalReference ExternalReference::f64_acos_wrapper_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f64_acos_wrapper))); |
| } |
| |
| static void f64_asin_wrapper(double* param) { |
| WriteDoubleValue(param, base::ieee754::asin(ReadDoubleValue(param))); |
| } |
| |
| ExternalReference ExternalReference::f64_asin_wrapper_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f64_asin_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_float64_pow(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::float64_pow_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_set_thread_in_wasm_flag( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::set_thread_in_wasm_flag))); |
| } |
| |
| ExternalReference ExternalReference::wasm_clear_thread_in_wasm_flag( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::clear_thread_in_wasm_flag))); |
| } |
| |
| static void f64_mod_wrapper(double* param0, double* param1) { |
| WriteDoubleValue(param0, |
| Modulo(ReadDoubleValue(param0), ReadDoubleValue(param1))); |
| } |
| |
| ExternalReference ExternalReference::f64_mod_wrapper_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f64_mod_wrapper))); |
| } |
| |
| ExternalReference ExternalReference::wasm_call_trap_callback_for_testing( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(wasm::call_trap_callback_for_testing))); |
| } |
| |
| ExternalReference ExternalReference::log_enter_external_function( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(Logger::EnterExternal))); |
| } |
| |
| ExternalReference ExternalReference::log_leave_external_function( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(Logger::LeaveExternal))); |
| } |
| |
| ExternalReference ExternalReference::roots_array_start(Isolate* isolate) { |
| return ExternalReference(isolate->heap()->roots_array_start()); |
| } |
| |
| ExternalReference ExternalReference::allocation_sites_list_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->heap()->allocation_sites_list_address()); |
| } |
| |
| ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) { |
| return ExternalReference(isolate->stack_guard()->address_of_jslimit()); |
| } |
| |
| ExternalReference ExternalReference::address_of_real_stack_limit( |
| Isolate* isolate) { |
| return ExternalReference(isolate->stack_guard()->address_of_real_jslimit()); |
| } |
| |
| ExternalReference ExternalReference::address_of_regexp_stack_limit( |
| Isolate* isolate) { |
| return ExternalReference(isolate->regexp_stack()->limit_address()); |
| } |
| |
| ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) { |
| return ExternalReference(isolate->heap()->store_buffer_top_address()); |
| } |
| |
| ExternalReference ExternalReference::heap_is_marking_flag_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->heap()->IsMarkingFlagAddress()); |
| } |
| |
| ExternalReference ExternalReference::new_space_allocation_top_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress()); |
| } |
| |
| ExternalReference ExternalReference::new_space_allocation_limit_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress()); |
| } |
| |
| ExternalReference ExternalReference::old_space_allocation_top_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->heap()->OldSpaceAllocationTopAddress()); |
| } |
| |
| ExternalReference ExternalReference::old_space_allocation_limit_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->heap()->OldSpaceAllocationLimitAddress()); |
| } |
| |
| ExternalReference ExternalReference::handle_scope_level_address( |
| Isolate* isolate) { |
| return ExternalReference(HandleScope::current_level_address(isolate)); |
| } |
| |
| ExternalReference ExternalReference::handle_scope_next_address( |
| Isolate* isolate) { |
| return ExternalReference(HandleScope::current_next_address(isolate)); |
| } |
| |
| ExternalReference ExternalReference::handle_scope_limit_address( |
| Isolate* isolate) { |
| return ExternalReference(HandleScope::current_limit_address(isolate)); |
| } |
| |
| ExternalReference ExternalReference::scheduled_exception_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->scheduled_exception_address()); |
| } |
| |
| ExternalReference ExternalReference::address_of_pending_message_obj( |
| Isolate* isolate) { |
