blob: 9923e41fc5096a4c182c1c3daca5596e2b615f8f [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/Snapshots.h"
#include "jsscript.h"
#include "jit/CompileInfo.h"
#include "jit/JitSpewer.h"
#ifdef TRACK_SNAPSHOTS
# include "jit/LIR.h"
#endif
#include "jit/MIR.h"
#include "jit/Recover.h"
#include "vm/Printer.h"
using namespace js;
using namespace js::jit;
// Encodings:
// [ptr] A fixed-size pointer.
// [vwu] A variable-width unsigned integer.
// [vws] A variable-width signed integer.
// [u8] An 8-bit unsigned integer.
// [u8'] An 8-bit unsigned integer which is potentially extended with packed
// data.
// [u8"] Packed data which is stored and packed in the previous [u8'].
// [vwu*] A list of variable-width unsigned integers.
// [pld] Payload of Recover Value Allocation:
// PAYLOAD_NONE:
// There is no payload.
//
// PAYLOAD_INDEX:
// [vwu] Index, such as the constant pool index.
//
// PAYLOAD_STACK_OFFSET:
// [vws] Stack offset based on the base of the Ion frame.
//
// PAYLOAD_GPR:
// [u8] Code of the general register.
//
// PAYLOAD_FPU:
// [u8] Code of the FPU register.
//
// PAYLOAD_PACKED_TAG:
// [u8"] Bits 5-7: JSValueType is encoded on the low bits of the Mode
// of the RValueAllocation.
//
// Snapshot header:
//
// [vwu] bits ((n+1)-31]: recover instruction offset
// bits [0,n): bailout kind (n = SNAPSHOT_BAILOUTKIND_BITS)
//
// Snapshot body, repeated "frame count" times, from oldest frame to newest frame.
// Note that the first frame doesn't have the "parent PC" field.
//
// [ptr] Debug only: JSScript*
// [vwu] pc offset
// [vwu] # of RVA's indexes, including nargs
// [vwu*] List of indexes to R(ecover)ValueAllocation table. Contains
// nargs + nfixed + stackDepth items.
//
// Recover value allocations are encoded at the end of the Snapshot buffer, and
// they are padded on ALLOCATION_TABLE_ALIGNMENT. The encoding of each
// allocation is determined by the RValueAllocation::Layout, which can be
// obtained from the RValueAllocation::Mode with layoutFromMode function. The
// layout structure list the type of payload which are used to serialized /
// deserialized / dumped the content of the allocations.
//
// R(ecover)ValueAllocation items:
// [u8'] Mode, which defines the type of the payload as well as the
// interpretation.
// [pld] first payload (packed tag, index, stack offset, register, ...)
// [pld] second payload (register, stack offset, none)
//
// Modes:
// CONSTANT [INDEX]
// Index into the constant pool.
//
// CST_UNDEFINED []
// Constant value which correspond to the "undefined" JS value.
//
// CST_NULL []
// Constant value which correspond to the "null" JS value.
//
// DOUBLE_REG [FPU_REG]
// Double value stored in a FPU register.
//
// ANY_FLOAT_REG [FPU_REG]
// Any Float value (float32, simd) stored in a FPU register.
//
// ANY_FLOAT_STACK [STACK_OFFSET]
// Any Float value (float32, simd) stored on the stack.
//
// UNTYPED_REG [GPR_REG]
// UNTYPED_STACK [STACK_OFFSET]
// UNTYPED_REG_REG [GPR_REG, GPR_REG]
// UNTYPED_REG_STACK [GPR_REG, STACK_OFFSET]
// UNTYPED_STACK_REG [STACK_OFFSET, GPR_REG]
// UNTYPED_STACK_STACK [STACK_OFFSET, STACK_OFFSET]
// Value with dynamically known type. On 32 bits architecture, the
// first register/stack-offset correspond to the holder of the type,
// and the second correspond to the payload of the JS Value.
//
// RECOVER_INSTRUCTION [INDEX]
// Index into the list of recovered instruction results.
