| // Copyright 2013 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_ARM64 |
| |
| #include "src/api/api-arguments.h" |
| #include "src/codegen/code-factory.h" |
| #include "src/debug/debug.h" |
| #include "src/deoptimizer/deoptimizer.h" |
| #include "src/execution/frame-constants.h" |
| #include "src/execution/frames.h" |
| #include "src/logging/counters.h" |
| // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop. |
| #include "src/codegen/macro-assembler-inl.h" |
| #include "src/codegen/register-configuration.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/objects/cell.h" |
| #include "src/objects/foreign.h" |
| #include "src/objects/heap-number.h" |
| #include "src/objects/js-generator.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/objects/smi.h" |
| #include "src/runtime/runtime.h" |
| #include "src/wasm/wasm-objects.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) { |
| __ Mov(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x0 : number of arguments |
| // -- lr : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| ASM_LOCATION("Builtins::Generate_InternalArrayConstructor"); |
| |
| if (FLAG_debug_code) { |
| // Initial map for the builtin InternalArray functions should be maps. |
| __ LoadTaggedPointerField( |
| x10, FieldMemOperand(x1, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ Tst(x10, kSmiTagMask); |
| __ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); |
| __ CompareObjectType(x10, x11, x12, MAP_TYPE); |
| __ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); |
| } |
| |
| // Run the native code for the InternalArray function called as a normal |
| // function. |
| __ Jump(BUILTIN_CODE(masm->isolate(), InternalArrayConstructorImpl), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| static void GenerateTailCallToReturnedCode(MacroAssembler* masm, |
| Runtime::FunctionId function_id) { |
| // ----------- S t a t e ------------- |
| // -- x1 : target function (preserved for callee) |
| // -- x3 : new target (preserved for callee) |
| // ----------------------------------- |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Push a copy of the target function and the new target. |
| // Push another copy as a parameter to the runtime call. |
| __ Push(x1, x3); |
| __ PushArgument(x1); |
| |
| __ CallRuntime(function_id, 1); |
| __ Mov(x2, x0); |
| |
| // Restore target function and new target. |
| __ Pop(x3, x1); |
| } |
| |
| static_assert(kJavaScriptCallCodeStartRegister == x2, "ABI mismatch"); |
| __ JumpCodeObject(x2); |
| } |
| |
| namespace { |
| |
| void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, |
| Label* stack_overflow) { |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.AcquireX(); |
| |
| // Check the stack for overflow. |
| // We are not trying to catch interruptions (e.g. debug break and |
| // preemption) here, so the "real stack limit" is checked. |
| |
| __ LoadRoot(scratch, RootIndex::kRealStackLimit); |
| // Make scratch the space we have left. The stack might already be overflowed |
| // here which will cause scratch to become negative. |
| __ Sub(scratch, sp, scratch); |
| // Check if the arguments will overflow the stack. |
| __ Cmp(scratch, Operand(num_args, LSL, kSystemPointerSizeLog2)); |
| __ B(le, stack_overflow); |
| } |
| |
| void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x0 : number of arguments |
| // -- x1 : constructor function |
| // -- x3 : new target |
| // -- cp : context |
| // -- lr : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| ASM_LOCATION("Builtins::Generate_JSConstructStubHelper"); |
| Label stack_overflow; |
| |
| Generate_StackOverflowCheck(masm, x0, &stack_overflow); |
| |
| // Enter a construct frame. |
| { |
| FrameScope scope(masm, StackFrame::CONSTRUCT); |
| Label already_aligned; |
| Register argc = x0; |
| |
| if (__ emit_debug_code()) { |
| // Check that FrameScope pushed the context on to the stack already. |
| __ Peek(x2, 0); |
| __ Cmp(x2, cp); |
| __ Check(eq, AbortReason::kUnexpectedValue); |
| } |
| |
| // Push number of arguments. |
| __ SmiTag(x11, argc); |
| __ Push(x11, padreg); |
| |
| // Add a slot for the receiver, and round up to maintain alignment. |
| Register slot_count = x2; |
| Register slot_count_without_rounding = x12; |
| __ Add(slot_count_without_rounding, argc, 2); |
| __ Bic(slot_count, slot_count_without_rounding, 1); |
| __ Claim(slot_count); |
| |
| // Preserve the incoming parameters on the stack. |
| __ LoadRoot(x10, RootIndex::kTheHoleValue); |
| |
| // Compute a pointer to the slot immediately above the location on the |
| // stack to which arguments will be later copied. |
| __ SlotAddress(x2, argc); |
| |
| // Poke the hole (receiver) in the highest slot. |
| __ Str(x10, MemOperand(x2)); |
| __ Tbnz(slot_count_without_rounding, 0, &already_aligned); |
| |
| // Store padding, if needed. |
| __ Str(padreg, MemOperand(x2, 1 * kSystemPointerSize)); |
| __ Bind(&already_aligned); |
| |
| // Copy arguments to the expression stack. |
| { |
| Register count = x2; |
| Register dst = x10; |
| Register src = x11; |
| __ Mov(count, argc); |
| __ SlotAddress(dst, 0); |
| __ Add(src, fp, StandardFrameConstants::kCallerSPOffset); |
| __ CopyDoubleWords(dst, src, count); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- x0: number of arguments (untagged) |
| // -- x1: constructor function |
| // -- x3: new target |
| // If argc is odd: |
| // -- sp[0*kSystemPointerSize]: argument n - 1 |
| // -- ... |
| // -- sp[(n-1)*kSystemPointerSize]: argument 0 |
| // -- sp[(n+0)*kSystemPointerSize]: the hole (receiver) |
| // -- sp[(n+1)*kSystemPointerSize]: padding |
| // -- sp[(n+2)*kSystemPointerSize]: padding |
| // -- sp[(n+3)*kSystemPointerSize]: number of arguments (tagged) |
| // -- sp[(n+4)*kSystemPointerSize]: context (pushed by FrameScope) |
| // If argc is even: |
| // -- sp[0*kSystemPointerSize]: argument n - 1 |
| // -- ... |
| // -- sp[(n-1)*kSystemPointerSize]: argument 0 |
| // -- sp[(n+0)*kSystemPointerSize]: the hole (receiver) |
| // -- sp[(n+1)*kSystemPointerSize]: padding |
| // -- sp[(n+2)*kSystemPointerSize]: number of arguments (tagged) |
| // -- sp[(n+3)*kSystemPointerSize]: context (pushed by FrameScope) |
| // ----------------------------------- |
| |
| // Call the function. |
| ParameterCount actual(argc); |
| __ InvokeFunction(x1, x3, actual, CALL_FUNCTION); |
| |
| // Restore the context from the frame. |
| __ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); |
| // Restore smi-tagged arguments count from the frame. Use fp relative |
| // addressing to avoid the circular dependency between padding existence and |
| // argc parity. |
| __ SmiUntag(x1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| // Leave construct frame. |
| } |
| |
| // Remove caller arguments from the stack and return. |
| __ DropArguments(x1, TurboAssembler::kCountExcludesReceiver); |
| __ Ret(); |
| |
| __ Bind(&stack_overflow); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ Unreachable(); |
| } |
| } |
| |
| } // namespace |
| |
| // The construct stub for ES5 constructor functions and ES6 class constructors. |
| void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x0 : number of arguments |
| // -- x1 : constructor function |
| // -- x3 : new target |
| // -- lr : return address |
| // -- cp : context pointer |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| ASM_LOCATION("Builtins::Generate_JSConstructStubGeneric"); |
| |
| // Enter a construct frame. |
| { |
| FrameScope scope(masm, StackFrame::CONSTRUCT); |
| Label post_instantiation_deopt_entry, not_create_implicit_receiver; |
| |
| if (__ emit_debug_code()) { |
| // Check that FrameScope pushed the context on to the stack already. |
| __ Peek(x2, 0); |
| __ Cmp(x2, cp); |
| __ Check(eq, AbortReason::kUnexpectedValue); |
| } |
| |
| // Preserve the incoming parameters on the stack. |
| __ SmiTag(x0); |
| __ Push(x0, x1, padreg, x3); |
| |
| // ----------- S t a t e ------------- |
| // -- sp[0*kSystemPointerSize]: new target |
| // -- sp[1*kSystemPointerSize]: padding |
| // -- x1 and sp[2*kSystemPointerSize]: constructor function |
| // -- sp[3*kSystemPointerSize]: number of arguments (tagged) |
| // -- sp[4*kSystemPointerSize]: context (pushed by FrameScope) |
| // ----------------------------------- |
| |
| __ LoadTaggedPointerField( |
| x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); |