| return ExternalReference(isolate->pending_message_obj_address()); |
| } |
| |
| ExternalReference ExternalReference::address_of_min_int() { |
| return ExternalReference(reinterpret_cast<void*>(&double_constants.min_int)); |
| } |
| |
| ExternalReference ExternalReference::address_of_one_half() { |
| return ExternalReference(reinterpret_cast<void*>(&double_constants.one_half)); |
| } |
| |
| ExternalReference ExternalReference::address_of_minus_one_half() { |
| return ExternalReference( |
| reinterpret_cast<void*>(&double_constants.minus_one_half)); |
| } |
| |
| ExternalReference ExternalReference::address_of_negative_infinity() { |
| return ExternalReference( |
| reinterpret_cast<void*>(&double_constants.negative_infinity)); |
| } |
| |
| ExternalReference ExternalReference::address_of_the_hole_nan() { |
| return ExternalReference( |
| reinterpret_cast<void*>(&double_constants.the_hole_nan)); |
| } |
| |
| ExternalReference ExternalReference::address_of_uint32_bias() { |
| return ExternalReference( |
| reinterpret_cast<void*>(&double_constants.uint32_bias)); |
| } |
| |
| ExternalReference ExternalReference::address_of_float_abs_constant() { |
| return ExternalReference(reinterpret_cast<void*>(&float_absolute_constant)); |
| } |
| |
| ExternalReference ExternalReference::address_of_float_neg_constant() { |
| return ExternalReference(reinterpret_cast<void*>(&float_negate_constant)); |
| } |
| |
| ExternalReference ExternalReference::address_of_double_abs_constant() { |
| return ExternalReference(reinterpret_cast<void*>(&double_absolute_constant)); |
| } |
| |
| ExternalReference ExternalReference::address_of_double_neg_constant() { |
| return ExternalReference(reinterpret_cast<void*>(&double_negate_constant)); |
| } |
| |
| ExternalReference ExternalReference::is_profiling_address(Isolate* isolate) { |
| return ExternalReference(isolate->is_profiling_address()); |
| } |
| |
| ExternalReference ExternalReference::invoke_function_callback( |
| Isolate* isolate) { |
| Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback); |
| ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL; |
| ApiFunction thunk_fun(thunk_address); |
| return ExternalReference(&thunk_fun, thunk_type, isolate); |
| } |
| |
| ExternalReference ExternalReference::invoke_accessor_getter_callback( |
| Isolate* isolate) { |
| Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback); |
| ExternalReference::Type thunk_type = |
| ExternalReference::PROFILING_GETTER_CALL; |
| ApiFunction thunk_fun(thunk_address); |
| return ExternalReference(&thunk_fun, thunk_type, isolate); |
| } |
| |
| #ifndef V8_INTERPRETED_REGEXP |
| |
| ExternalReference ExternalReference::re_check_stack_guard_state( |
| Isolate* isolate) { |
| Address function; |
| #if V8_TARGET_ARCH_X64 |
| function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_IA32 |
| function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_ARM64 |
| function = FUNCTION_ADDR(RegExpMacroAssemblerARM64::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_ARM |
| function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_PPC |
| function = FUNCTION_ADDR(RegExpMacroAssemblerPPC::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_MIPS |
| function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_MIPS64 |
| function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_S390 |
| function = FUNCTION_ADDR(RegExpMacroAssemblerS390::CheckStackGuardState); |
| #else |
| UNREACHABLE(); |
| #endif |
| return ExternalReference(Redirect(isolate, function)); |
| } |
| |
| ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack))); |
| } |
| |
| ExternalReference ExternalReference::re_case_insensitive_compare_uc16( |
| Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, |
| FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16))); |
| } |
| |
| ExternalReference ExternalReference::re_word_character_map() { |
| return ExternalReference( |
| NativeRegExpMacroAssembler::word_character_map_address()); |
| } |
| |
| ExternalReference ExternalReference::address_of_static_offsets_vector( |
| Isolate* isolate) { |
| return ExternalReference( |
| reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector())); |
| } |
| |
| ExternalReference ExternalReference::address_of_regexp_stack_memory_address( |