//
// RI_WITH_DEFAULT_CST [INDEX] [INDEX]
// The first payload is the index into the list of recovered
// instruction results. The second payload is the index in the
// constant pool.
//
// TYPED_REG [PACKED_TAG, GPR_REG]:
// Value with statically known type, which payload is stored in a
// register.
//
// TYPED_STACK [PACKED_TAG, STACK_OFFSET]:
// Value with statically known type, which payload is stored at an
// offset on the stack.
//
const RValueAllocation::Layout&
RValueAllocation::layoutFromMode(Mode mode)
{
switch (mode) {
case CONSTANT: {
static const RValueAllocation::Layout layout = {
PAYLOAD_INDEX,
PAYLOAD_NONE,
"constant"
};
return layout;
}
case CST_UNDEFINED: {
static const RValueAllocation::Layout layout = {
PAYLOAD_NONE,
PAYLOAD_NONE,
"undefined"
};
return layout;
}
case CST_NULL: {
static const RValueAllocation::Layout layout = {
PAYLOAD_NONE,
PAYLOAD_NONE,
"null"
};
return layout;
}
case DOUBLE_REG: {
static const RValueAllocation::Layout layout = {
PAYLOAD_FPU,
PAYLOAD_NONE,
"double"
};
return layout;
}
case ANY_FLOAT_REG: {
static const RValueAllocation::Layout layout = {
PAYLOAD_FPU,
PAYLOAD_NONE,
"float register content"
};
return layout;
}
case ANY_FLOAT_STACK: {
static const RValueAllocation::Layout layout = {
PAYLOAD_STACK_OFFSET,
PAYLOAD_NONE,
"float register content"
};
return layout;
}
#if defined(JS_NUNBOX32)
case UNTYPED_REG_REG: {
static const RValueAllocation::Layout layout = {
PAYLOAD_GPR,
PAYLOAD_GPR,
"value"
};
return layout;
}
case UNTYPED_REG_STACK: {
static const RValueAllocation::Layout layout = {
PAYLOAD_GPR,
PAYLOAD_STACK_OFFSET,
"value"
};
return layout;
}
case UNTYPED_STACK_REG: {
static const RValueAllocation::Layout layout = {
PAYLOAD_STACK_OFFSET,
PAYLOAD_GPR,
"value"
};
return layout;
}
case UNTYPED_STACK_STACK: {
static const RValueAllocation::Layout layout = {
PAYLOAD_STACK_OFFSET,
PAYLOAD_STACK_OFFSET,
"value"
};
return layout;
}
#elif defined(JS_PUNBOX64)
case UNTYPED_REG: {
static const RValueAllocation::Layout layout = {
PAYLOAD_GPR,
PAYLOAD_NONE,
"value"
};
return layout;
}
case UNTYPED_STACK: {
static const RValueAllocation::Layout layout = {
PAYLOAD_STACK_OFFSET,
PAYLOAD_NONE,
"value"
};
return layout;
}
#endif
case RECOVER_INSTRUCTION: {
static const RValueAllocation::Layout layout = {
PAYLOAD_INDEX,
PAYLOAD_NONE,
"instruction"
};
return layout;
}
case RI_WITH_DEFAULT_CST: {
static const RValueAllocation::Layout layout = {
PAYLOAD_INDEX,
PAYLOAD_INDEX,
"instruction with default"
};
return layout;
}
default: {
static const RValueAllocation::Layout regLayout = {
PAYLOAD_PACKED_TAG,
PAYLOAD_GPR,
"typed value"
};
static const RValueAllocation::Layout stackLayout = {
PAYLOAD_PACKED_TAG,
PAYLOAD_STACK_OFFSET,
"typed value"
};
if (mode >= TYPED_REG_MIN && mode <= TYPED_REG_MAX)
return regLayout;
if (mode >= TYPED_STACK_MIN && mode <= TYPED_STACK_MAX)
return stackLayout;
}
}
MOZ_CRASH("Wrong mode type?");
}
// Pad serialized RValueAllocations by a multiple of X bytes in the allocation
// buffer. By padding serialized value allocations, we are building an
// indexable table of elements of X bytes, and thus we can safely divide any
// offset within the buffer by X to obtain an index.
