blob: 3395023fd5755c1b8fe5fcb172dfb5ab90f348cd [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/MathAlgorithms.h"
#include "jit/arm/Assembler-arm.h"
#include "jit/Lowering.h"
#include "jit/MIR.h"
#include "jit/shared/Lowering-shared-inl.h"
using namespace js;
using namespace js::jit;
using mozilla::FloorLog2;
void
LIRGeneratorARM::useBoxFixed(LInstruction* lir, size_t n, MDefinition* mir, Register reg1,
Register reg2, bool useAtStart)
{
MOZ_ASSERT(mir->type() == MIRType_Value);
MOZ_ASSERT(reg1 != reg2);
ensureDefined(mir);
lir->setOperand(n, LUse(reg1, mir->virtualRegister(), useAtStart));
lir->setOperand(n + 1, LUse(reg2, VirtualRegisterOfPayload(mir), useAtStart));
}
LAllocation
LIRGeneratorARM::useByteOpRegister(MDefinition* mir)
{
return useRegister(mir);
}
LAllocation
LIRGeneratorARM::useByteOpRegisterOrNonDoubleConstant(MDefinition* mir)
{
return useRegisterOrNonDoubleConstant(mir);
}
LDefinition
LIRGeneratorARM::tempByteOpRegister()
{
return temp();
}
void
LIRGeneratorARM::visitBox(MBox* box)
{
MDefinition* inner = box->getOperand(0);
// If the box wrapped a double, it needs a new register.
if (IsFloatingPointType(inner->type())) {
defineBox(new(alloc()) LBoxFloatingPoint(useRegisterAtStart(inner), tempCopy(inner, 0),
inner->type()), box);
return;
}
if (box->canEmitAtUses()) {
emitAtUses(box);
return;
}
if (inner->isConstant()) {
defineBox(new(alloc()) LValue(inner->toConstant()->value()), box);
return;
}
LBox* lir = new(alloc()) LBox(use(inner), inner->type());
// Otherwise, we should not define a new register for the payload portion
// of the output, so bypass defineBox().
uint32_t vreg = getVirtualRegister();
// Note that because we're using BogusTemp(), we do not change the type of
// the definition. We also do not define the first output as "TYPE",
// because it has no corresponding payload at (vreg + 1). Also note that
// although we copy the input's original type for the payload half of the
// definition, this is only for clarity. BogusTemp() definitions are
// ignored.
lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL));
lir->setDef(1, LDefinition::BogusTemp());
box->setVirtualRegister(vreg);
add(lir);
}
void
LIRGeneratorARM::visitUnbox(MUnbox* unbox)
{
MDefinition* inner = unbox->getOperand(0);
if (inner->type() == MIRType_ObjectOrNull) {
LUnboxObjectOrNull* lir = new(alloc()) LUnboxObjectOrNull(useRegisterAtStart(inner));
if (unbox->fallible())
assignSnapshot(lir, unbox->bailoutKind());
defineReuseInput(lir, unbox, 0);
return;
}
// An unbox on arm reads in a type tag (either in memory or a register) and
// a payload. Unlike most instructions consuming a box, we ask for the type
// second, so that the result can re-use the first input.
MOZ_ASSERT(inner->type() == MIRType_Value);
ensureDefined(inner);
if (IsFloatingPointType(unbox->type())) {
LUnboxFloatingPoint* lir = new(alloc()) LUnboxFloatingPoint(unbox->type());
if (unbox->fallible())
assignSnapshot(lir, unbox->bailoutKind());
useBox(lir, LUnboxFloatingPoint::Input, inner);
define(lir, unbox);
return;
}
// Swap the order we use the box pieces so we can re-use the payload register.
LUnbox* lir = new(alloc()) LUnbox;
lir->setOperand(0, usePayloadInRegisterAtStart(inner));
lir->setOperand(1, useType(inner, LUse::REGISTER));
if (unbox->fallible())
assignSnapshot(lir, unbox->bailoutKind());
// Types and payloads form two separate intervals. If the type becomes dead
// before the payload, it could be used as a Value without the type being
// recoverable. Unbox's purpose is to eagerly kill the definition of a type
// tag, so keeping both alive (for the purpose of gcmaps) is unappealing.