| Isolate* isolate) { |
| return ExternalReference( |
| isolate->regexp_stack()->memory_address()); |
| } |
| |
| ExternalReference ExternalReference::address_of_regexp_stack_memory_size( |
| Isolate* isolate) { |
| return ExternalReference(isolate->regexp_stack()->memory_size_address()); |
| } |
| |
| #endif // V8_INTERPRETED_REGEXP |
| |
| ExternalReference ExternalReference::ieee754_acos_function(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(base::ieee754::acos), BUILTIN_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_acosh_function(Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, FUNCTION_ADDR(base::ieee754::acosh), BUILTIN_FP_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_asin_function(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(base::ieee754::asin), BUILTIN_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_asinh_function(Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, FUNCTION_ADDR(base::ieee754::asinh), BUILTIN_FP_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_atan_function(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(base::ieee754::atan), BUILTIN_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_atanh_function(Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, FUNCTION_ADDR(base::ieee754::atanh), BUILTIN_FP_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_atan2_function(Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, FUNCTION_ADDR(base::ieee754::atan2), BUILTIN_FP_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_cbrt_function(Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(base::ieee754::cbrt), |
| BUILTIN_FP_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_cos_function(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(base::ieee754::cos), BUILTIN_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_cosh_function(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(base::ieee754::cosh), BUILTIN_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_exp_function(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(base::ieee754::exp), BUILTIN_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_expm1_function(Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, FUNCTION_ADDR(base::ieee754::expm1), BUILTIN_FP_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_log_function(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(base::ieee754::log), BUILTIN_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_log1p_function(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(base::ieee754::log1p), BUILTIN_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_log10_function(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(base::ieee754::log10), BUILTIN_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_log2_function(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(base::ieee754::log2), BUILTIN_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_sin_function(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(base::ieee754::sin), BUILTIN_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_sinh_function(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(base::ieee754::sinh), BUILTIN_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_tan_function(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(base::ieee754::tan), BUILTIN_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::ieee754_tanh_function(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(base::ieee754::tanh), BUILTIN_FP_CALL)); |
| } |
| |
| void* libc_memchr(void* string, int character, size_t search_length) { |
| return memchr(string, character, search_length); |
| } |
| |
| ExternalReference ExternalReference::libc_memchr_function(Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(libc_memchr))); |
| } |
| |
| void* libc_memcpy(void* dest, const void* src, size_t n) { |
| return memcpy(dest, src, n); |
| } |
| |
| ExternalReference ExternalReference::libc_memcpy_function(Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(libc_memcpy))); |
| } |
| |
| void* libc_memmove(void* dest, const void* src, size_t n) { |
| return memmove(dest, src, n); |
| } |
| |
| ExternalReference ExternalReference::libc_memmove_function(Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(libc_memmove))); |