//
// By padding, we are loosing space within the allocation buffer, but we
// multiple by X the number of indexes that we can store on one byte in each
// snapshots.
//
// Some value allocations are taking more than X bytes to be encoded, in which
// case we will pad to a multiple of X, and we are wasting indexes. The choice
// of X should be balanced between the wasted padding of serialized value
// allocation, and the saving made in snapshot indexes.
static const size_t ALLOCATION_TABLE_ALIGNMENT = 2; /* bytes */
void
RValueAllocation::readPayload(CompactBufferReader& reader, PayloadType type,
uint8_t* mode, Payload* p)
{
switch (type) {
case PAYLOAD_NONE:
break;
case PAYLOAD_INDEX:
p->index = reader.readUnsigned();
break;
case PAYLOAD_STACK_OFFSET:
p->stackOffset = reader.readSigned();
break;
case PAYLOAD_GPR:
p->gpr = Register::FromCode(reader.readByte());
break;
case PAYLOAD_FPU:
p->fpu.data = reader.readByte();
break;
case PAYLOAD_PACKED_TAG:
p->type = JSValueType(*mode & PACKED_TAG_MASK);
*mode = *mode & ~PACKED_TAG_MASK;
break;
}
}
RValueAllocation
RValueAllocation::read(CompactBufferReader& reader)
{
uint8_t mode = reader.readByte();
const Layout& layout = layoutFromMode(Mode(mode & MODE_BITS_MASK));
Payload arg1, arg2;
readPayload(reader, layout.type1, &mode, &arg1);
readPayload(reader, layout.type2, &mode, &arg2);
return RValueAllocation(Mode(mode), arg1, arg2);
}
void
RValueAllocation::writePayload(CompactBufferWriter& writer, PayloadType type, Payload p)
{
switch (type) {
case PAYLOAD_NONE:
break;
case PAYLOAD_INDEX:
writer.writeUnsigned(p.index);
break;
case PAYLOAD_STACK_OFFSET:
writer.writeSigned(p.stackOffset);
break;
case PAYLOAD_GPR:
static_assert(Registers::Total <= 0x100,
"Not enough bytes to encode all registers.");
writer.writeByte(p.gpr.code());
break;
case PAYLOAD_FPU:
static_assert(FloatRegisters::Total <= 0x100,
"Not enough bytes to encode all float registers.");
writer.writeByte(p.fpu.code());
break;
case PAYLOAD_PACKED_TAG: {
// This code assumes that the PACKED_TAG payload is following the
// writeByte of the mode.
if (!writer.oom()) {
MOZ_ASSERT(writer.length());
uint8_t* mode = writer.buffer() + (writer.length() - 1);
MOZ_ASSERT((*mode & PACKED_TAG_MASK) == 0 && (p.type & ~PACKED_TAG_MASK) == 0);
*mode = *mode | p.type;
}
break;
}
}
}
void
RValueAllocation::writePadding(CompactBufferWriter& writer)
{
// Write 0x7f in all padding bytes.
while (writer.length() % ALLOCATION_TABLE_ALIGNMENT)
writer.writeByte(0x7f);
}
void
RValueAllocation::write(CompactBufferWriter& writer) const
{
const Layout& layout = layoutFromMode(mode());
MOZ_ASSERT(layout.type2 != PAYLOAD_PACKED_TAG);
MOZ_ASSERT(writer.length() % ALLOCATION_TABLE_ALIGNMENT == 0);
writer.writeByte(mode_);
writePayload(writer, layout.type1, arg1_);
writePayload(writer, layout.type2, arg2_);
writePadding(writer);
}
HashNumber
RValueAllocation::hash() const {
CompactBufferWriter writer;
write(writer);
// We should never oom because the compact buffer writer has 32 inlined
// bytes, and in the worse case scenario, only encode 12 bytes
// (12 == mode + signed + signed + pad).