| __ Ldr(w4, FieldMemOperand(x4, SharedFunctionInfo::kFlagsOffset)); |
| __ DecodeField<SharedFunctionInfo::FunctionKindBits>(w4); |
| __ JumpIfIsInRange(w4, kDefaultDerivedConstructor, kDerivedConstructor, |
| ¬_create_implicit_receiver); |
| |
| // If not derived class constructor: Allocate the new receiver object. |
| __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, |
| x4, x5); |
| __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), |
| RelocInfo::CODE_TARGET); |
| __ B(&post_instantiation_deopt_entry); |
| |
| // Else: use TheHoleValue as receiver for constructor call |
| __ Bind(¬_create_implicit_receiver); |
| __ LoadRoot(x0, RootIndex::kTheHoleValue); |
| |
| // ----------- S t a t e ------------- |
| // -- x0: receiver |
| // -- Slot 4 / sp[0*kSystemPointerSize]: new target |
| // -- Slot 3 / sp[1*kSystemPointerSize]: padding |
| // -- Slot 2 / sp[2*kSystemPointerSize]: constructor function |
| // -- Slot 1 / sp[3*kSystemPointerSize]: number of arguments (tagged) |
| // -- Slot 0 / sp[4*kSystemPointerSize]: context |
| // ----------------------------------- |
| // Deoptimizer enters here. |
| masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( |
| masm->pc_offset()); |
| |
| __ Bind(&post_instantiation_deopt_entry); |
| |
| // Restore new target from the top of the stack. |
| __ Peek(x3, 0 * kSystemPointerSize); |
| |
| // Restore constructor function and argument count. |
| __ Ldr(x1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); |
| __ SmiUntag(x12, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| |
| // Copy arguments to the expression stack. The called function pops the |
| // receiver along with its arguments, so we need an extra receiver on the |
| // stack, in case we have to return it later. |
| |
| // Overwrite the new target with a receiver. |
| __ Poke(x0, 0); |
| |
| // Push two further copies of the receiver. One will be popped by the called |
| // function. The second acts as padding if the number of arguments plus |
| // receiver is odd - pushing receiver twice avoids branching. It also means |
| // that we don't have to handle the even and odd cases specially on |
| // InvokeFunction's return, as top of stack will be the receiver in either |
| // case. |
| __ Push(x0, x0); |
| |
| // ----------- S t a t e ------------- |
| // -- x3: new target |
| // -- x12: number of arguments (untagged) |
| // -- sp[0*kSystemPointerSize]: implicit receiver (overwrite if argc |
| // odd) |
| // -- sp[1*kSystemPointerSize]: implicit receiver |
| // -- sp[2*kSystemPointerSize]: implicit receiver |
| // -- sp[3*kSystemPointerSize]: padding |
| // -- x1 and sp[4*kSystemPointerSize]: constructor function |
| // -- sp[5*kSystemPointerSize]: number of arguments (tagged) |
| // -- sp[6*kSystemPointerSize]: context |
| // ----------------------------------- |
| |
| // Round the number of arguments down to the next even number, and claim |
| // slots for the arguments. If the number of arguments was odd, the last |
| // argument will overwrite one of the receivers pushed above. |
| __ Bic(x10, x12, 1); |
| |
| // Check if we have enough stack space to push all arguments. |
| Label enough_stack_space, stack_overflow; |
| Generate_StackOverflowCheck(masm, x10, &stack_overflow); |
| __ B(&enough_stack_space); |
| |
| __ Bind(&stack_overflow); |
| // Restore the context from the frame. |
| __ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ Unreachable(); |
| |
| __ Bind(&enough_stack_space); |
| __ Claim(x10); |
| |
| // Copy the arguments. |
| { |
| Register count = x2; |
| Register dst = x10; |
| Register src = x11; |
| __ Mov(count, x12); |
| __ SlotAddress(dst, 0); |
| __ Add(src, fp, StandardFrameConstants::kCallerSPOffset); |
| __ CopyDoubleWords(dst, src, count); |
| } |
| |
| // Call the function. |
| __ Mov(x0, x12); |
| ParameterCount actual(x0); |
| __ InvokeFunction(x1, x3, actual, CALL_FUNCTION); |
| |
| // ----------- S t a t e ------------- |
| // -- sp[0*kSystemPointerSize]: implicit receiver |
| // -- sp[1*kSystemPointerSize]: padding |
| // -- sp[2*kSystemPointerSize]: constructor function |
| // -- sp[3*kSystemPointerSize]: number of arguments |
| // -- sp[4*kSystemPointerSize]: context |
| // ----------------------------------- |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( |
| masm->pc_offset()); |
| |
| // Restore the context from the frame. |
| __ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); |
| |
| // If the result is an object (in the ECMA sense), we should get rid |
| // of the receiver and use the result; see ECMA-262 section 13.2.2-7 |
| // on page 74. |
| Label use_receiver, do_throw, leave_frame; |
| |
| // If the result is undefined, we jump out to using the implicit receiver. |
| __ CompareRoot(x0, RootIndex::kUndefinedValue); |
| __ B(eq, &use_receiver); |
| |
| // Otherwise we do a smi check and fall through to check if the return value |
| // is a valid receiver. |
| |
| // If the result is a smi, it is *not* an object in the ECMA sense. |
| __ JumpIfSmi(x0, &use_receiver); |
| |
| // If the type of the result (stored in its map) is less than |
| // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ JumpIfObjectType(x0, x4, x5, FIRST_JS_RECEIVER_TYPE, &leave_frame, ge); |
| __ B(&use_receiver); |
| |
| __ Bind(&do_throw); |
| __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); |
| |
| // Throw away the result of the constructor invocation and use the |
| // on-stack receiver as the result. |
| __ Bind(&use_receiver); |
| __ Peek(x0, 0 * kSystemPointerSize); |
| __ CompareRoot(x0, RootIndex::kTheHoleValue); |
| __ B(eq, &do_throw); |
| |
| __ Bind(&leave_frame); |
| // Restore smi-tagged arguments count from the frame. |
| __ SmiUntag(x1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| // Leave construct frame. |
| } |
| // Remove caller arguments from the stack and return. |
| __ DropArguments(x1, TurboAssembler::kCountExcludesReceiver); |
| __ Ret(); |
| } |
| void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { |
| Generate_JSBuiltinsConstructStubHelper(masm); |
| } |
| |
| void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ PushArgument(x1); |
| __ CallRuntime(Runtime::kThrowConstructedNonConstructable); |
| } |
| |
| static void GetSharedFunctionInfoBytecode(MacroAssembler* masm, |
| Register sfi_data, |
| Register scratch1) { |
| Label done; |
| __ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE); |
| __ B(ne, &done); |
| __ LoadTaggedPointerField( |
| sfi_data, |
| FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset)); |
| __ Bind(&done); |
| } |
| |
| // static |
| void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x0 : the value to pass to the generator |
| // -- x1 : the JSGeneratorObject to resume |
| // -- lr : return address |
| // ----------------------------------- |
| __ AssertGeneratorObject(x1); |
| |
| // Store input value into generator object. |
| __ StoreTaggedField( |
| x0, FieldMemOperand(x1, JSGeneratorObject::kInputOrDebugPosOffset)); |
| __ RecordWriteField(x1, JSGeneratorObject::kInputOrDebugPosOffset, x0, |
| kLRHasNotBeenSaved, kDontSaveFPRegs); |
| |
| // Load suspended function and context. |
| __ LoadTaggedPointerField( |
| x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset)); |
| __ LoadTaggedPointerField(cp, |
| FieldMemOperand(x4, JSFunction::kContextOffset)); |
| |
| // Flood function if we are stepping. |
| Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; |
| Label stepping_prepared; |
| ExternalReference debug_hook = |
| ExternalReference::debug_hook_on_function_call_address(masm->isolate()); |
| __ Mov(x10, debug_hook); |
| __ Ldrsb(x10, MemOperand(x10)); |
| __ CompareAndBranch(x10, Operand(0), ne, &prepare_step_in_if_stepping); |
| |
| // Flood function if we need to continue stepping in the suspended generator. |
| ExternalReference debug_suspended_generator = |
| ExternalReference::debug_suspended_generator_address(masm->isolate()); |
| __ Mov(x10, debug_suspended_generator); |
| __ Ldr(x10, MemOperand(x10)); |
| __ CompareAndBranch(x10, Operand(x1), eq, |
| &prepare_step_in_suspended_generator); |
| __ Bind(&stepping_prepared); |
| |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| Label stack_overflow; |
| __ CompareRoot(sp, RootIndex::kRealStackLimit); |
| __ B(lo, &stack_overflow); |
| |
| // Get number of arguments for generator function. |