| } |
| |
| void* libc_memset(void* dest, int byte, size_t n) { |
| DCHECK_EQ(static_cast<char>(byte), byte); |
| return memset(dest, byte, n); |
| } |
| |
| ExternalReference ExternalReference::libc_memset_function(Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(libc_memset))); |
| } |
| |
| #if V8_OS_STARBOARD |
| namespace { |
| int no_printf(const char *format, ...) { |
| return 0; |
| } |
| } |
| ExternalReference ExternalReference::printf_function(Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(no_printf))); |
| } |
| #else |
| ExternalReference ExternalReference::printf_function(Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(std::printf))); |
| } |
| #endif |
| |
| template <typename SubjectChar, typename PatternChar> |
| ExternalReference ExternalReference::search_string_raw(Isolate* isolate) { |
| auto f = SearchStringRaw<SubjectChar, PatternChar>; |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f))); |
| } |
| |
| ExternalReference ExternalReference::orderedhashmap_gethash_raw( |
| Isolate* isolate) { |
| auto f = OrderedHashMap::GetHash; |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f))); |
| } |
| |
| ExternalReference ExternalReference::get_or_create_hash_raw(Isolate* isolate) { |
| typedef Smi* (*GetOrCreateHash)(Isolate * isolate, Object * key); |
| GetOrCreateHash f = Object::GetOrCreateHash; |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f))); |
| } |
| |
| ExternalReference ExternalReference::jsreceiver_create_identity_hash( |
| Isolate* isolate) { |
| typedef Smi* (*CreateIdentityHash)(Isolate * isolate, JSReceiver * key); |
| CreateIdentityHash f = JSReceiver::CreateIdentityHash; |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(f))); |
| } |
| |
| ExternalReference |
| ExternalReference::copy_fast_number_jsarray_elements_to_typed_array( |
| Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, FUNCTION_ADDR(CopyFastNumberJSArrayElementsToTypedArray))); |
| } |
| |
| ExternalReference ExternalReference::copy_typed_array_elements_to_typed_array( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(CopyTypedArrayElementsToTypedArray))); |
| } |
| |
| ExternalReference ExternalReference::try_internalize_string_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, FUNCTION_ADDR(StringTable::LookupStringIfExists_NoAllocate))); |
| } |
| |
| ExternalReference ExternalReference::check_object_type(Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(CheckObjectType))); |
| } |
| |
| #ifdef V8_INTL_SUPPORT |
| ExternalReference ExternalReference::intl_convert_one_byte_to_lower( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(ConvertOneByteToLower))); |
| } |
| |
| ExternalReference ExternalReference::intl_to_latin1_lower_table( |
| Isolate* isolate) { |
| uint8_t* ptr = const_cast<uint8_t*>(ToLatin1LowerTable()); |
| return ExternalReference(reinterpret_cast<Address>(ptr)); |
| } |
| #endif // V8_INTL_SUPPORT |
| |
| // Explicit instantiations for all combinations of 1- and 2-byte strings. |
| template ExternalReference |
| ExternalReference::search_string_raw<const uint8_t, const uint8_t>(Isolate*); |
| template ExternalReference |
| ExternalReference::search_string_raw<const uint8_t, const uc16>(Isolate*); |
| template ExternalReference |
| ExternalReference::search_string_raw<const uc16, const uint8_t>(Isolate*); |
| template ExternalReference |
| ExternalReference::search_string_raw<const uc16, const uc16>(Isolate*); |
| |
| ExternalReference ExternalReference::page_flags(Page* page) { |
| return ExternalReference(reinterpret_cast<Address>(page) + |
| MemoryChunk::kFlagsOffset); |
| } |
| |
| ExternalReference ExternalReference::ForDeoptEntry(Address entry) { |
| return ExternalReference(entry); |
| } |
| |
| ExternalReference ExternalReference::cpu_features() { |
| DCHECK(CpuFeatures::initialized_); |
| return ExternalReference(&CpuFeatures::supported_); |
| } |
| |
| ExternalReference ExternalReference::promise_hook_or_debug_is_active_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->promise_hook_or_debug_is_active_address()); |
| } |
| |
| ExternalReference ExternalReference::debug_is_active_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->debug()->is_active_address()); |