MOZ_ASSERT(!writer.oom());
MOZ_ASSERT(writer.length() <= 12);
HashNumber res = 0;
for (size_t i = 0; i < writer.length(); i++) {
res = ((res << 8) | (res >> (sizeof(res) - 1)));
res ^= writer.buffer()[i];
}
return res;
}
static const char*
ValTypeToString(JSValueType type)
{
switch (type) {
case JSVAL_TYPE_INT32:
return "int32_t";
case JSVAL_TYPE_DOUBLE:
return "double";
case JSVAL_TYPE_STRING:
return "string";
case JSVAL_TYPE_SYMBOL:
return "symbol";
case JSVAL_TYPE_BOOLEAN:
return "boolean";
case JSVAL_TYPE_OBJECT:
return "object";
case JSVAL_TYPE_MAGIC:
return "magic";
default:
MOZ_CRASH("no payload");
}
}
void
RValueAllocation::dumpPayload(GenericPrinter& out, PayloadType type, Payload p)
{
switch (type) {
case PAYLOAD_NONE:
break;
case PAYLOAD_INDEX:
out.printf("index %u", p.index);
break;
case PAYLOAD_STACK_OFFSET:
out.printf("stack %d", p.stackOffset);
break;
case PAYLOAD_GPR:
out.printf("reg %s", p.gpr.name());
break;
case PAYLOAD_FPU:
out.printf("reg %s", p.fpu.name());
break;
case PAYLOAD_PACKED_TAG:
out.printf("%s", ValTypeToString(p.type));
break;
}
}
void
RValueAllocation::dump(GenericPrinter& out) const
{
const Layout& layout = layoutFromMode(mode());
out.printf("%s", layout.name);
if (layout.type1 != PAYLOAD_NONE)
out.printf(" (");
dumpPayload(out, layout.type1, arg1_);
if (layout.type2 != PAYLOAD_NONE)
out.printf(", ");
dumpPayload(out, layout.type2, arg2_);
if (layout.type1 != PAYLOAD_NONE)
out.printf(")");
}
bool
RValueAllocation::equalPayloads(PayloadType type, Payload lhs, Payload rhs)
{
switch (type) {
case PAYLOAD_NONE:
return true;
case PAYLOAD_INDEX:
return lhs.index == rhs.index;
case PAYLOAD_STACK_OFFSET:
return lhs.stackOffset == rhs.stackOffset;
case PAYLOAD_GPR:
return lhs.gpr == rhs.gpr;
case PAYLOAD_FPU:
return lhs.fpu == rhs.fpu;
case PAYLOAD_PACKED_TAG:
return lhs.type == rhs.type;
}
return false;
}
SnapshotReader::SnapshotReader(const uint8_t* snapshots, uint32_t offset,
uint32_t RVATableSize, uint32_t listSize)
: reader_(snapshots + offset, snapshots + listSize),
allocReader_(snapshots + listSize, snapshots + listSize + RVATableSize),
allocTable_(snapshots + listSize),
allocRead_(0)
{
if (!snapshots)
return;
JitSpew(JitSpew_IonSnapshots, "Creating snapshot reader");
readSnapshotHeader();
}
#define COMPUTE_SHIFT_AFTER_(name) (name ## _BITS + name ##_SHIFT)
#define COMPUTE_MASK_(name) ((uint32_t(1 << name ## _BITS) - 1) << name ##_SHIFT)
// Details of snapshot header packing.
static const uint32_t SNAPSHOT_BAILOUTKIND_SHIFT = 0;
static const uint32_t SNAPSHOT_BAILOUTKIND_BITS = 6;
static const uint32_t SNAPSHOT_BAILOUTKIND_MASK = COMPUTE_MASK_(SNAPSHOT_BAILOUTKIND);
static const uint32_t SNAPSHOT_ROFFSET_SHIFT = COMPUTE_SHIFT_AFTER_(SNAPSHOT_BAILOUTKIND);
static const uint32_t SNAPSHOT_ROFFSET_BITS = 32 - SNAPSHOT_ROFFSET_SHIFT;
static const uint32_t SNAPSHOT_ROFFSET_MASK = COMPUTE_MASK_(SNAPSHOT_ROFFSET);
// Details of recover header packing.