// Instead, we create a new virtual register.
defineReuseInput(lir, unbox, 0);
}
void
LIRGeneratorARM::visitReturn(MReturn* ret)
{
MDefinition* opd = ret->getOperand(0);
MOZ_ASSERT(opd->type() == MIRType_Value);
LReturn* ins = new(alloc()) LReturn;
ins->setOperand(0, LUse(JSReturnReg_Type));
ins->setOperand(1, LUse(JSReturnReg_Data));
fillBoxUses(ins, 0, opd);
add(ins);
}
// x = !y
void
LIRGeneratorARM::lowerForALU(LInstructionHelper<1, 1, 0>* ins, MDefinition* mir, MDefinition* input)
{
ins->setOperand(0, ins->snapshot() ? useRegister(input) : useRegisterAtStart(input));
define(ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
// z = x+y
void
LIRGeneratorARM::lowerForALU(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs)
{
// Some operations depend on checking inputs after writing the result, e.g.
// MulI, but only for bail out paths so useAtStart when no bailouts.
ins->setOperand(0, ins->snapshot() ? useRegister(lhs) : useRegisterAtStart(lhs));
ins->setOperand(1, ins->snapshot() ? useRegisterOrConstant(rhs) :
useRegisterOrConstantAtStart(rhs));
define(ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
void
LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 1, 0>* ins, MDefinition* mir, MDefinition* input)
{
ins->setOperand(0, useRegisterAtStart(input));
define(ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
template<size_t Temps>
void
LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs)
{
ins->setOperand(0, useRegisterAtStart(lhs));
ins->setOperand(1, useRegisterAtStart(rhs));
define(ins, mir, LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER));
}
template void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir,
MDefinition* lhs, MDefinition* rhs);
template void LIRGeneratorARM::lowerForFPU(LInstructionHelper<1, 2, 1>* ins, MDefinition* mir,
MDefinition* lhs, MDefinition* rhs);
void
LIRGeneratorARM::lowerForBitAndAndBranch(LBitAndAndBranch* baab, MInstruction* mir,
MDefinition* lhs, MDefinition* rhs)
{
baab->setOperand(0, useRegisterAtStart(lhs));
baab->setOperand(1, useRegisterOrConstantAtStart(rhs));
add(baab, mir);
}
void
LIRGeneratorARM::defineUntypedPhi(MPhi* phi, size_t lirIndex)
{
LPhi* type = current->getPhi(lirIndex + VREG_TYPE_OFFSET);
LPhi* payload = current->getPhi(lirIndex + VREG_DATA_OFFSET);
uint32_t typeVreg = getVirtualRegister();
phi->setVirtualRegister(typeVreg);
uint32_t payloadVreg = getVirtualRegister();
MOZ_ASSERT(typeVreg + 1 == payloadVreg);
type->setDef(0, LDefinition(typeVreg, LDefinition::TYPE));
payload->setDef(0, LDefinition(payloadVreg, LDefinition::PAYLOAD));
annotate(type);
annotate(payload);
}
void
LIRGeneratorARM::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition, LBlock* block, size_t lirIndex)
{
// oh god, what is this code?
MDefinition* operand = phi->getOperand(inputPosition);
LPhi* type = block->getPhi(lirIndex + VREG_TYPE_OFFSET);
LPhi* payload = block->getPhi(lirIndex + VREG_DATA_OFFSET);
type->setOperand(inputPosition, LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY));
payload->setOperand(inputPosition, LUse(VirtualRegisterOfPayload(operand), LUse::ANY));
}
void
LIRGeneratorARM::lowerForShift(LInstructionHelper<1, 2, 0>* ins, MDefinition* mir, MDefinition* lhs, MDefinition* rhs)
{
ins->setOperand(0, useRegister(lhs));
ins->setOperand(1, useRegisterOrConstant(rhs));
define(ins, mir);
}
void
LIRGeneratorARM::lowerDivI(MDiv* div)
{
if (div->isUnsigned()) {
lowerUDiv(div);
return;
}
// Division instructions are slow. Division by constant denominators can be
// rewritten to use other instructions.
if (div->rhs()->isConstant()) {
int32_t rhs = div->rhs()->toConstant()->value().toInt32();
// Check for division by a positive power of two, which is an easy and
// important case to optimize. Note that other optimizations are also
// possible; division by negative powers of two can be optimized in a
// similar manner as positive powers of two, and division by other
// constants can be optimized by a reciprocal multiplication technique.