| } |
| |
| ExternalReference ExternalReference::debug_hook_on_function_call_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->debug()->hook_on_function_call_address()); |
| } |
| |
| ExternalReference ExternalReference::runtime_function_table_address( |
| Isolate* isolate) { |
| return ExternalReference( |
| const_cast<Runtime::Function*>(Runtime::RuntimeFunctionTable(isolate))); |
| } |
| |
| ExternalReference ExternalReference::invalidate_prototype_chains_function( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(JSObject::InvalidatePrototypeChains))); |
| } |
| |
| double power_helper(Isolate* isolate, double x, double y) { |
| int y_int = static_cast<int>(y); |
| if (y == y_int) { |
| return power_double_int(x, y_int); // Returns 1 if exponent is 0. |
| } |
| if (y == 0.5) { |
| lazily_initialize_fast_sqrt(isolate); |
| return (std::isinf(x)) ? V8_INFINITY |
| : fast_sqrt(x + 0.0, isolate); // Convert -0 to +0. |
| } |
| if (y == -0.5) { |
| lazily_initialize_fast_sqrt(isolate); |
| return (std::isinf(x)) ? 0 : 1.0 / fast_sqrt(x + 0.0, |
| isolate); // Convert -0 to +0. |
| } |
| return power_double_double(x, y); |
| } |
| |
| // Helper function to compute x^y, where y is known to be an |
| // integer. Uses binary decomposition to limit the number of |
| // multiplications; see the discussion in "Hacker's Delight" by Henry |
| // S. Warren, Jr., figure 11-6, page 213. |
| double power_double_int(double x, int y) { |
| double m = (y < 0) ? 1 / x : x; |
| unsigned n = (y < 0) ? -y : y; |
| double p = 1; |
| while (n != 0) { |
| if ((n & 1) != 0) p *= m; |
| m *= m; |
| if ((n & 2) != 0) p *= m; |
| m *= m; |
| n >>= 2; |
| } |
| return p; |
| } |
| |
| double power_double_double(double x, double y) { |
| // The checks for special cases can be dropped in ia32 because it has already |
| // been done in generated code before bailing out here. |
| if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) { |
| return std::numeric_limits<double>::quiet_NaN(); |
| } |
| return Pow(x, y); |
| } |
| |
| double modulo_double_double(double x, double y) { return Modulo(x, y); } |
| |
| ExternalReference ExternalReference::power_double_double_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, |
| FUNCTION_ADDR(power_double_double), |
| BUILTIN_FP_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::mod_two_doubles_operation( |
| Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, FUNCTION_ADDR(modulo_double_double), BUILTIN_FP_FP_CALL)); |
| } |
| |
| ExternalReference ExternalReference::debug_last_step_action_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->debug()->last_step_action_address()); |
| } |
| |
| ExternalReference ExternalReference::debug_suspended_generator_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->debug()->suspended_generator_address()); |
| } |
| |
| ExternalReference ExternalReference::debug_restart_fp_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->debug()->restart_fp_address()); |
| } |
| |
| ExternalReference ExternalReference::fixed_typed_array_base_data_offset() { |
| return ExternalReference(reinterpret_cast<void*>( |
| FixedTypedArrayBase::kDataOffset - kHeapObjectTag)); |
| } |
| |
| bool operator==(ExternalReference lhs, ExternalReference rhs) { |
| return lhs.address() == rhs.address(); |
| } |
| |
| bool operator!=(ExternalReference lhs, ExternalReference rhs) { |
| return !(lhs == rhs); |
| } |
| |
| size_t hash_value(ExternalReference reference) { |
| return base::hash<Address>()(reference.address()); |
| } |
| |
| std::ostream& operator<<(std::ostream& os, ExternalReference reference) { |
| os << static_cast<const void*>(reference.address()); |
| const Runtime::Function* fn = Runtime::FunctionForEntry(reference.address()); |
| if (fn) os << "<" << fn->name << ".entry>"; |
| return os; |
| } |
| |
| ConstantPoolBuilder::ConstantPoolBuilder(int ptr_reach_bits, |
| int double_reach_bits) { |
| info_[ConstantPoolEntry::INTPTR].entries.reserve(64); |
| info_[ConstantPoolEntry::INTPTR].regular_reach_bits = ptr_reach_bits; |
| info_[ConstantPoolEntry::DOUBLE].regular_reach_bits = double_reach_bits; |
| } |
| |
| ConstantPoolEntry::Access ConstantPoolBuilder::NextAccess( |