static const uint32_t RECOVER_RESUMEAFTER_SHIFT = 0;
static const uint32_t RECOVER_RESUMEAFTER_BITS = 1;
static const uint32_t RECOVER_RESUMEAFTER_MASK = COMPUTE_MASK_(RECOVER_RESUMEAFTER);
static const uint32_t RECOVER_RINSCOUNT_SHIFT = COMPUTE_SHIFT_AFTER_(RECOVER_RESUMEAFTER);
static const uint32_t RECOVER_RINSCOUNT_BITS = 32 - RECOVER_RINSCOUNT_SHIFT;
static const uint32_t RECOVER_RINSCOUNT_MASK = COMPUTE_MASK_(RECOVER_RINSCOUNT);
#undef COMPUTE_MASK_
#undef COMPUTE_SHIFT_AFTER_
void
SnapshotReader::readSnapshotHeader()
{
uint32_t bits = reader_.readUnsigned();
bailoutKind_ = BailoutKind((bits & SNAPSHOT_BAILOUTKIND_MASK) >> SNAPSHOT_BAILOUTKIND_SHIFT);
recoverOffset_ = (bits & SNAPSHOT_ROFFSET_MASK) >> SNAPSHOT_ROFFSET_SHIFT;
JitSpew(JitSpew_IonSnapshots, "Read snapshot header with bailout kind %u",
bailoutKind_);
#ifdef TRACK_SNAPSHOTS
readTrackSnapshot();
#endif
}
#ifdef TRACK_SNAPSHOTS
void
SnapshotReader::readTrackSnapshot()
{
pcOpcode_ = reader_.readUnsigned();
mirOpcode_ = reader_.readUnsigned();
mirId_ = reader_.readUnsigned();
lirOpcode_ = reader_.readUnsigned();
lirId_ = reader_.readUnsigned();
}
void
SnapshotReader::spewBailingFrom() const
{
if (JitSpewEnabled(JitSpew_IonBailouts)) {
JitSpewHeader(JitSpew_IonBailouts);
Fprinter& out = JitSpewPrinter();
out.printf(" bailing from bytecode: %s, MIR: ", CodeName[pcOpcode_]);
MDefinition::PrintOpcodeName(out, MDefinition::Opcode(mirOpcode_));
out.printf(" [%u], LIR: ", mirId_);
LInstruction::printName(out, LInstruction::Opcode(lirOpcode_));
out.printf(" [%u]", lirId_);
out.printf("\n");
}
}
#endif
uint32_t
SnapshotReader::readAllocationIndex()
{
allocRead_++;
return reader_.readUnsigned();
}
RValueAllocation
SnapshotReader::readAllocation()
{
JitSpew(JitSpew_IonSnapshots, "Reading slot %u", allocRead_);
uint32_t offset = readAllocationIndex() * ALLOCATION_TABLE_ALIGNMENT;
allocReader_.seek(allocTable_, offset);
return RValueAllocation::read(allocReader_);
}
bool
SnapshotWriter::init()
{
// Based on the measurements made in Bug 962555 comment 20, this should be
// enough to prevent the reallocation of the hash table for at least half of
// the compilations.