| __ LoadTaggedPointerField( |
| x10, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset)); |
| __ Ldrh(w10, FieldMemOperand( |
| x10, SharedFunctionInfo::kFormalParameterCountOffset)); |
| |
| // Claim slots for arguments and receiver (rounded up to a multiple of two). |
| __ Add(x11, x10, 2); |
| __ Bic(x11, x11, 1); |
| __ Claim(x11); |
| |
| // Store padding (which might be replaced by the receiver). |
| __ Sub(x11, x11, 1); |
| __ Poke(padreg, Operand(x11, LSL, kSystemPointerSizeLog2)); |
| |
| // Poke receiver into highest claimed slot. |
| __ LoadTaggedPointerField( |
| x5, FieldMemOperand(x1, JSGeneratorObject::kReceiverOffset)); |
| __ Poke(x5, Operand(x10, LSL, kSystemPointerSizeLog2)); |
| |
| // ----------- S t a t e ------------- |
| // -- x1 : the JSGeneratorObject to resume |
| // -- x4 : generator function |
| // -- x10 : argument count |
| // -- cp : generator context |
| // -- lr : return address |
| // -- sp[arg count] : generator receiver |
| // -- sp[0 .. arg count - 1] : claimed for args |
| // ----------------------------------- |
| |
| // Copy the function arguments from the generator object's register file. |
| |
| __ LoadTaggedPointerField( |
| x5, |
| FieldMemOperand(x1, JSGeneratorObject::kParametersAndRegistersOffset)); |
| { |
| Label loop, done; |
| __ Cbz(x10, &done); |
| __ Mov(x12, 0); |
| |
| __ Bind(&loop); |
| __ Sub(x10, x10, 1); |
| __ Add(x11, x5, Operand(x12, LSL, kTaggedSizeLog2)); |
| __ LoadAnyTaggedField(x11, FieldMemOperand(x11, FixedArray::kHeaderSize)); |
| __ Poke(x11, Operand(x10, LSL, kSystemPointerSizeLog2)); |
| __ Add(x12, x12, 1); |
| __ Cbnz(x10, &loop); |
| __ Bind(&done); |
| } |
| |
| // Underlying function needs to have bytecode available. |
| if (FLAG_debug_code) { |
| __ LoadTaggedPointerField( |
| x3, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadTaggedPointerField( |
| x3, FieldMemOperand(x3, SharedFunctionInfo::kFunctionDataOffset)); |
| GetSharedFunctionInfoBytecode(masm, x3, x0); |
| __ CompareObjectType(x3, x3, x3, BYTECODE_ARRAY_TYPE); |
| __ Assert(eq, AbortReason::kMissingBytecodeArray); |
| } |
| |
| // Resume (Ignition/TurboFan) generator object. |
| { |
| __ LoadTaggedPointerField( |
| x0, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset)); |
| __ Ldrh(w0, FieldMemOperand( |
| x0, SharedFunctionInfo::kFormalParameterCountOffset)); |
| // We abuse new.target both to indicate that this is a resume call and to |
| // pass in the generator object. In ordinary calls, new.target is always |
| // undefined because generator functions are non-constructable. |
| __ Mov(x3, x1); |
| __ Mov(x1, x4); |
| static_assert(kJavaScriptCallCodeStartRegister == x2, "ABI mismatch"); |
| __ LoadTaggedPointerField(x2, FieldMemOperand(x1, JSFunction::kCodeOffset)); |
| __ JumpCodeObject(x2); |
| } |
| |
| __ Bind(&prepare_step_in_if_stepping); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Push hole as receiver since we do not use it for stepping. |
| __ LoadRoot(x5, RootIndex::kTheHoleValue); |
| __ Push(x1, padreg, x4, x5); |
| __ CallRuntime(Runtime::kDebugOnFunctionCall); |
| __ Pop(padreg, x1); |
| __ LoadTaggedPointerField( |
| x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ B(&stepping_prepared); |
| |
| __ Bind(&prepare_step_in_suspended_generator); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(x1, padreg); |
| __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); |
| __ Pop(padreg, x1); |
| __ LoadTaggedPointerField( |
| x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ B(&stepping_prepared); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ Unreachable(); // This should be unreachable. |
| } |
| } |
| |
| namespace { |
| |
| // Called with the native C calling convention. The corresponding function |
| // signature is either: |
| // |
| // using JSEntryFunction = GeneratedCode<Address( |
| // Address root_register_value, Address new_target, Address target, |
| // Address receiver, intptr_t argc, Address** argv)>; |
| // or |
| // using JSEntryFunction = GeneratedCode<Address( |
| // Address root_register_value, MicrotaskQueue* microtask_queue)>; |
| // |
| // Input is either: |
| // x0: root_register_value. |
| // x1: new_target. |
| // x2: target. |
| // x3: receiver. |
| // x4: argc. |
| // x5: argv. |
| // or |
| // x0: root_register_value. |
| // x1: microtask_queue. |
| // Output: |
| // x0: result. |
| void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type, |
| Builtins::Name entry_trampoline) { |
| Label invoke, handler_entry, exit; |
| |
| { |
| NoRootArrayScope no_root_array(masm); |
| |
| // Enable instruction instrumentation. This only works on the simulator, and |
| // will have no effect on the model or real hardware. |
| __ EnableInstrumentation(); |
| |
| __ PushCalleeSavedRegisters(); |
| |
| // Set up the reserved register for 0.0. |
| __ Fmov(fp_zero, 0.0); |
| |
| // Initialize the root register. |
| // C calling convention. The first argument is passed in x0. |
| __ Mov(kRootRegister, x0); |
| } |
| |
| // Build an entry frame (see layout below). |
| int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used. |
| __ Mov(x13, bad_frame_pointer); |
| __ Mov(x12, StackFrame::TypeToMarker(type)); |
| __ Mov(x11, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, |
| masm->isolate())); |
| __ Ldr(x10, MemOperand(x11)); |
| |
| __ Push(x13, x12, xzr, x10); |
| // Set up fp. |
| __ Sub(fp, sp, EntryFrameConstants::kCallerFPOffset); |
| |
| // Push the JS entry frame marker. Also set js_entry_sp if this is the |
| // outermost JS call. |
| Label done; |
| ExternalReference js_entry_sp = ExternalReference::Create( |
| IsolateAddressId::kJSEntrySPAddress, masm->isolate()); |
| __ Mov(x10, js_entry_sp); |
| __ Ldr(x11, MemOperand(x10)); |
| |
| // Select between the inner and outermost frame marker, based on the JS entry |
| // sp. We assert that the inner marker is zero, so we can use xzr to save a |
| // move instruction. |
| DCHECK_EQ(StackFrame::INNER_JSENTRY_FRAME, 0); |
| __ Cmp(x11, 0); // If x11 is zero, this is the outermost frame. |
| __ Csel(x12, xzr, StackFrame::OUTERMOST_JSENTRY_FRAME, ne); |
| __ B(ne, &done); |
| __ Str(fp, MemOperand(x10)); |
| |
| __ Bind(&done); |
| __ Push(x12, padreg); |
| |
| // The frame set up looks like this: |
| // sp[0] : padding. |
| // sp[1] : JS entry frame marker. |
| // sp[2] : C entry FP. |
| // sp[3] : stack frame marker. |
| // sp[4] : stack frame marker. |
| // sp[5] : bad frame pointer 0xFFF...FF <- fp points here. |
| |
| // Jump to a faked try block that does the invoke, with a faked catch |
| // block that sets the pending exception. |
| __ B(&invoke); |
| |
| // Prevent the constant pool from being emitted between the record of the |
| // handler_entry position and the first instruction of the sequence here. |
| // There is no risk because Assembler::Emit() emits the instruction before |
| // checking for constant pool emission, but we do not want to depend on |
| // that. |
| { |
| Assembler::BlockPoolsScope block_pools(masm); |
| __ bind(&handler_entry); |
| |
| // Store the current pc as the handler offset. It's used later to create the |
| // handler table. |
| masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos()); |
| |
| // Caught exception: Store result (exception) in the pending exception |
| // field in the JSEnv and return a failure sentinel. Coming in here the |
| // fp will be invalid because the PushTryHandler below sets it to 0 to |
| // signal the existence of the JSEntry frame. |
| __ Mov(x10, |
| ExternalReference::Create(IsolateAddressId::kPendingExceptionAddress, |
| masm->isolate())); |
| } |
| __ Str(x0, MemOperand(x10)); |
| __ LoadRoot(x0, RootIndex::kException); |
| __ B(&exit); |
| |
| // Invoke: Link this frame into the handler chain. |
| __ Bind(&invoke); |
| |
| // Push new stack handler. |
| static_assert(StackHandlerConstants::kSize == 2 * kSystemPointerSize, |
| "Unexpected offset for StackHandlerConstants::kSize"); |
| static_assert(StackHandlerConstants::kNextOffset == 0 * kSystemPointerSize, |
| "Unexpected offset for StackHandlerConstants::kNextOffset"); |
| |
| // Link the current handler as the next handler. |
| __ Mov(x11, ExternalReference::Create(IsolateAddressId::kHandlerAddress, |
| masm->isolate())); |
| __ Ldr(x10, MemOperand(x11)); |
| __ Push(padreg, x10); |
| |