| ConstantPoolEntry::Type type) const { |
| const PerTypeEntryInfo& info = info_[type]; |
| |
| if (info.overflow()) return ConstantPoolEntry::OVERFLOWED; |
| |
| int dbl_count = info_[ConstantPoolEntry::DOUBLE].regular_count; |
| int dbl_offset = dbl_count * kDoubleSize; |
| int ptr_count = info_[ConstantPoolEntry::INTPTR].regular_count; |
| int ptr_offset = ptr_count * kPointerSize + dbl_offset; |
| |
| if (type == ConstantPoolEntry::DOUBLE) { |
| // Double overflow detection must take into account the reach for both types |
| int ptr_reach_bits = info_[ConstantPoolEntry::INTPTR].regular_reach_bits; |
| if (!is_uintn(dbl_offset, info.regular_reach_bits) || |
| (ptr_count > 0 && |
| !is_uintn(ptr_offset + kDoubleSize - kPointerSize, ptr_reach_bits))) { |
| return ConstantPoolEntry::OVERFLOWED; |
| } |
| } else { |
| DCHECK(type == ConstantPoolEntry::INTPTR); |
| if (!is_uintn(ptr_offset, info.regular_reach_bits)) { |
| return ConstantPoolEntry::OVERFLOWED; |
| } |
| } |
| |
| return ConstantPoolEntry::REGULAR; |
| } |
| |
| ConstantPoolEntry::Access ConstantPoolBuilder::AddEntry( |
| ConstantPoolEntry& entry, ConstantPoolEntry::Type type) { |
| DCHECK(!emitted_label_.is_bound()); |
| PerTypeEntryInfo& info = info_[type]; |
| const int entry_size = ConstantPoolEntry::size(type); |
| bool merged = false; |
| |
| if (entry.sharing_ok()) { |
| // Try to merge entries |
| std::vector<ConstantPoolEntry>::iterator it = info.shared_entries.begin(); |
| int end = static_cast<int>(info.shared_entries.size()); |
| for (int i = 0; i < end; i++, it++) { |
| if ((entry_size == kPointerSize) ? entry.value() == it->value() |
| : entry.value64() == it->value64()) { |
| // Merge with found entry. |
| entry.set_merged_index(i); |
| merged = true; |
| break; |
| } |
| } |
| } |
| |
| // By definition, merged entries have regular access. |
| DCHECK(!merged || entry.merged_index() < info.regular_count); |
| ConstantPoolEntry::Access access = |
| (merged ? ConstantPoolEntry::REGULAR : NextAccess(type)); |
| |
| // Enforce an upper bound on search time by limiting the search to |
| // unique sharable entries which fit in the regular section. |
| if (entry.sharing_ok() && !merged && access == ConstantPoolEntry::REGULAR) { |
| info.shared_entries.push_back(entry); |
| } else { |
| info.entries.push_back(entry); |
| } |
| |
| // We're done if we found a match or have already triggered the |
| // overflow state. |
| if (merged || info.overflow()) return access; |
| |
| if (access == ConstantPoolEntry::REGULAR) { |
| info.regular_count++; |
| } else { |
| info.overflow_start = static_cast<int>(info.entries.size()) - 1; |
| } |
| |
| return access; |
| } |
| |
| void ConstantPoolBuilder::EmitSharedEntries(Assembler* assm, |
| ConstantPoolEntry::Type type) { |
| PerTypeEntryInfo& info = info_[type]; |
| std::vector<ConstantPoolEntry>& shared_entries = info.shared_entries; |
| const int entry_size = ConstantPoolEntry::size(type); |
| int base = emitted_label_.pos(); |
| DCHECK_GT(base, 0); |
| int shared_end = static_cast<int>(shared_entries.size()); |
| std::vector<ConstantPoolEntry>::iterator shared_it = shared_entries.begin(); |
| for (int i = 0; i < shared_end; i++, shared_it++) { |
| int offset = assm->pc_offset() - base; |
| shared_it->set_offset(offset); // Save offset for merged entries. |
| if (entry_size == kPointerSize) { |
| assm->dp(shared_it->value()); |
| } else { |
| assm->dq(shared_it->value64()); |
| } |
| DCHECK(is_uintn(offset, info.regular_reach_bits)); |
| |
| // Patch load sequence with correct offset. |
| assm->PatchConstantPoolAccessInstruction(shared_it->position(), offset, |
| ConstantPoolEntry::REGULAR, type); |
| } |
| } |
| |
| void ConstantPoolBuilder::EmitGroup(Assembler* assm, |
| ConstantPoolEntry::Access access, |
| ConstantPoolEntry::Type type) { |
| PerTypeEntryInfo& info = info_[type]; |
| const bool overflow = info.overflow(); |
| std::vector<ConstantPoolEntry>& entries = info.entries; |
| std::vector<ConstantPoolEntry>& shared_entries = info.shared_entries; |
| const int entry_size = ConstantPoolEntry::size(type); |
| int base = emitted_label_.pos(); |
| DCHECK_GT(base, 0); |
| int begin; |
| int end; |
| |
| if (access == ConstantPoolEntry::REGULAR) { |
