blob: 7076f10b104a0d7e2904e54cc7dfae87511f851d [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/BaselineCompiler.h"
#include "jit/BaselineIC.h"
#include "jit/BaselineJIT.h"
#include "jit/Linker.h"
#include "jit/SharedICHelpers.h"
#include "jit/MacroAssembler-inl.h"
using namespace js;
using namespace js::jit;
namespace js {
namespace jit {
// ICBinaryArith_Int32
extern "C" {
extern MOZ_EXPORT int64_t __aeabi_idivmod(int,int);
}
bool
ICBinaryArith_Int32::Compiler::generateStubCode(MacroAssembler& masm)
{
// Guard that R0 is an integer and R1 is an integer.
Label failure;
masm.branchTestInt32(Assembler::NotEqual, R0, &failure);
masm.branchTestInt32(Assembler::NotEqual, R1, &failure);
// Add R0 and R1. Don't need to explicitly unbox, just use R2's payloadReg.
Register scratchReg = R2.payloadReg();
// DIV and MOD need an extra non-volatile ValueOperand to hold R0.
AllocatableGeneralRegisterSet savedRegs(availableGeneralRegs(2));
savedRegs.set() = GeneralRegisterSet::Intersect(GeneralRegisterSet::NonVolatile(), savedRegs.set());
ValueOperand savedValue = savedRegs.takeAnyValue();
Label maybeNegZero, revertRegister;
switch(op_) {
case JSOP_ADD:
masm.ma_add(R0.payloadReg(), R1.payloadReg(), scratchReg, SetCC);
// Just jump to failure on overflow. R0 and R1 are preserved, so we can
// just jump to the next stub.
masm.j(Assembler::Overflow, &failure);
// Box the result and return. We know R0.typeReg() already contains the
// integer tag, so we just need to move the result value into place.
masm.mov(scratchReg, R0.payloadReg());
break;
case JSOP_SUB:
masm.ma_sub(R0.payloadReg(), R1.payloadReg(), scratchReg, SetCC);
masm.j(Assembler::Overflow, &failure);
masm.mov(scratchReg, R0.payloadReg());
break;
case JSOP_MUL: {
Assembler::Condition cond = masm.ma_check_mul(R0.payloadReg(), R1.payloadReg(), scratchReg,
Assembler::Overflow);
masm.j(cond, &failure);
masm.ma_cmp(scratchReg, Imm32(0));
masm.j(Assembler::Equal, &maybeNegZero);
masm.mov(scratchReg, R0.payloadReg());
break;
}
case JSOP_DIV:
case JSOP_MOD: {
// Check for INT_MIN / -1, it results in a double.
masm.ma_cmp(R0.payloadReg(), Imm32(INT_MIN));
masm.ma_cmp(R1.payloadReg(), Imm32(-1), Assembler::Equal);
masm.j(Assembler::Equal, &failure);
// Check for both division by zero and 0 / X with X < 0 (results in -0).
masm.ma_cmp(R1.payloadReg(), Imm32(0));
masm.ma_cmp(R0.payloadReg(), Imm32(0), Assembler::LessThan);
masm.j(Assembler::Equal, &failure);
// The call will preserve registers r4-r11. Save R0 and the link
// register.
MOZ_ASSERT(R1 == ValueOperand(r5, r4));
MOZ_ASSERT(R0 == ValueOperand(r3, r2));
masm.moveValue(R0, savedValue);
masm.setupAlignedABICall();
masm.passABIArg(R0.payloadReg());
masm.passABIArg(R1.payloadReg());
masm.callWithABI(JS_FUNC_TO_DATA_PTR(void*, __aeabi_idivmod));
// idivmod returns the quotient in r0, and the remainder in r1.
if (op_ == JSOP_DIV) {
// Result is a double if the remainder != 0.
masm.branch32(Assembler::NotEqual, r1, Imm32(0), &revertRegister);
masm.tagValue(JSVAL_TYPE_INT32, r0, R0);
} else {
// If X % Y == 0 and X < 0, the result is -0.
