| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_HANDLES_H_ |
| #define V8_HANDLES_H_ |
| |
| #include <type_traits> |
| |
| #include "include/v8.h" |
| #include "src/base/functional.h" |
| #include "src/base/macros.h" |
| #include "src/checks.h" |
| #include "src/globals.h" |
| #include "src/zone/zone.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Forward declarations. |
| class DeferredHandles; |
| class HandleScopeImplementer; |
| class Isolate; |
| class Object; |
| |
| // ---------------------------------------------------------------------------- |
| // Base class for Handle instantiations. Don't use directly. |
| class HandleBase { |
| public: |
| V8_INLINE explicit HandleBase(Object** location) : location_(location) {} |
| V8_INLINE explicit HandleBase(Object* object, Isolate* isolate); |
| |
| // Check if this handle refers to the exact same object as the other handle. |
| V8_INLINE bool is_identical_to(const HandleBase that) const { |
| // Dereferencing deferred handles to check object equality is safe. |
| SLOW_DCHECK((this->location_ == nullptr || |
| this->IsDereferenceAllowed(NO_DEFERRED_CHECK)) && |
| (that.location_ == nullptr || |
| that.IsDereferenceAllowed(NO_DEFERRED_CHECK))); |
| if (this->location_ == that.location_) return true; |
| if (this->location_ == nullptr || that.location_ == nullptr) return false; |
| return *this->location_ == *that.location_; |
| } |
| |
| V8_INLINE bool is_null() const { return location_ == nullptr; } |
| |
| // Returns the raw address where this handle is stored. This should only be |
| // used for hashing handles; do not ever try to dereference it. |
| V8_INLINE Address address() const { return bit_cast<Address>(location_); } |
| |
| protected: |
| // Provides the C++ dereference operator. |
| V8_INLINE Object* operator*() const { |
| SLOW_DCHECK(IsDereferenceAllowed(INCLUDE_DEFERRED_CHECK)); |
| return *location_; |
| } |
| |
| // Returns the address to where the raw pointer is stored. |
| V8_INLINE Object** location() const { |
| SLOW_DCHECK(location_ == nullptr || |
| IsDereferenceAllowed(INCLUDE_DEFERRED_CHECK)); |
| return location_; |
| } |
| |
| enum DereferenceCheckMode { INCLUDE_DEFERRED_CHECK, NO_DEFERRED_CHECK }; |
| #ifdef DEBUG |
| bool V8_EXPORT_PRIVATE IsDereferenceAllowed(DereferenceCheckMode mode) const; |
| #else |
| V8_INLINE |
| bool V8_EXPORT_PRIVATE IsDereferenceAllowed(DereferenceCheckMode mode) const { |
| return true; |
| } |
| #endif // DEBUG |
| |
| Object** location_; |
| }; |
| |
| |
| // ---------------------------------------------------------------------------- |
| // A Handle provides a reference to an object that survives relocation by |
| // the garbage collector. |
| // |
| // Handles are only valid within a HandleScope. When a handle is created |
| // for an object a cell is allocated in the current HandleScope. |
| // |
| // Also note that Handles do not provide default equality comparison or hashing |
| // operators on purpose. Such operators would be misleading, because intended |
| // semantics is ambiguous between Handle location and object identity. Instead |
| // use either {is_identical_to} or {location} explicitly. |
| template <typename T> |
| class Handle final : public HandleBase { |
| public: |
| V8_INLINE explicit Handle(T** location = nullptr) |
| : HandleBase(reinterpret_cast<Object**>(location)) { |
| // Type check: |
| static_assert(std::is_convertible<T*, Object*>::value, |
| "static type violation"); |
| } |
| |
| V8_INLINE explicit Handle(T* object); |
| V8_INLINE Handle(T* object, Isolate* isolate); |
| |
| // Allocate a new handle for the object, do not canonicalize. |
| V8_INLINE static Handle<T> New(T* object, Isolate* isolate); |
| |
| // Constructor for handling automatic up casting. |
| // Ex. Handle<JSFunction> can be passed when Handle<Object> is expected. |