| // Set this new handler as the current one. |
| { |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.AcquireX(); |
| __ Mov(scratch, sp); |
| __ Str(scratch, MemOperand(x11)); |
| } |
| |
| // If an exception not caught by another handler occurs, this handler |
| // returns control to the code after the B(&invoke) above, which |
| // restores all callee-saved registers (including cp and fp) to their |
| // saved values before returning a failure to C. |
| // |
| // Invoke the function by calling through JS entry trampoline builtin and |
| // pop the faked function when we return. |
| Handle<Code> trampoline_code = |
| masm->isolate()->builtins()->builtin_handle(entry_trampoline); |
| __ Call(trampoline_code, RelocInfo::CODE_TARGET); |
| |
| // Pop the stack handler and unlink this frame from the handler chain. |
| static_assert(StackHandlerConstants::kNextOffset == 0 * kSystemPointerSize, |
| "Unexpected offset for StackHandlerConstants::kNextOffset"); |
| __ Pop(x10, padreg); |
| __ Mov(x11, ExternalReference::Create(IsolateAddressId::kHandlerAddress, |
| masm->isolate())); |
| __ Drop(StackHandlerConstants::kSlotCount - 2); |
| __ Str(x10, MemOperand(x11)); |
| |
| __ Bind(&exit); |
| // x0 holds the result. |
| // The stack pointer points to the top of the entry frame pushed on entry from |
| // C++ (at the beginning of this stub): |
| // sp[0] : padding. |
| // sp[1] : JS entry frame marker. |
| // sp[2] : C entry FP. |
| // sp[3] : stack frame marker. |
| // sp[4] : stack frame marker. |
| // sp[5] : bad frame pointer 0xFFF...FF <- fp points here. |
| |
| // Check if the current stack frame is marked as the outermost JS frame. |
| Label non_outermost_js_2; |
| { |
| Register c_entry_fp = x11; |
| __ PeekPair(x10, c_entry_fp, 1 * kSystemPointerSize); |
| __ Cmp(x10, StackFrame::OUTERMOST_JSENTRY_FRAME); |
| __ B(ne, &non_outermost_js_2); |
| __ Mov(x12, js_entry_sp); |
| __ Str(xzr, MemOperand(x12)); |
| __ Bind(&non_outermost_js_2); |
| |
| // Restore the top frame descriptors from the stack. |
| __ Mov(x12, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, |
| masm->isolate())); |
| __ Str(c_entry_fp, MemOperand(x12)); |
| } |
| |
| // Reset the stack to the callee saved registers. |
| static_assert( |
| EntryFrameConstants::kFixedFrameSize % (2 * kSystemPointerSize) == 0, |
| "Size of entry frame is not a multiple of 16 bytes"); |
| __ Drop(EntryFrameConstants::kFixedFrameSize / kSystemPointerSize); |
| // Restore the callee-saved registers and return. |
| __ PopCalleeSavedRegisters(); |
| __ Ret(); |
| } |
| |
| } // namespace |
| |
| void Builtins::Generate_JSEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::ENTRY, |
| Builtins::kJSEntryTrampoline); |
| } |
| |
| void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY, |
| Builtins::kJSConstructEntryTrampoline); |
| } |
| |
| void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) { |
| Generate_JSEntryVariant(masm, StackFrame::ENTRY, |
| Builtins::kRunMicrotasksTrampoline); |
| } |
| |
| // Input: |
| // x1: new.target. |
| // x2: function. |
| // x3: receiver. |
| // x4: argc. |
| // x5: argv. |
| // Output: |
| // x0: result. |
| static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, |
| bool is_construct) { |
| Register new_target = x1; |
| Register function = x2; |
| Register receiver = x3; |
| Register argc = x4; |
| Register argv = x5; |
| Register scratch = x10; |
| Register slots_to_claim = x11; |
| |
| { |
| // Enter an internal frame. |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Setup the context (we need to use the caller context from the isolate). |
| __ Mov(scratch, ExternalReference::Create(IsolateAddressId::kContextAddress, |
| masm->isolate())); |
| __ Ldr(cp, MemOperand(scratch)); |
| |
| // Claim enough space for the arguments, the receiver and the function, |
| // including an optional slot of padding. |
| __ Add(slots_to_claim, argc, 3); |
| __ Bic(slots_to_claim, slots_to_claim, 1); |
| |
| // Check if we have enough stack space to push all arguments. |
| Label enough_stack_space, stack_overflow; |
| Generate_StackOverflowCheck(masm, slots_to_claim, &stack_overflow); |
| __ B(&enough_stack_space); |
| |
| __ Bind(&stack_overflow); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ Unreachable(); |
| |
| __ Bind(&enough_stack_space); |
| __ Claim(slots_to_claim); |
| |
| // Store padding (which might be overwritten). |
| __ SlotAddress(scratch, slots_to_claim); |
| __ Str(padreg, MemOperand(scratch, -kSystemPointerSize)); |
| |
| // Store receiver and function on the stack. |
| __ SlotAddress(scratch, argc); |
| __ Stp(receiver, function, MemOperand(scratch)); |
| |
| // Copy arguments to the stack in a loop, in reverse order. |
| // x4: argc. |
| // x5: argv. |
| Label loop, done; |
| |
| // Skip the argument set up if we have no arguments. |
| __ Cbz(argc, &done); |
| |
| // scratch has been set to point to the location of the receiver, which |
| // marks the end of the argument copy. |
| |
| __ Bind(&loop); |
| // Load the handle. |
| __ Ldr(x11, MemOperand(argv, kSystemPointerSize, PostIndex)); |
| // Dereference the handle. |
| __ Ldr(x11, MemOperand(x11)); |
| // Poke the result into the stack. |
| __ Str(x11, MemOperand(scratch, -kSystemPointerSize, PreIndex)); |
| // Loop if we've not reached the end of copy marker. |
| __ Cmp(sp, scratch); |
| __ B(lt, &loop); |
| |
| __ Bind(&done); |
| |
| __ Mov(x0, argc); |
| __ Mov(x3, new_target); |
| __ Mov(x1, function); |
| // x0: argc. |
| // x1: function. |
| // x3: new.target. |
| |
| // Initialize all JavaScript callee-saved registers, since they will be seen |
| // by the garbage collector as part of handlers. |
| // The original values have been saved in JSEntry. |
| __ LoadRoot(x19, RootIndex::kUndefinedValue); |
| __ Mov(x20, x19); |
| __ Mov(x21, x19); |
| __ Mov(x22, x19); |
| __ Mov(x23, x19); |
| __ Mov(x24, x19); |
| __ Mov(x25, x19); |
| __ Mov(x28, x19); |
| // Don't initialize the reserved registers. |
| // x26 : root register (kRootRegister). |
| // x27 : context pointer (cp). |
| // x29 : frame pointer (fp). |
| |
| Handle<Code> builtin = is_construct |
| ? BUILTIN_CODE(masm->isolate(), Construct) |
| : masm->isolate()->builtins()->Call(); |
| __ Call(builtin, RelocInfo::CODE_TARGET); |
| |
| // Exit the JS internal frame and remove the parameters (except function), |
| // and return. |
| } |
| |
| // Result is in x0. Return. |
| __ Ret(); |
| } |
| |
| void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, false); |
| } |
| |
| void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, true); |
| } |
| |
| void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) { |
| // This expects two C++ function parameters passed by Invoke() in |
| // execution.cc. |
| // x0: root_register_value |
| // x1: microtask_queue |
| |
| __ Mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(), x1); |
| __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET); |
| } |
| |
| static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm, |
| Register optimized_code, |
| Register closure) { |
| // Store code entry in the closure. |
| __ StoreTaggedField(optimized_code, |
| FieldMemOperand(closure, JSFunction::kCodeOffset)); |
| __ RecordWriteField(closure, JSFunction::kCodeOffset, optimized_code, |
| kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, |
| OMIT_SMI_CHECK); |
| } |
| |
| static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) { |
| Register args_size = scratch; |
| |
| // Get the arguments + receiver count. |
| __ Ldr(args_size, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ Ldr(args_size.W(), |
| FieldMemOperand(args_size, BytecodeArray::kParameterSizeOffset)); |
| |
| // Leave the frame (also dropping the register file). |
| __ LeaveFrame(StackFrame::INTERPRETED); |
| |
| // Drop receiver + arguments. |
| if (__ emit_debug_code()) { |
| __ Tst(args_size, kSystemPointerSize - 1); |
| __ Check(eq, AbortReason::kUnexpectedValue); |
| } |
| __ Lsr(args_size, args_size, kSystemPointerSizeLog2); |
| __ DropArguments(args_size); |
| } |
| |
| // Tail-call |function_id| if |smi_entry| == |marker| |
| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, |
| Register smi_entry, |
| OptimizationMarker marker, |
| Runtime::FunctionId function_id) { |
| Label no_match; |
| __ CompareAndBranch(smi_entry, Operand(Smi::FromEnum(marker)), ne, &no_match); |