| // Emit any shared entries first |
| EmitSharedEntries(assm, type); |
| } |
| |
| if (access == ConstantPoolEntry::REGULAR) { |
| begin = 0; |
| end = overflow ? info.overflow_start : static_cast<int>(entries.size()); |
| } else { |
| DCHECK(access == ConstantPoolEntry::OVERFLOWED); |
| if (!overflow) return; |
| begin = info.overflow_start; |
| end = static_cast<int>(entries.size()); |
| } |
| |
| std::vector<ConstantPoolEntry>::iterator it = entries.begin(); |
| if (begin > 0) std::advance(it, begin); |
| for (int i = begin; i < end; i++, it++) { |
| // Update constant pool if necessary and get the entry's offset. |
| int offset; |
| ConstantPoolEntry::Access entry_access; |
| if (!it->is_merged()) { |
| // Emit new entry |
| offset = assm->pc_offset() - base; |
| entry_access = access; |
| if (entry_size == kPointerSize) { |
| assm->dp(it->value()); |
| } else { |
| assm->dq(it->value64()); |
| } |
| } else { |
| // Retrieve offset from shared entry. |
| offset = shared_entries[it->merged_index()].offset(); |
| entry_access = ConstantPoolEntry::REGULAR; |
| } |
| |
| DCHECK(entry_access == ConstantPoolEntry::OVERFLOWED || |
| is_uintn(offset, info.regular_reach_bits)); |
| |
| // Patch load sequence with correct offset. |
| assm->PatchConstantPoolAccessInstruction(it->position(), offset, |
| entry_access, type); |
| } |
| } |
| |
| // Emit and return position of pool. Zero implies no constant pool. |
| int ConstantPoolBuilder::Emit(Assembler* assm) { |
| bool emitted = emitted_label_.is_bound(); |
| bool empty = IsEmpty(); |
| |
| if (!emitted) { |
| // Mark start of constant pool. Align if necessary. |
| if (!empty) assm->DataAlign(kDoubleSize); |
| assm->bind(&emitted_label_); |
| if (!empty) { |
| // Emit in groups based on access and type. |
| // Emit doubles first for alignment purposes. |
| EmitGroup(assm, ConstantPoolEntry::REGULAR, ConstantPoolEntry::DOUBLE); |
| EmitGroup(assm, ConstantPoolEntry::REGULAR, ConstantPoolEntry::INTPTR); |
| if (info_[ConstantPoolEntry::DOUBLE].overflow()) { |
| assm->DataAlign(kDoubleSize); |
| EmitGroup(assm, ConstantPoolEntry::OVERFLOWED, |
| ConstantPoolEntry::DOUBLE); |
| } |
| if (info_[ConstantPoolEntry::INTPTR].overflow()) { |
| EmitGroup(assm, ConstantPoolEntry::OVERFLOWED, |
| ConstantPoolEntry::INTPTR); |
| } |
| } |
| } |
| |
| return !empty ? emitted_label_.pos() : 0; |
| } |
| |
| HeapObjectRequest::HeapObjectRequest(double heap_number, int offset) |
| : kind_(kHeapNumber), offset_(offset) { |
| value_.heap_number = heap_number; |
| DCHECK(!IsSmiDouble(value_.heap_number)); |
| } |
| |
| HeapObjectRequest::HeapObjectRequest(CodeStub* code_stub, int offset) |
| : kind_(kCodeStub), offset_(offset) { |
| value_.code_stub = code_stub; |
| DCHECK_NOT_NULL(value_.code_stub); |
| } |
| |
| // Platform specific but identical code for all the platforms. |
| |
| void Assembler::RecordDeoptReason(DeoptimizeReason reason, |
| SourcePosition position, int id) { |
| EnsureSpace ensure_space(this); |
| RecordRelocInfo(RelocInfo::DEOPT_SCRIPT_OFFSET, position.ScriptOffset()); |
| RecordRelocInfo(RelocInfo::DEOPT_INLINING_ID, position.InliningId()); |
| RecordRelocInfo(RelocInfo::DEOPT_REASON, static_cast<int>(reason)); |
| RecordRelocInfo(RelocInfo::DEOPT_ID, id); |
| } |
| |
| void Assembler::RecordComment(const char* msg) { |
| if (FLAG_code_comments) { |
| EnsureSpace ensure_space(this); |
| RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); |
| } |
| } |
| |
| void Assembler::DataAlign(int m) { |
| DCHECK(m >= 2 && base::bits::IsPowerOfTwo(m)); |
| while ((pc_offset() & (m - 1)) != 0) { |
| db(0); |
| } |
| } |
| |
| void Assembler::RequestHeapObject(HeapObjectRequest request) { |
| request.set_offset(pc_offset()); |
| heap_object_requests_.push_front(request); |
| } |
| |
| namespace { |
| int caller_saved_codes[kNumJSCallerSaved]; |
| } |
| |
| void SetUpJSCallerSavedCodeData() { |
| int i = 0; |
| for (int r = 0; r < kNumRegs; r++) |
| if ((kJSCallerSaved & (1 << r)) != 0) caller_saved_codes[i++] = r; |
| |
| DCHECK_EQ(i, kNumJSCallerSaved); |
| } |
| |
| int JSCallerSavedCode(int n) { |
| DCHECK(0 <= n && n < kNumJSCallerSaved); |
| return caller_saved_codes[n]; |
| } |
| |
| } // namespace internal |
| } // namespace v8 |