| template <typename S, typename = typename std::enable_if< |
| std::is_convertible<S*, T*>::value>::type> |
| V8_INLINE Handle(Handle<S> handle) : HandleBase(handle) {} |
| |
| V8_INLINE T* operator->() const { return operator*(); } |
| |
| // Provides the C++ dereference operator. |
| V8_INLINE T* operator*() const { |
| return reinterpret_cast<T*>(HandleBase::operator*()); |
| } |
| |
| // Returns the address to where the raw pointer is stored. |
| V8_INLINE T** location() const { |
| return reinterpret_cast<T**>(HandleBase::location()); |
| } |
| |
| template <typename S> |
| static const Handle<T> cast(Handle<S> that) { |
| T::cast(*reinterpret_cast<T**>(that.location())); |
| return Handle<T>(reinterpret_cast<T**>(that.location_)); |
| } |
| |
| // TODO(yangguo): Values that contain empty handles should be declared as |
| // MaybeHandle to force validation before being used as handles. |
| static const Handle<T> null() { return Handle<T>(); } |
| |
| // Location equality. |
| bool equals(Handle<T> other) const { return address() == other.address(); } |
| |
| // Provide function object for location equality comparison. |
| struct equal_to : public std::binary_function<Handle<T>, Handle<T>, bool> { |
| V8_INLINE bool operator()(Handle<T> lhs, Handle<T> rhs) const { |
| return lhs.equals(rhs); |
| } |
| }; |
| |
| // Provide function object for location hashing. |
| struct hash : public std::unary_function<Handle<T>, size_t> { |
| V8_INLINE size_t operator()(Handle<T> const& handle) const { |
| return base::hash<void*>()(handle.address()); |
| } |
| }; |
| |
| private: |
| // Handles of different classes are allowed to access each other's location_. |
| template <typename> |
| friend class Handle; |
| // MaybeHandle is allowed to access location_. |
| template <typename> |
| friend class MaybeHandle; |
| }; |
| |
| template <typename T> |
| inline std::ostream& operator<<(std::ostream& os, Handle<T> handle); |
| |
| template <typename T> |
| V8_INLINE Handle<T> handle(T* object, Isolate* isolate) { |
| return Handle<T>(object, isolate); |
| } |
| |
| template <typename T> |
| V8_INLINE Handle<T> handle(T* object) { |
| return Handle<T>(object); |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // A Handle can be converted into a MaybeHandle. Converting a MaybeHandle |
| // into a Handle requires checking that it does not point to nullptr. This |
| // ensures nullptr checks before use. |
| // |
| // Also note that Handles do not provide default equality comparison or hashing |
| // operators on purpose. Such operators would be misleading, because intended |
| // semantics is ambiguous between Handle location and object identity. |
| template <typename T> |
| class MaybeHandle final { |
| public: |
| V8_INLINE MaybeHandle() {} |
| |
| // Constructor for handling automatic up casting from Handle. |
| // Ex. Handle<JSArray> can be passed when MaybeHandle<Object> is expected. |
| template <typename S, typename = typename std::enable_if< |
| std::is_convertible<S*, T*>::value>::type> |
| V8_INLINE MaybeHandle(Handle<S> handle) |
| : location_(reinterpret_cast<T**>(handle.location_)) {} |
| |
| // Constructor for handling automatic up casting. |
| // Ex. MaybeHandle<JSArray> can be passed when Handle<Object> is expected. |
| template <typename S, typename = typename std::enable_if< |
| std::is_convertible<S*, T*>::value>::type> |
| V8_INLINE MaybeHandle(MaybeHandle<S> maybe_handle) |
| : location_(reinterpret_cast<T**>(maybe_handle.location_)) {} |
| |
| V8_INLINE MaybeHandle(T* object, Isolate* isolate) |
| : MaybeHandle(handle(object, isolate)) {} |
| |
| V8_INLINE void Assert() const { DCHECK_NOT_NULL(location_); } |
| V8_INLINE void Check() const { CHECK_NOT_NULL(location_); } |
| |
| V8_INLINE Handle<T> ToHandleChecked() const { |
| Check(); |
| return Handle<T>(location_); |
| } |