int32_t shift = FloorLog2(rhs);
if (rhs > 0 && 1 << shift == rhs) {
LDivPowTwoI* lir = new(alloc()) LDivPowTwoI(useRegisterAtStart(div->lhs()), shift);
if (div->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
define(lir, div);
return;
}
}
if (HasIDIV()) {
LDivI* lir = new(alloc()) LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp());
if (div->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
define(lir, div);
return;
}
LSoftDivI* lir = new(alloc()) LSoftDivI(useFixedAtStart(div->lhs(), r0), useFixedAtStart(div->rhs(), r1),
tempFixed(r1), tempFixed(r2), tempFixed(r3));
if (div->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineFixed(lir, div, LAllocation(AnyRegister(r0)));
}
void
LIRGeneratorARM::lowerMulI(MMul* mul, MDefinition* lhs, MDefinition* rhs)
{
LMulI* lir = new(alloc()) LMulI;
if (mul->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
lowerForALU(lir, mul, lhs, rhs);
}
void
LIRGeneratorARM::lowerModI(MMod* mod)
{
if (mod->isUnsigned()) {
lowerUMod(mod);
return;
}
if (mod->rhs()->isConstant()) {
int32_t rhs = mod->rhs()->toConstant()->value().toInt32();
int32_t shift = FloorLog2(rhs);
if (rhs > 0 && 1 << shift == rhs) {
LModPowTwoI* lir = new(alloc()) LModPowTwoI(useRegister(mod->lhs()), shift);
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
define(lir, mod);
return;
}
if (shift < 31 && (1 << (shift+1)) - 1 == rhs) {
LModMaskI* lir = new(alloc()) LModMaskI(useRegister(mod->lhs()), temp(), temp(), shift+1);
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
define(lir, mod);
return;
}
}
if (HasIDIV()) {
LModI* lir = new(alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs()), temp());
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
define(lir, mod);
return;
}
LSoftModI* lir = new(alloc()) LSoftModI(useFixedAtStart(mod->lhs(), r0), useFixedAtStart(mod->rhs(), r1),
tempFixed(r0), tempFixed(r2), tempFixed(r3),
temp(LDefinition::GENERAL));
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineFixed(lir, mod, LAllocation(AnyRegister(r1)));
}
void
LIRGeneratorARM::visitPowHalf(MPowHalf* ins)
{
MDefinition* input = ins->input();
MOZ_ASSERT(input->type() == MIRType_Double);
LPowHalfD* lir = new(alloc()) LPowHalfD(useRegisterAtStart(input));
defineReuseInput(lir, ins, 0);
}
LTableSwitch*
LIRGeneratorARM::newLTableSwitch(const LAllocation& in, const LDefinition& inputCopy,
MTableSwitch* tableswitch)
{
return new(alloc()) LTableSwitch(in, inputCopy, tableswitch);
}
LTableSwitchV*
LIRGeneratorARM::newLTableSwitchV(MTableSwitch* tableswitch)
{
return new(alloc()) LTableSwitchV(temp(), tempDouble(), tableswitch);
}
void
LIRGeneratorARM::visitGuardShape(MGuardShape* ins)
{
MOZ_ASSERT(ins->obj()->type() == MIRType_Object);
LDefinition tempObj = temp(LDefinition::OBJECT);
LGuardShape* guard = new(alloc()) LGuardShape(useRegister(ins->obj()), tempObj);
assignSnapshot(guard, ins->bailoutKind());
add(guard, ins);
redefine(ins, ins->obj());
}
void
LIRGeneratorARM::visitGuardObjectGroup(MGuardObjectGroup* ins)
{
MOZ_ASSERT(ins->obj()->type() == MIRType_Object);