return allocMap_.init(32);
}
RecoverReader::RecoverReader(SnapshotReader& snapshot, const uint8_t* recovers, uint32_t size)
: reader_(nullptr, nullptr),
numInstructions_(0),
numInstructionsRead_(0)
{
if (!recovers)
return;
reader_ = CompactBufferReader(recovers + snapshot.recoverOffset(), recovers + size);
readRecoverHeader();
readInstruction();
}
void
RecoverReader::readRecoverHeader()
{
uint32_t bits = reader_.readUnsigned();
numInstructions_ = (bits & RECOVER_RINSCOUNT_MASK) >> RECOVER_RINSCOUNT_SHIFT;
resumeAfter_ = (bits & RECOVER_RESUMEAFTER_MASK) >> RECOVER_RESUMEAFTER_SHIFT;
MOZ_ASSERT(numInstructions_);
JitSpew(JitSpew_IonSnapshots, "Read recover header with instructionCount %u (ra: %d)",
numInstructions_, resumeAfter_);
}
void
RecoverReader::readInstruction()
{
MOZ_ASSERT(moreInstructions());
RInstruction::readRecoverData(reader_, &rawData_);
numInstructionsRead_++;
}
SnapshotOffset
SnapshotWriter::startSnapshot(RecoverOffset recoverOffset, BailoutKind kind)
{
lastStart_ = writer_.length();
allocWritten_ = 0;
JitSpew(JitSpew_IonSnapshots, "starting snapshot with recover offset %u, bailout kind %u",
recoverOffset, kind);
MOZ_ASSERT(uint32_t(kind) < (1 << SNAPSHOT_BAILOUTKIND_BITS));
MOZ_ASSERT(recoverOffset < (1 << SNAPSHOT_ROFFSET_BITS));
uint32_t bits =
(uint32_t(kind) << SNAPSHOT_BAILOUTKIND_SHIFT) |
(recoverOffset << SNAPSHOT_ROFFSET_SHIFT);
writer_.writeUnsigned(bits);
return lastStart_;
}
#ifdef TRACK_SNAPSHOTS
void
SnapshotWriter::trackSnapshot(uint32_t pcOpcode, uint32_t mirOpcode, uint32_t mirId,
uint32_t lirOpcode, uint32_t lirId)
{
writer_.writeUnsigned(pcOpcode);
writer_.writeUnsigned(mirOpcode);
writer_.writeUnsigned(mirId);
writer_.writeUnsigned(lirOpcode);
writer_.writeUnsigned(lirId);
}
#endif
bool
SnapshotWriter::add(const RValueAllocation& alloc)
{
MOZ_ASSERT(allocMap_.initialized());
uint32_t offset;
RValueAllocMap::AddPtr p = allocMap_.lookupForAdd(alloc);
if (!p) {
offset = allocWriter_.length();
alloc.write(allocWriter_);
if (!allocMap_.add(p, alloc, offset)) {
allocWriter_.setOOM();
return false;
}
} else {
offset = p->value();
}
if (JitSpewEnabled(JitSpew_IonSnapshots)) {
JitSpewHeader(JitSpew_IonSnapshots);
Fprinter& out = JitSpewPrinter();
out.printf(" slot %u (%d): ", allocWritten_, offset);
alloc.dump(out);
out.printf("\n");
}
allocWritten_++;
writer_.writeUnsigned(offset / ALLOCATION_TABLE_ALIGNMENT);
return true;
}
void
SnapshotWriter::endSnapshot()
{
// Place a sentinel for asserting on the other end.
#ifdef DEBUG
writer_.writeSigned(-1);
#endif
JitSpew(JitSpew_IonSnapshots, "ending snapshot total size: %u bytes (start %u)",
uint32_t(writer_.length() - lastStart_), lastStart_);
}
RecoverOffset
RecoverWriter::startRecover(uint32_t instructionCount, bool resumeAfter)
{
MOZ_ASSERT(instructionCount);
instructionCount_ = instructionCount;
instructionsWritten_ = 0;
JitSpew(JitSpew_IonSnapshots, "starting recover with %u instruction(s)",
instructionCount);
MOZ_ASSERT(!(uint32_t(resumeAfter) &~ RECOVER_RESUMEAFTER_MASK));
MOZ_ASSERT(instructionCount < uint32_t(1 << RECOVER_RINSCOUNT_BITS));
uint32_t bits =
(uint32_t(resumeAfter) << RECOVER_RESUMEAFTER_SHIFT) |
(instructionCount << RECOVER_RINSCOUNT_SHIFT);
RecoverOffset recoverOffset = writer_.length();
writer_.writeUnsigned(bits);
return recoverOffset;
}
void
RecoverWriter::writeInstruction(const MNode* rp)
{
if (!rp->writeRecoverData(writer_))
writer_.setOOM();
instructionsWritten_++;
}
void
RecoverWriter::endRecover()
{
MOZ_ASSERT(instructionCount_ == instructionsWritten_);
}