| GenerateTailCallToReturnedCode(masm, function_id); |
| __ bind(&no_match); |
| } |
| |
| static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, |
| Register feedback_vector, |
| Register scratch1, |
| Register scratch2) { |
| // ----------- S t a t e ------------- |
| // -- x3 : new target (preserved for callee if needed, and caller) |
| // -- x1 : target function (preserved for callee if needed, and caller) |
| // -- feedback vector (preserved for caller if needed) |
| // ----------------------------------- |
| DCHECK(!AreAliased(feedback_vector, x1, x3, scratch1, scratch2)); |
| |
| Label optimized_code_slot_is_weak_ref, fallthrough; |
| |
| Register closure = x1; |
| Register optimized_code_entry = scratch1; |
| |
| __ LoadAnyTaggedField( |
| optimized_code_entry, |
| FieldMemOperand(feedback_vector, |
| FeedbackVector::kOptimizedCodeWeakOrSmiOffset)); |
| |
| // Check if the code entry is a Smi. If yes, we interpret it as an |
| // optimisation marker. Otherwise, interpret is at a weak reference to a code |
| // object. |
| __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_weak_ref); |
| |
| { |
| // Optimized code slot is a Smi optimization marker. |
| |
| // Fall through if no optimization trigger. |
| __ CompareAndBranch(optimized_code_entry, |
| Operand(Smi::FromEnum(OptimizationMarker::kNone)), eq, |
| &fallthrough); |
| |
| // TODO(v8:8394): The logging of first execution will break if |
| // feedback vectors are not allocated. We need to find a different way of |
| // logging these events if required. |
| TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, |
| OptimizationMarker::kLogFirstExecution, |
| Runtime::kFunctionFirstExecution); |
| TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, |
| OptimizationMarker::kCompileOptimized, |
| Runtime::kCompileOptimized_NotConcurrent); |
| TailCallRuntimeIfMarkerEquals( |
| masm, optimized_code_entry, |
| OptimizationMarker::kCompileOptimizedConcurrent, |
| Runtime::kCompileOptimized_Concurrent); |
| |
| { |
| // Otherwise, the marker is InOptimizationQueue, so fall through hoping |
| // that an interrupt will eventually update the slot with optimized code. |
| if (FLAG_debug_code) { |
| __ Cmp( |
| optimized_code_entry, |
| Operand(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue))); |
| __ Assert(eq, AbortReason::kExpectedOptimizationSentinel); |
| } |
| __ B(&fallthrough); |
| } |
| } |
| |
| { |
| // Optimized code slot is a weak reference. |
| __ bind(&optimized_code_slot_is_weak_ref); |
| |
| __ LoadWeakValue(optimized_code_entry, optimized_code_entry, &fallthrough); |
| |
| // Check if the optimized code is marked for deopt. If it is, call the |
| // runtime to clear it. |
| Label found_deoptimized_code; |
| __ LoadTaggedPointerField( |
| scratch2, |
| FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset)); |
| __ Ldr( |
| scratch2.W(), |
| FieldMemOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset)); |
| __ Tbnz(scratch2.W(), Code::kMarkedForDeoptimizationBit, |
| &found_deoptimized_code); |
| |
| // Optimized code is good, get it into the closure and link the closure into |
| // the optimized functions list, then tail call the optimized code. |
| // The feedback vector is no longer used, so re-use it as a scratch |
| // register. |
| ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure); |
| static_assert(kJavaScriptCallCodeStartRegister == x2, "ABI mismatch"); |
| __ LoadCodeObjectEntry(x2, optimized_code_entry); |
| __ Jump(x2); |
| |
| // Optimized code slot contains deoptimized code, evict it and re-enter the |
| // closure's code. |
| __ bind(&found_deoptimized_code); |
| GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); |
| } |
| |
| // Fall-through if the optimized code cell is clear and there is no |
| // optimization marker. |
| __ bind(&fallthrough); |
| } |
| |
| // Advance the current bytecode offset. This simulates what all bytecode |
| // handlers do upon completion of the underlying operation. Will bail out to a |
| // label if the bytecode (without prefix) is a return bytecode. |
| static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm, |
| Register bytecode_array, |
| Register bytecode_offset, |
| Register bytecode, Register scratch1, |
| Label* if_return) { |
| Register bytecode_size_table = scratch1; |
| DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, |
| bytecode)); |
| |
| __ Mov(bytecode_size_table, ExternalReference::bytecode_size_table_address()); |
| |
| // Check if the bytecode is a Wide or ExtraWide prefix bytecode. |
| Label process_bytecode, extra_wide; |
| STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide)); |
| STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); |
| STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide)); |
| STATIC_ASSERT(3 == |
| static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide)); |
| __ Cmp(bytecode, Operand(0x3)); |
| __ B(hi, &process_bytecode); |
| __ Tst(bytecode, Operand(0x1)); |
| __ B(ne, &extra_wide); |
| |
| // Load the next bytecode and update table to the wide scaled table. |
| __ Add(bytecode_offset, bytecode_offset, Operand(1)); |
| __ Ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset)); |
| __ Add(bytecode_size_table, bytecode_size_table, |
| Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| __ B(&process_bytecode); |
| |
| __ Bind(&extra_wide); |
| // Load the next bytecode and update table to the extra wide scaled table. |
| __ Add(bytecode_offset, bytecode_offset, Operand(1)); |
| __ Ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset)); |
| __ Add(bytecode_size_table, bytecode_size_table, |
| Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| |
| __ Bind(&process_bytecode); |
| |
| // Bailout to the return label if this is a return bytecode. |
| #define JUMP_IF_EQUAL(NAME) \ |
| __ Cmp(x1, Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \ |
| __ B(if_return, eq); |
| RETURN_BYTECODE_LIST(JUMP_IF_EQUAL) |
| #undef JUMP_IF_EQUAL |
| |
| // Otherwise, load the size of the current bytecode and advance the offset. |
| __ Ldr(scratch1.W(), MemOperand(bytecode_size_table, bytecode, LSL, 2)); |
| __ Add(bytecode_offset, bytecode_offset, scratch1); |
| } |
| |
| // Generate code for entering a JS function with the interpreter. |
| // On entry to the function the receiver and arguments have been pushed on the |
| // stack left to right. The actual argument count matches the formal parameter |
| // count expected by the function. |
| // |
| // The live registers are: |
| // - x1: the JS function object being called. |
| // - x3: the incoming new target or generator object |
| // - cp: our context. |
| // - fp: our caller's frame pointer. |
| // - lr: return address. |
| // |
| // The function builds an interpreter frame. See InterpreterFrameConstants in |
| // frames.h for its layout. |
| void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { |
| Register closure = x1; |
| Register feedback_vector = x2; |
| |
| // Get the bytecode array from the function object and load it into |
| // kInterpreterBytecodeArrayRegister. |
| __ LoadTaggedPointerField( |
| x0, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadTaggedPointerField( |
| kInterpreterBytecodeArrayRegister, |
| FieldMemOperand(x0, SharedFunctionInfo::kFunctionDataOffset)); |
| GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, x11); |
| |
| // The bytecode array could have been flushed from the shared function info, |
| // if so, call into CompileLazy. |
| Label compile_lazy; |
| __ CompareObjectType(kInterpreterBytecodeArrayRegister, x0, x0, |
| BYTECODE_ARRAY_TYPE); |
| __ B(ne, &compile_lazy); |
| |
| // Load the feedback vector from the closure. |
| __ LoadTaggedPointerField( |
| feedback_vector, |
| FieldMemOperand(closure, JSFunction::kFeedbackCellOffset)); |
| __ LoadTaggedPointerField( |
| feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); |
| |
| Label push_stack_frame; |
| // Check if feedback vector is valid. If valid, check for optimized code |
| // and update invocation count. Otherwise, setup the stack frame. |
| __ LoadTaggedPointerField( |
| x7, FieldMemOperand(feedback_vector, HeapObject::kMapOffset)); |
| __ Ldrh(x7, FieldMemOperand(x7, Map::kInstanceTypeOffset)); |
| __ Cmp(x7, FEEDBACK_VECTOR_TYPE); |
| __ B(ne, &push_stack_frame); |
| |
| // Read off the optimized code slot in the feedback vector, and if there |