LDefinition tempObj = temp(LDefinition::OBJECT);
LGuardObjectGroup* guard = new(alloc()) LGuardObjectGroup(useRegister(ins->obj()), tempObj);
assignSnapshot(guard, ins->bailoutKind());
add(guard, ins);
redefine(ins, ins->obj());
}
void
LIRGeneratorARM::lowerUrshD(MUrsh* mir)
{
MDefinition* lhs = mir->lhs();
MDefinition* rhs = mir->rhs();
MOZ_ASSERT(lhs->type() == MIRType_Int32);
MOZ_ASSERT(rhs->type() == MIRType_Int32);
LUrshD* lir = new(alloc()) LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp());
define(lir, mir);
}
void
LIRGeneratorARM::visitAsmJSNeg(MAsmJSNeg* ins)
{
if (ins->type() == MIRType_Int32) {
define(new(alloc()) LNegI(useRegisterAtStart(ins->input())), ins);
} else if (ins->type() == MIRType_Float32) {
define(new(alloc()) LNegF(useRegisterAtStart(ins->input())), ins);
} else {
MOZ_ASSERT(ins->type() == MIRType_Double);
define(new(alloc()) LNegD(useRegisterAtStart(ins->input())), ins);
}
}
void
LIRGeneratorARM::lowerUDiv(MDiv* div)
{
MDefinition* lhs = div->getOperand(0);
MDefinition* rhs = div->getOperand(1);
if (HasIDIV()) {
LUDiv* lir = new(alloc()) LUDiv;
lir->setOperand(0, useRegister(lhs));
lir->setOperand(1, useRegister(rhs));
if (div->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
define(lir, div);
} else {
LSoftUDivOrMod* lir = new(alloc()) LSoftUDivOrMod(useFixedAtStart(lhs, r0), useFixedAtStart(rhs, r1),
tempFixed(r1), tempFixed(r2), tempFixed(r3));
if (div->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineFixed(lir, div, LAllocation(AnyRegister(r0)));
}
}
void
LIRGeneratorARM::lowerUMod(MMod* mod)
{
MDefinition* lhs = mod->getOperand(0);
MDefinition* rhs = mod->getOperand(1);
if (HasIDIV()) {
LUMod* lir = new(alloc()) LUMod;
lir->setOperand(0, useRegister(lhs));
lir->setOperand(1, useRegister(rhs));
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
define(lir, mod);
} else {
LSoftUDivOrMod* lir = new(alloc()) LSoftUDivOrMod(useFixedAtStart(lhs, r0), useFixedAtStart(rhs, r1),
tempFixed(r0), tempFixed(r2), tempFixed(r3));
if (mod->fallible())
assignSnapshot(lir, Bailout_DoubleOutput);
defineFixed(lir, mod, LAllocation(AnyRegister(r1)));
}
}
void
LIRGeneratorARM::visitAsmJSUnsignedToDouble(MAsmJSUnsignedToDouble* ins)
{
MOZ_ASSERT(ins->input()->type() == MIRType_Int32);
LAsmJSUInt32ToDouble* lir = new(alloc()) LAsmJSUInt32ToDouble(useRegisterAtStart(ins->input()));
define(lir, ins);
}
void
LIRGeneratorARM::visitAsmJSUnsignedToFloat32(MAsmJSUnsignedToFloat32* ins)
{
MOZ_ASSERT(ins->input()->type() == MIRType_Int32);
LAsmJSUInt32ToFloat32* lir = new(alloc()) LAsmJSUInt32ToFloat32(useRegisterAtStart(ins->input()));
define(lir, ins);
}
void
LIRGeneratorARM::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins)
{
MDefinition* ptr = ins->ptr();
MOZ_ASSERT(ptr->type() == MIRType_Int32);
LAllocation ptrAlloc;
// For the ARM it is best to keep the 'ptr' in a register if a bounds check is needed.
if (ptr->isConstantValue() && !ins->needsBoundsCheck()) {
// A bounds check is only skipped for a positive index.