| |
| // Convert to a Handle with a type that can be upcasted to. |
| template <typename S> |
| V8_INLINE bool ToHandle(Handle<S>* out) const { |
| if (location_ == nullptr) { |
| *out = Handle<T>::null(); |
| return false; |
| } else { |
| *out = Handle<T>(location_); |
| return true; |
| } |
| } |
| |
| // Returns the raw address where this handle is stored. This should only be |
| // used for hashing handles; do not ever try to dereference it. |
| V8_INLINE Address address() const { return bit_cast<Address>(location_); } |
| |
| bool is_null() const { return location_ == nullptr; } |
| |
| protected: |
| T** location_ = nullptr; |
| |
| // MaybeHandles of different classes are allowed to access each |
| // other's location_. |
| template <typename> |
| friend class MaybeHandle; |
| }; |
| |
| |
| // ---------------------------------------------------------------------------- |
| // A stack-allocated class that governs a number of local handles. |
| // After a handle scope has been created, all local handles will be |
| // allocated within that handle scope until either the handle scope is |
| // deleted or another handle scope is created. If there is already a |
| // handle scope and a new one is created, all allocations will take |
| // place in the new handle scope until it is deleted. After that, |
| // new handles will again be allocated in the original handle scope. |
| // |
| // After the handle scope of a local handle has been deleted the |
| // garbage collector will no longer track the object stored in the |
| // handle and may deallocate it. The behavior of accessing a handle |
| // for which the handle scope has been deleted is undefined. |
| class HandleScope { |
| public: |
| explicit inline HandleScope(Isolate* isolate); |
| |
| inline ~HandleScope(); |
| |
| // Counts the number of allocated handles. |
| V8_EXPORT_PRIVATE static int NumberOfHandles(Isolate* isolate); |
| |
| // Create a new handle or lookup a canonical handle. |
| V8_INLINE static Object** GetHandle(Isolate* isolate, Object* value); |
| |
| // Creates a new handle with the given value. |
| V8_INLINE static Object** CreateHandle(Isolate* isolate, Object* value); |
| |
| // Deallocates any extensions used by the current scope. |
| V8_EXPORT_PRIVATE static void DeleteExtensions(Isolate* isolate); |
| |
| static Address current_next_address(Isolate* isolate); |
| static Address current_limit_address(Isolate* isolate); |
| static Address current_level_address(Isolate* isolate); |
| |
| // Closes the HandleScope (invalidating all handles |
| // created in the scope of the HandleScope) and returns |
| // a Handle backed by the parent scope holding the |
| // value of the argument handle. |
| template <typename T> |
| Handle<T> CloseAndEscape(Handle<T> handle_value); |
| |
| Isolate* isolate() { return isolate_; } |
| |
| // Limit for number of handles with --check-handle-count. This is |
| // large enough to compile natives and pass unit tests with some |
| // slack for future changes to natives. |
| static const int kCheckHandleThreshold = 30 * 1024; |
| |
| private: |
| // Prevent heap allocation or illegal handle scopes. |
| void* operator new(size_t size); |
| void operator delete(void* size_t); |
| |
| Isolate* isolate_; |
| Object** prev_next_; |
| Object** prev_limit_; |
| |
| // Close the handle scope resetting limits to a previous state. |
| static inline void CloseScope(Isolate* isolate, |
| Object** prev_next, |
| Object** prev_limit); |
| |
| // Extend the handle scope making room for more handles. |
| V8_EXPORT_PRIVATE static Object** Extend(Isolate* isolate); |
| |
| #ifdef ENABLE_HANDLE_ZAPPING |
| // Zaps the handles in the half-open interval [start, end). |
| V8_EXPORT_PRIVATE static void ZapRange(Object** start, Object** end); |
| #endif |
| |
| friend class v8::HandleScope; |