| // is optimized code or an optimization marker, call that instead. |
| MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, x7, x4); |
| |
| // Increment invocation count for the function. |
| // MaybeTailCallOptimizedCodeSlot preserves feedback_vector, so safe to reuse |
| __ Ldr(w10, FieldMemOperand(feedback_vector, |
| FeedbackVector::kInvocationCountOffset)); |
| __ Add(w10, w10, Operand(1)); |
| __ Str(w10, FieldMemOperand(feedback_vector, |
| FeedbackVector::kInvocationCountOffset)); |
| |
| // Open a frame scope to indicate that there is a frame on the stack. The |
| // MANUAL indicates that the scope shouldn't actually generate code to set up |
| // the frame (that is done below). |
| __ Bind(&push_stack_frame); |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ Push(lr, fp, cp, closure); |
| __ Add(fp, sp, StandardFrameConstants::kFixedFrameSizeFromFp); |
| |
| // Reset code age. |
| // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are |
| // 8-bit fields next to each other, so we could just optimize by writing a |
| // 16-bit. These static asserts guard our assumption is valid. |
| STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset == |
| BytecodeArray::kOsrNestingLevelOffset + kCharSize); |
| STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0); |
| __ Strh(wzr, FieldMemOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kOsrNestingLevelOffset)); |
| |
| // Load the initial bytecode offset. |
| __ Mov(kInterpreterBytecodeOffsetRegister, |
| Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| |
| // Push bytecode array and Smi tagged bytecode array offset. |
| __ SmiTag(x0, kInterpreterBytecodeOffsetRegister); |
| __ Push(kInterpreterBytecodeArrayRegister, x0); |
| |
| // Allocate the local and temporary register file on the stack. |
| { |
| // Load frame size from the BytecodeArray object. |
| __ Ldr(w11, FieldMemOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kFrameSizeOffset)); |
| |
| // Do a stack check to ensure we don't go over the limit. |
| Label ok; |
| __ Sub(x10, sp, Operand(x11)); |
| __ CompareRoot(x10, RootIndex::kRealStackLimit); |
| __ B(hs, &ok); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ Bind(&ok); |
| |
| // If ok, push undefined as the initial value for all register file entries. |
| // Note: there should always be at least one stack slot for the return |
| // register in the register file. |
| Label loop_header; |
| __ LoadRoot(x10, RootIndex::kUndefinedValue); |
| __ Lsr(x11, x11, kSystemPointerSizeLog2); |
| // Round up the number of registers to a multiple of 2, to align the stack |
| // to 16 bytes. |
| __ Add(x11, x11, 1); |
| __ Bic(x11, x11, 1); |
| __ PushMultipleTimes(x10, x11); |
| __ Bind(&loop_header); |
| } |
| |
| // If the bytecode array has a valid incoming new target or generator object |
| // register, initialize it with incoming value which was passed in x3. |
| Label no_incoming_new_target_or_generator_register; |
| __ Ldrsw(x10, |
| FieldMemOperand( |
| kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); |
| __ Cbz(x10, &no_incoming_new_target_or_generator_register); |
| __ Str(x3, MemOperand(fp, x10, LSL, kSystemPointerSizeLog2)); |
| __ Bind(&no_incoming_new_target_or_generator_register); |
| |
| // Load accumulator with undefined. |
| __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue); |
| |
| // Load the dispatch table into a register and dispatch to the bytecode |
| // handler at the current bytecode offset. |
| Label do_dispatch; |
| __ bind(&do_dispatch); |
| __ Mov( |
| kInterpreterDispatchTableRegister, |
| ExternalReference::interpreter_dispatch_table_address(masm->isolate())); |
| __ Ldrb(x23, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| __ Mov(x1, Operand(x23, LSL, kSystemPointerSizeLog2)); |
| __ Ldr(kJavaScriptCallCodeStartRegister, |
| MemOperand(kInterpreterDispatchTableRegister, x1)); |
| __ Call(kJavaScriptCallCodeStartRegister); |
| masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); |
| |
| // Any returns to the entry trampoline are either due to the return bytecode |
| // or the interpreter tail calling a builtin and then a dispatch. |
| |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ Ldr(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ Ldr(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| // Either return, or advance to the next bytecode and dispatch. |
| Label do_return; |
| __ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, x1, x2, |
| &do_return); |
| __ B(&do_dispatch); |
| |
| __ bind(&do_return); |
| // The return value is in x0. |
| LeaveInterpreterFrame(masm, x2); |
| __ Ret(); |
| |
| __ bind(&compile_lazy); |
| GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); |
| __ Unreachable(); // Should not return. |
| } |
| |
| static void Generate_InterpreterPushArgs(MacroAssembler* masm, |
| Register num_args, |
| Register first_arg_index, |
| Register spread_arg_out, |
| ConvertReceiverMode receiver_mode, |
| InterpreterPushArgsMode mode) { |
| Register last_arg_addr = x10; |
| Register stack_addr = x11; |
| Register slots_to_claim = x12; |
| Register slots_to_copy = x13; // May include receiver, unlike num_args. |
| |
| DCHECK(!AreAliased(num_args, first_arg_index, last_arg_addr, stack_addr, |
| slots_to_claim, slots_to_copy)); |
| // spread_arg_out may alias with the first_arg_index input. |
| DCHECK(!AreAliased(spread_arg_out, last_arg_addr, stack_addr, slots_to_claim, |
| slots_to_copy)); |
| |
| // Add one slot for the receiver. |
| __ Add(slots_to_claim, num_args, 1); |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Exclude final spread from slots to claim and the number of arguments. |
| __ Sub(slots_to_claim, slots_to_claim, 1); |
| __ Sub(num_args, num_args, 1); |
| } |
| |
| // Add a stack check before pushing arguments. |
| Label stack_overflow, done; |
| Generate_StackOverflowCheck(masm, slots_to_claim, &stack_overflow); |
| __ B(&done); |
| __ Bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ Unreachable(); |
| __ Bind(&done); |
| |
| // Round up to an even number of slots and claim them. |
| __ Add(slots_to_claim, slots_to_claim, 1); |
| __ Bic(slots_to_claim, slots_to_claim, 1); |
| __ Claim(slots_to_claim); |
| |
| { |
| // Store padding, which may be overwritten. |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.AcquireX(); |
| __ Sub(scratch, slots_to_claim, 1); |
| __ Poke(padreg, Operand(scratch, LSL, kSystemPointerSizeLog2)); |
| } |
| |
| if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { |
| // Store "undefined" as the receiver arg if we need to. |
| Register receiver = x14; |
| __ LoadRoot(receiver, RootIndex::kUndefinedValue); |
| __ SlotAddress(stack_addr, num_args); |
| __ Str(receiver, MemOperand(stack_addr)); |
| __ Mov(slots_to_copy, num_args); |
| } else { |
| // If we're not given an explicit receiver to store, we'll need to copy it |
| // together with the rest of the arguments. |
| __ Add(slots_to_copy, num_args, 1); |
| } |
| |
| __ Sub(last_arg_addr, first_arg_index, |
| Operand(slots_to_copy, LSL, kSystemPointerSizeLog2)); |
| __ Add(last_arg_addr, last_arg_addr, kSystemPointerSize); |
| |
| // Load the final spread argument into spread_arg_out, if necessary. |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Ldr(spread_arg_out, MemOperand(last_arg_addr, -kSystemPointerSize)); |
| } |
| |
| // Copy the rest of the arguments. |
| __ SlotAddress(stack_addr, 0); |
| __ CopyDoubleWords(stack_addr, last_arg_addr, slots_to_copy); |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenCallImpl( |
| MacroAssembler* masm, ConvertReceiverMode receiver_mode, |
| InterpreterPushArgsMode mode) { |
| DCHECK(mode != InterpreterPushArgsMode::kArrayFunction); |
| // ----------- S t a t e ------------- |
| // -- x0 : the number of arguments (not including the receiver) |
| // -- x2 : the address of the first argument to be pushed. Subsequent |
| // arguments should be consecutive above this, in the same order as |
| // they are to be pushed onto the stack. |
| // -- x1 : the target to call (can be any Object). |
| // ----------------------------------- |
| |
| // Push the arguments. num_args may be updated according to mode. |
| // spread_arg_out will be updated to contain the last spread argument, when |
| // mode == InterpreterPushArgsMode::kWithFinalSpread. |
| Register num_args = x0; |