MOZ_ASSERT(ptr->constantValue().toInt32() >= 0);
ptrAlloc = LAllocation(ptr->constantVp());
} else {
ptrAlloc = useRegisterAtStart(ptr);
}
define(new(alloc()) LAsmJSLoadHeap(ptrAlloc), ins);
}
void
LIRGeneratorARM::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins)
{
MDefinition* ptr = ins->ptr();
MOZ_ASSERT(ptr->type() == MIRType_Int32);
LAllocation ptrAlloc;
if (ptr->isConstantValue() && !ins->needsBoundsCheck()) {
MOZ_ASSERT(ptr->constantValue().toInt32() >= 0);
ptrAlloc = LAllocation(ptr->constantVp());
} else {
ptrAlloc = useRegisterAtStart(ptr);
}
add(new(alloc()) LAsmJSStoreHeap(ptrAlloc, useRegisterAtStart(ins->value())), ins);
}
void
LIRGeneratorARM::visitAsmJSLoadFuncPtr(MAsmJSLoadFuncPtr* ins)
{
define(new(alloc()) LAsmJSLoadFuncPtr(useRegister(ins->index()), temp()), ins);
}
void
LIRGeneratorARM::lowerTruncateDToInt32(MTruncateToInt32* ins)
{
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType_Double);
define(new(alloc()) LTruncateDToInt32(useRegister(opd), LDefinition::BogusTemp()), ins);
}
void
LIRGeneratorARM::lowerTruncateFToInt32(MTruncateToInt32* ins)
{
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType_Float32);
define(new(alloc()) LTruncateFToInt32(useRegister(opd), LDefinition::BogusTemp()), ins);
}
void
LIRGeneratorARM::visitStoreTypedArrayElementStatic(MStoreTypedArrayElementStatic* ins)
{
MOZ_CRASH("NYI");
}
void
LIRGeneratorARM::visitSimdBinaryArith(MSimdBinaryArith* ins)
{
MOZ_CRASH("NYI");
}
void
LIRGeneratorARM::visitSimdSelect(MSimdSelect* ins)
{
MOZ_CRASH("NYI");
}
void
LIRGeneratorARM::visitSimdSplatX4(MSimdSplatX4* ins)
{
MOZ_CRASH("NYI");
}
void
LIRGeneratorARM::visitSimdValueX4(MSimdValueX4* ins)
{
MOZ_CRASH("NYI");
}
void
LIRGeneratorARM::visitAtomicExchangeTypedArrayElement(MAtomicExchangeTypedArrayElement* ins)
{
MOZ_ASSERT(HasLDSTREXBHD());
MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32);
MOZ_ASSERT(ins->elements()->type() == MIRType_Elements);
MOZ_ASSERT(ins->index()->type() == MIRType_Int32);
const LUse elements = useRegister(ins->elements());
const LAllocation index = useRegisterOrConstant(ins->index());
// If the target is a floating register then we need a temp at the
// CodeGenerator level for creating the result.
const LAllocation value = useRegister(ins->value());
LDefinition tempDef = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32) {
MOZ_ASSERT(ins->type() == MIRType_Double);
tempDef = temp();
}
LAtomicExchangeTypedArrayElement* lir =
new(alloc()) LAtomicExchangeTypedArrayElement(elements, index, value, tempDef);
define(lir, ins);
}
void
LIRGeneratorARM::visitAtomicTypedArrayElementBinop(MAtomicTypedArrayElementBinop* ins)
{
MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped);
MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
MOZ_ASSERT(ins->elements()->type() == MIRType_Elements);
MOZ_ASSERT(ins->index()->type() == MIRType_Int32);
const LUse elements = useRegister(ins->elements());
const LAllocation index = useRegisterOrConstant(ins->index());
const LAllocation value = useRegister(ins->value());
if (!ins->hasUses()) {
LAtomicTypedArrayElementBinopForEffect* lir =
new(alloc()) LAtomicTypedArrayElementBinopForEffect(elements, index, value,
/* flagTemp= */ temp());
add(lir, ins);
return;
}
// For a Uint32Array with a known double result we need a temp for
// the intermediate output.
//
// Optimization opportunity (bug 1077317): We can do better by
// allowing 'value' to remain as an imm32 if it is small enough to
// fit in an instruction.
LDefinition flagTemp = temp();
LDefinition outTemp = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type()))
outTemp = temp();
// On arm, map flagTemp to temp1 and outTemp to temp2, at least for now.
LAtomicTypedArrayElementBinop* lir =
new(alloc()) LAtomicTypedArrayElementBinop(elements, index, value, flagTemp, outTemp);
define(lir, ins);
}
void
LIRGeneratorARM::visitCompareExchangeTypedArrayElement(MCompareExchangeTypedArrayElement* ins)
{
MOZ_ASSERT(ins->arrayType() != Scalar::Float32);
MOZ_ASSERT(ins->arrayType() != Scalar::Float64);
MOZ_ASSERT(ins->elements()->type() == MIRType_Elements);
MOZ_ASSERT(ins->index()->type() == MIRType_Int32);
const LUse elements = useRegister(ins->elements());
const LAllocation index = useRegisterOrConstant(ins->index());
// If the target is a floating register then we need a temp at the
// CodeGenerator level for creating the result.