Label done;
masm.branch32(Assembler::NotEqual, r1, Imm32(0), &done);
masm.branch32(Assembler::LessThan, savedValue.payloadReg(), Imm32(0), &revertRegister);
masm.bind(&done);
masm.tagValue(JSVAL_TYPE_INT32, r1, R0);
}
break;
}
case JSOP_BITOR:
masm.ma_orr(R1.payloadReg(), R0.payloadReg(), R0.payloadReg());
break;
case JSOP_BITXOR:
masm.ma_eor(R1.payloadReg(), R0.payloadReg(), R0.payloadReg());
break;
case JSOP_BITAND:
masm.ma_and(R1.payloadReg(), R0.payloadReg(), R0.payloadReg());
break;
case JSOP_LSH:
// ARM will happily try to shift by more than 0x1f.
masm.ma_and(Imm32(0x1F), R1.payloadReg(), R1.payloadReg());
masm.ma_lsl(R1.payloadReg(), R0.payloadReg(), R0.payloadReg());
break;
case JSOP_RSH:
masm.ma_and(Imm32(0x1F), R1.payloadReg(), R1.payloadReg());
masm.ma_asr(R1.payloadReg(), R0.payloadReg(), R0.payloadReg());
break;
case JSOP_URSH:
masm.ma_and(Imm32(0x1F), R1.payloadReg(), scratchReg);
masm.ma_lsr(scratchReg, R0.payloadReg(), scratchReg);
masm.ma_cmp(scratchReg, Imm32(0));
if (allowDouble_) {
Label toUint;
masm.j(Assembler::LessThan, &toUint);
// Move result and box for return.
masm.mov(scratchReg, R0.payloadReg());
EmitReturnFromIC(masm);
masm.bind(&toUint);
ScratchDoubleScope scratchDouble(masm);
masm.convertUInt32ToDouble(scratchReg, scratchDouble);
masm.boxDouble(scratchDouble, R0);
} else {
masm.j(Assembler::LessThan, &failure);
// Move result for return.
masm.mov(scratchReg, R0.payloadReg());
}
break;
default:
MOZ_CRASH("Unhandled op for BinaryArith_Int32.");
}
EmitReturnFromIC(masm);
switch (op_) {
case JSOP_MUL:
masm.bind(&maybeNegZero);
// Result is -0 if exactly one of lhs or rhs is negative.
masm.ma_cmn(R0.payloadReg(), R1.payloadReg());
masm.j(Assembler::Signed, &failure);
// Result is +0.
masm.ma_mov(Imm32(0), R0.payloadReg());
EmitReturnFromIC(masm);
break;
case JSOP_DIV:
case JSOP_MOD:
masm.bind(&revertRegister);
masm.moveValue(savedValue, R0);
break;
default:
break;
}
// Failure case - jump to next stub.
masm.bind(&failure);
EmitStubGuardFailure(masm);
return true;
}
bool
ICUnaryArith_Int32::Compiler::generateStubCode(MacroAssembler& masm)
{
Label failure;
masm.branchTestInt32(Assembler::NotEqual, R0, &failure);
switch (op) {
case JSOP_BITNOT:
masm.ma_mvn(R0.payloadReg(), R0.payloadReg());
break;
case JSOP_NEG:
// Guard against 0 and MIN_INT, both result in a double.
masm.branchTest32(Assembler::Zero, R0.payloadReg(), Imm32(0x7fffffff), &failure);
// Compile -x as 0 - x.
masm.ma_rsb(R0.payloadReg(), Imm32(0), R0.payloadReg());
break;
default:
MOZ_CRASH("Unexpected op");
}
EmitReturnFromIC(masm);
masm.bind(&failure);
EmitStubGuardFailure(masm);
return true;
}
} // namespace jit
} // namespace js