| Register first_arg_index = x2; |
| Register spread_arg_out = |
| (mode == InterpreterPushArgsMode::kWithFinalSpread) ? x2 : no_reg; |
| Generate_InterpreterPushArgs(masm, num_args, first_arg_index, spread_arg_out, |
| receiver_mode, mode); |
| |
| // Call the target. |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), |
| RelocInfo::CODE_TARGET); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenConstructImpl( |
| MacroAssembler* masm, InterpreterPushArgsMode mode) { |
| // ----------- S t a t e ------------- |
| // -- x0 : argument count (not including receiver) |
| // -- x3 : new target |
| // -- x1 : constructor to call |
| // -- x2 : allocation site feedback if available, undefined otherwise |
| // -- x4 : address of the first argument |
| // ----------------------------------- |
| __ AssertUndefinedOrAllocationSite(x2); |
| |
| // Push the arguments. num_args may be updated according to mode. |
| // spread_arg_out will be updated to contain the last spread argument, when |
| // mode == InterpreterPushArgsMode::kWithFinalSpread. |
| Register num_args = x0; |
| Register first_arg_index = x4; |
| Register spread_arg_out = |
| (mode == InterpreterPushArgsMode::kWithFinalSpread) ? x2 : no_reg; |
| Generate_InterpreterPushArgs(masm, num_args, first_arg_index, spread_arg_out, |
| ConvertReceiverMode::kNullOrUndefined, mode); |
| |
| if (mode == InterpreterPushArgsMode::kArrayFunction) { |
| __ AssertFunction(x1); |
| |
| // Tail call to the array construct stub (still in the caller |
| // context at this point). |
| Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl); |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Call the constructor with x0, x1, and x3 unmodified. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); |
| // Call the constructor with x0, x1, and x3 unmodified. |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| } |
| |
| static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { |
| // Set the return address to the correct point in the interpreter entry |
| // trampoline. |
| Label builtin_trampoline, trampoline_loaded; |
| Smi interpreter_entry_return_pc_offset( |
| masm->isolate()->heap()->interpreter_entry_return_pc_offset()); |
| DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); |
| |
| // If the SFI function_data is an InterpreterData, the function will have a |
| // custom copy of the interpreter entry trampoline for profiling. If so, |
| // get the custom trampoline, otherwise grab the entry address of the global |
| // trampoline. |
| __ Ldr(x1, MemOperand(fp, StandardFrameConstants::kFunctionOffset)); |
| __ LoadTaggedPointerField( |
| x1, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadTaggedPointerField( |
| x1, FieldMemOperand(x1, SharedFunctionInfo::kFunctionDataOffset)); |
| __ CompareObjectType(x1, kInterpreterDispatchTableRegister, |
| kInterpreterDispatchTableRegister, |
| INTERPRETER_DATA_TYPE); |
| __ B(ne, &builtin_trampoline); |
| |
| __ Ldr(x1, |
| FieldMemOperand(x1, InterpreterData::kInterpreterTrampolineOffset)); |
| __ Add(x1, x1, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ B(&trampoline_loaded); |
| |
| __ Bind(&builtin_trampoline); |
| __ Mov(x1, ExternalReference:: |
| address_of_interpreter_entry_trampoline_instruction_start( |
| masm->isolate())); |
| __ Ldr(x1, MemOperand(x1)); |
| |
| __ Bind(&trampoline_loaded); |
| __ Add(lr, x1, Operand(interpreter_entry_return_pc_offset.value())); |
| |
| // Initialize the dispatch table register. |
| __ Mov( |
| kInterpreterDispatchTableRegister, |
| ExternalReference::interpreter_dispatch_table_address(masm->isolate())); |
| |
| // Get the bytecode array pointer from the frame. |
| __ Ldr(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| |
| if (FLAG_debug_code) { |
| // Check function data field is actually a BytecodeArray object. |
| __ AssertNotSmi( |
| kInterpreterBytecodeArrayRegister, |
| AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| __ CompareObjectType(kInterpreterBytecodeArrayRegister, x1, x1, |
| BYTECODE_ARRAY_TYPE); |
| __ Assert( |
| eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| } |
| |
| // Get the target bytecode offset from the frame. |
| __ Ldr(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| // Dispatch to the target bytecode. |
| __ Ldrb(x23, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| __ Mov(x1, Operand(x23, LSL, kSystemPointerSizeLog2)); |
| __ Ldr(kJavaScriptCallCodeStartRegister, |
| MemOperand(kInterpreterDispatchTableRegister, x1)); |
| __ Jump(kJavaScriptCallCodeStartRegister); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ ldr(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ ldr(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| // Load the current bytecode. |
| __ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| |
| // Advance to the next bytecode. |
| Label if_return; |
| AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, x1, x2, |
| &if_return); |
| |
| // Convert new bytecode offset to a Smi and save in the stackframe. |
| __ SmiTag(x2, kInterpreterBytecodeOffsetRegister); |
| __ Str(x2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| |
| Generate_InterpreterEnterBytecode(masm); |
| |
| // We should never take the if_return path. |
| __ bind(&if_return); |
| __ Abort(AbortReason::kInvalidBytecodeAdvance); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { |
| Generate_InterpreterEnterBytecode(masm); |
| } |
| |
| void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x0 : argument count (preserved for callee) |
| // -- x1 : new target (preserved for callee) |
| // -- x3 : target function (preserved for callee) |
| // ----------------------------------- |
| Register argc = x0; |
| Register new_target = x1; |
| Register target = x3; |
| |
| Label failed; |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Push argument count, a copy of the target function and the new target, |
| // together with some padding to maintain 16-byte alignment. |
| __ SmiTag(argc); |
| __ Push(argc, new_target, target, padreg); |
| |
| // Push another copy of new target as a parameter to the runtime call and |
| // copy the rest of the arguments from caller (stdlib, foreign, heap). |
| Label args_done; |
| Register undef = x10; |
| Register scratch1 = x12; |
| Register scratch2 = x13; |
| Register scratch3 = x14; |
| __ LoadRoot(undef, RootIndex::kUndefinedValue); |
| |
| Label at_least_one_arg; |
| Label three_args; |
| DCHECK_EQ(0, Smi::kZero.ptr()); |
| __ Cbnz(argc, &at_least_one_arg); |
| |
| // No arguments. |
| __ Push(new_target, undef, undef, undef); |
| __ B(&args_done); |
| |
| __ Bind(&at_least_one_arg); |
| // Load two arguments, though we may only use one (for the one arg case). |
| __ Ldp(scratch2, scratch1, |
| MemOperand(fp, StandardFrameConstants::kCallerSPOffset)); |
| |
| // Set flags for determining the value of smi-tagged argc. |
| // lt => 1, eq => 2, gt => 3. |
| __ Cmp(argc, Smi::FromInt(2)); |
| __ B(gt, &three_args); |
| |
| // One or two arguments. |
| // If there is one argument (flags are lt), scratch2 contains that argument, |
| // and scratch1 must be undefined. |
| __ CmovX(scratch1, scratch2, lt); |
| __ CmovX(scratch2, undef, lt); |
| __ Push(new_target, scratch1, scratch2, undef); |
| __ B(&args_done); |
| |
| // Three arguments. |
| __ Bind(&three_args); |
| __ Ldr(scratch3, MemOperand(fp, StandardFrameConstants::kCallerSPOffset + |
| 2 * kSystemPointerSize)); |
| __ Push(new_target, scratch3, scratch1, scratch2); |
| |
| __ Bind(&args_done); |
| |
| // Call runtime, on success unwind frame, and parent frame. |
| __ CallRuntime(Runtime::kInstantiateAsmJs, 4); |
| |
| // A smi 0 is returned on failure, an object on success. |
| __ JumpIfSmi(x0, &failed); |
| |
| // Peek the argument count from the stack, untagging at the same time. |
| __ SmiUntag(x4, MemOperand(sp, 3 * kSystemPointerSize)); |
| __ Drop(4); |
| scope.GenerateLeaveFrame(); |
| |
| // Drop arguments and receiver. |
| __ DropArguments(x4, TurboAssembler::kCountExcludesReceiver); |
| __ Ret(); |
| |
| __ Bind(&failed); |
| // Restore target function and new target. |
| __ Pop(padreg, target, new_target, argc); |
| __ SmiUntag(argc); |
| } |
| // On failure, tail call back to regular js by re-calling the function |
| // which has be reset to the compile lazy builtin. |
| __ LoadTaggedPointerField( |