| friend class DeferredHandles; |
| friend class DeferredHandleScope; |
| friend class HandleScopeImplementer; |
| friend class Isolate; |
| |
| DISALLOW_COPY_AND_ASSIGN(HandleScope); |
| }; |
| |
| |
| // Forward declarations for CanonicalHandleScope. |
| template <typename V, class AllocationPolicy> |
| class IdentityMap; |
| class RootIndexMap; |
| |
| |
| // A CanonicalHandleScope does not open a new HandleScope. It changes the |
| // existing HandleScope so that Handles created within are canonicalized. |
| // This does not apply to nested inner HandleScopes unless a nested |
| // CanonicalHandleScope is introduced. Handles are only canonicalized within |
| // the same CanonicalHandleScope, but not across nested ones. |
| class V8_EXPORT_PRIVATE CanonicalHandleScope final { |
| public: |
| explicit CanonicalHandleScope(Isolate* isolate); |
| ~CanonicalHandleScope(); |
| |
| private: |
| Object** Lookup(Object* object); |
| |
| Isolate* isolate_; |
| Zone zone_; |
| RootIndexMap* root_index_map_; |
| IdentityMap<Object**, ZoneAllocationPolicy>* identity_map_; |
| // Ordinary nested handle scopes within the current one are not canonical. |
| int canonical_level_; |
| // We may have nested canonical scopes. Handles are canonical within each one. |
| CanonicalHandleScope* prev_canonical_scope_; |
| |
| friend class HandleScope; |
| }; |
| |
| // A DeferredHandleScope is a HandleScope in which handles are not destroyed |
| // when the DeferredHandleScope is left. Instead the DeferredHandleScope has to |
| // be detached with {Detach}, and the result of {Detach} has to be destroyed |
| // explicitly. A DeferredHandleScope should only be used with the following |
| // design pattern: |
| // 1) Open a HandleScope (not a DeferredHandleScope). |
| // HandleScope scope(isolate_); |
| // 2) Create handles. |
| // Handle<Object> h1 = handle(object1, isolate); |
| // Handle<Object> h2 = handle(object2, isolate); |
| // 3) Open a DeferredHandleScope. |
| // DeferredHandleScope deferred_scope(isolate); |
| // 4) Reopen handles which should be in the DeferredHandleScope, e.g only h1. |
| // h1 = handle(*h1, isolate); |
| // 5) Detach the DeferredHandleScope. |
| // DeferredHandles* deferred_handles = deferred_scope.Detach(); |
| // 6) Destroy the deferred handles. |
| // delete deferred_handles; |
| // |
| // Note: A DeferredHandleScope must not be opened within a DeferredHandleScope. |
| class V8_EXPORT_PRIVATE DeferredHandleScope final { |
| public: |
| explicit DeferredHandleScope(Isolate* isolate); |
| // The DeferredHandles object returned stores the Handles created |
| // since the creation of this DeferredHandleScope. The Handles are |
| // alive as long as the DeferredHandles object is alive. |
| DeferredHandles* Detach(); |
| ~DeferredHandleScope(); |
| |
| private: |
| Object** prev_limit_; |
| Object** prev_next_; |
| HandleScopeImplementer* impl_; |
| |
| #ifdef DEBUG |
| bool handles_detached_ = false; |
| int prev_level_; |
| #endif |
| |
| friend class HandleScopeImplementer; |
| }; |
| |
| |
| // Seal off the current HandleScope so that new handles can only be created |
| // if a new HandleScope is entered. |
| class SealHandleScope final { |
| public: |
| #ifndef DEBUG |
| explicit SealHandleScope(Isolate* isolate) {} |
| ~SealHandleScope() {} |
| #else |
| explicit inline SealHandleScope(Isolate* isolate); |
| inline ~SealHandleScope(); |
| private: |
| Isolate* isolate_; |
| Object** prev_limit_; |
| int prev_sealed_level_; |
| #endif |
| }; |
| |
| |
| struct HandleScopeData final { |
| Object** next; |
| Object** limit; |
| int level; |
| int sealed_level; |
| CanonicalHandleScope* canonical_scope; |
| |
| void Initialize() { |
| next = limit = nullptr; |
| sealed_level = level = 0; |
| canonical_scope = nullptr; |
| } |
| }; |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_HANDLES_H_ |