//
// Optimization opportunity (bug 1077317): We could do better by
// allowing oldval to remain an immediate, if it is small enough
// to fit in an instruction.
const LAllocation newval = useRegister(ins->newval());
const LAllocation oldval = useRegister(ins->oldval());
LDefinition tempDef = LDefinition::BogusTemp();
if (ins->arrayType() == Scalar::Uint32 && IsFloatingPointType(ins->type()))
tempDef = temp();
LCompareExchangeTypedArrayElement* lir =
new(alloc()) LCompareExchangeTypedArrayElement(elements, index, oldval, newval, tempDef);
define(lir, ins);
}
void
LIRGeneratorARM::visitAsmJSCompareExchangeHeap(MAsmJSCompareExchangeHeap* ins)
{
MOZ_ASSERT(ins->accessType() < Scalar::Float32);
MDefinition* ptr = ins->ptr();
MOZ_ASSERT(ptr->type() == MIRType_Int32);
if (byteSize(ins->accessType()) != 4 && !HasLDSTREXBHD()) {
LAsmJSCompareExchangeCallout* lir =
new(alloc()) LAsmJSCompareExchangeCallout(useRegisterAtStart(ptr),
useRegisterAtStart(ins->oldValue()),
useRegisterAtStart(ins->newValue()));
defineReturn(lir, ins);
return;
}
LAsmJSCompareExchangeHeap* lir =
new(alloc()) LAsmJSCompareExchangeHeap(useRegister(ptr),
useRegister(ins->oldValue()),
useRegister(ins->newValue()));
define(lir, ins);
}
void
LIRGeneratorARM::visitAsmJSAtomicExchangeHeap(MAsmJSAtomicExchangeHeap* ins)
{
MOZ_ASSERT(ins->ptr()->type() == MIRType_Int32);
MOZ_ASSERT(ins->accessType() < Scalar::Float32);
const LAllocation ptr = useRegisterAtStart(ins->ptr());
const LAllocation value = useRegisterAtStart(ins->value());
if (byteSize(ins->accessType()) < 4 && !HasLDSTREXBHD()) {
// Call out on ARMv6.
defineReturn(new(alloc()) LAsmJSAtomicExchangeCallout(ptr, value), ins);
return;
}
define(new(alloc()) LAsmJSAtomicExchangeHeap(ptr, value), ins);
}
void
LIRGeneratorARM::visitAsmJSAtomicBinopHeap(MAsmJSAtomicBinopHeap* ins)
{
MOZ_ASSERT(ins->accessType() < Scalar::Float32);
MDefinition* ptr = ins->ptr();
MOZ_ASSERT(ptr->type() == MIRType_Int32);
if (byteSize(ins->accessType()) != 4 && !HasLDSTREXBHD()) {
LAsmJSAtomicBinopCallout* lir =
new(alloc()) LAsmJSAtomicBinopCallout(useRegisterAtStart(ptr),
useRegisterAtStart(ins->value()));
defineReturn(lir, ins);
return;
}
if (!ins->hasUses()) {
LAsmJSAtomicBinopHeapForEffect* lir =
new(alloc()) LAsmJSAtomicBinopHeapForEffect(useRegister(ptr),
useRegister(ins->value()),
/* flagTemp= */ temp());
add(lir, ins);
return;
}
LAsmJSAtomicBinopHeap* lir =
new(alloc()) LAsmJSAtomicBinopHeap(useRegister(ptr),
useRegister(ins->value()),
/* temp = */ LDefinition::BogusTemp(),
/* flagTemp= */ temp());
define(lir, ins);
}
void
LIRGeneratorARM::visitSubstr(MSubstr* ins)
{
LSubstr* lir = new (alloc()) LSubstr(useRegister(ins->string()),
useRegister(ins->begin()),
useRegister(ins->length()),
temp(),
temp(),
tempByteOpRegister());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGeneratorARM::visitRandom(MRandom* ins)
{
LRandom *lir = new(alloc()) LRandom(temp(),
temp(),
temp(),
temp(),
temp());
defineFixed(lir, ins, LFloatReg(ReturnDoubleReg));
}