| x4, FieldMemOperand(new_target, JSFunction::kCodeOffset)); |
| __ JumpCodeObject(x4); |
| } |
| |
| namespace { |
| void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, |
| bool java_script_builtin, |
| bool with_result) { |
| const RegisterConfiguration* config(RegisterConfiguration::Default()); |
| int allocatable_register_count = config->num_allocatable_general_registers(); |
| int frame_size = BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp + |
| (allocatable_register_count + |
| BuiltinContinuationFrameConstants::PaddingSlotCount( |
| allocatable_register_count)) * |
| kSystemPointerSize; |
| |
| // Set up frame pointer. |
| __ Add(fp, sp, frame_size); |
| |
| if (with_result) { |
| // Overwrite the hole inserted by the deoptimizer with the return value from |
| // the LAZY deopt point. |
| __ Str(x0, |
| MemOperand(fp, BuiltinContinuationFrameConstants::kCallerSPOffset)); |
| } |
| |
| // Restore registers in pairs. |
| int offset = -BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp - |
| allocatable_register_count * kSystemPointerSize; |
| for (int i = allocatable_register_count - 1; i > 0; i -= 2) { |
| int code1 = config->GetAllocatableGeneralCode(i); |
| int code2 = config->GetAllocatableGeneralCode(i - 1); |
| Register reg1 = Register::from_code(code1); |
| Register reg2 = Register::from_code(code2); |
| __ Ldp(reg1, reg2, MemOperand(fp, offset)); |
| offset += 2 * kSystemPointerSize; |
| } |
| |
| // Restore first register separately, if number of registers is odd. |
| if (allocatable_register_count % 2 != 0) { |
| int code = config->GetAllocatableGeneralCode(0); |
| __ Ldr(Register::from_code(code), MemOperand(fp, offset)); |
| } |
| |
| if (java_script_builtin) __ SmiUntag(kJavaScriptCallArgCountRegister); |
| |
| // Load builtin index (stored as a Smi) and use it to get the builtin start |
| // address from the builtins table. |
| UseScratchRegisterScope temps(masm); |
| Register builtin = temps.AcquireX(); |
| __ Ldr( |
| builtin, |
| MemOperand(fp, BuiltinContinuationFrameConstants::kBuiltinIndexOffset)); |
| |
| // Restore fp, lr. |
| __ Mov(sp, fp); |
| __ Pop(fp, lr); |
| |
| __ LoadEntryFromBuiltinIndex(builtin); |
| __ Jump(builtin); |
| } |
| } // namespace |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, false); |
| } |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, true); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, false); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, true); |
| } |
| |
| void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kNotifyDeoptimized); |
| } |
| |
| // Pop TOS register and padding. |
| DCHECK_EQ(kInterpreterAccumulatorRegister.code(), x0.code()); |
| __ Pop(x0, padreg); |
| __ Ret(); |
| } |
| |
| void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { |
| // Lookup the function in the JavaScript frame. |
| __ Ldr(x0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ Ldr(x0, MemOperand(x0, JavaScriptFrameConstants::kFunctionOffset)); |
| |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Pass function as argument. |
| __ PushArgument(x0); |
| __ CallRuntime(Runtime::kCompileForOnStackReplacement); |
| } |
| |
| // If the code object is null, just return to the caller. |
| Label skip; |
| __ CompareAndBranch(x0, Smi::zero(), ne, &skip); |
| __ Ret(); |
| |
| __ Bind(&skip); |
| |
| // Drop the handler frame that is be sitting on top of the actual |
| // JavaScript frame. This is the case then OSR is triggered from bytecode. |
| __ LeaveFrame(StackFrame::STUB); |
| |
| // Load deoptimization data from the code object. |
| // <deopt_data> = <code>[#deoptimization_data_offset] |
| __ LoadTaggedPointerField( |
| x1, FieldMemOperand(x0, Code::kDeoptimizationDataOffset)); |
| |
| // Load the OSR entrypoint offset from the deoptimization data. |
| // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] |
| __ SmiUntagField( |
| x1, FieldMemOperand(x1, FixedArray::OffsetOfElementAt( |
| DeoptimizationData::kOsrPcOffsetIndex))); |
| |
| // Compute the target address = code_obj + header_size + osr_offset |
| // <entry_addr> = <code_obj> + #header_size + <osr_offset> |
| __ Add(x0, x0, x1); |
| __ Add(lr, x0, Code::kHeaderSize - kHeapObjectTag); |
| |
| // And "return" to the OSR entry point of the function. |
| __ Ret(); |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x0 : argc |
| // -- sp[0] : argArray (if argc == 2) |
| // -- sp[8] : thisArg (if argc >= 1) |
| // -- sp[16] : receiver |
| // ----------------------------------- |
| ASM_LOCATION("Builtins::Generate_FunctionPrototypeApply"); |
| |
| Register argc = x0; |
| Register arg_array = x2; |
| Register receiver = x1; |
| Register this_arg = x0; |
| Register undefined_value = x3; |
| Register null_value = x4; |
| |
| __ LoadRoot(undefined_value, RootIndex::kUndefinedValue); |
| __ LoadRoot(null_value, RootIndex::kNullValue); |
| |
| // 1. Load receiver into x1, argArray into x2 (if present), remove all |
| // arguments from the stack (including the receiver), and push thisArg (if |
| // present) instead. |
| { |
| Register saved_argc = x10; |
| Register scratch = x11; |
| |
| // Push two undefined values on the stack, to put it in a consistent state |
| // so that we can always read three arguments from it. |
| __ Push(undefined_value, undefined_value); |
| |
| // The state of the stack (with arrows pointing to the slots we will read) |
| // is as follows: |
| // |
| // argc = 0 argc = 1 argc = 2 |
| // -> sp[16]: receiver -> sp[24]: receiver -> sp[32]: receiver |
| // -> sp[8]: undefined -> sp[16]: this_arg -> sp[24]: this_arg |
| // -> sp[0]: undefined -> sp[8]: undefined -> sp[16]: arg_array |
| // sp[0]: undefined sp[8]: undefined |
| // sp[0]: undefined |
| // |
| // There are now always three arguments to read, in the slots starting from |
| // slot argc. |
| __ SlotAddress(scratch, argc); |
| |
| __ Mov(saved_argc, argc); |
| __ Ldp(arg_array, this_arg, MemOperand(scratch)); // Overwrites argc. |
| __ Ldr(receiver, MemOperand(scratch, 2 * kSystemPointerSize)); |
| |
| __ Drop(2); // Drop the undefined values we pushed above. |
| __ DropArguments(saved_argc, TurboAssembler::kCountExcludesReceiver); |
| |
| __ PushArgument(this_arg); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- x2 : argArray |
| // -- x1 : receiver |
| // -- sp[0] : thisArg |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable receiver here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Tail call with no arguments if argArray is null or undefined. |
| Label no_arguments; |
| __ Cmp(arg_array, null_value); |
| __ Ccmp(arg_array, undefined_value, ZFlag, ne); |
| __ B(eq, &no_arguments); |
| |
| // 4a. Apply the receiver to the given argArray. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| |
| // 4b. The argArray is either null or undefined, so we tail call without any |
| // arguments to the receiver. |
| __ Bind(&no_arguments); |
| { |
| __ Mov(x0, 0); |
| DCHECK(receiver.Is(x1)); |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { |
| Register argc = x0; |
| Register function = x1; |
| |
| ASM_LOCATION("Builtins::Generate_FunctionPrototypeCall"); |
| |
| // 1. Get the callable to call (passed as receiver) from the stack. |
| __ Peek(function, Operand(argc, LSL, kXRegSizeLog2)); |
| |
| // 2. Handle case with no arguments. |
| { |
| Label non_zero; |
| Register scratch = x10; |
| __ Cbnz(argc, &non_zero); |
| __ LoadRoot(scratch, RootIndex::kUndefinedValue); |
| // Overwrite receiver with undefined, which will be the new receiver. |
| // We do not need to overwrite the padding slot above it with anything. |
| __ Poke(scratch, 0); |
| // Call function. The argument count is already zero. |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| __ Bind(&non_zero); |
| } |
| |
| // 3. Overwrite the receiver with padding. If argc is odd, this is all we |
| // need to do. |
| Label arguments_ready; |
| __ Poke(padreg, Operand(argc, LSL, kXRegSizeLog2)); |
| __ Tbnz(argc, 0, &arguments_ready); |
| |
| // 4. If argc is even: |
| // Copy arguments two slots higher in memory, overwriting the original |
| // receiver and padding. |
| { |
| Register copy_from = x10; |
| Register copy_to = x11; |
| Register count = x12; |
| Register last_arg_slot = x13; |
| __ Mov(count, argc); |
| __ Sub(last_arg_slot, argc, 1); |
| __ SlotAddress(copy_from, last_arg_slot); |
| __ Add(copy_to, copy_from, 2 * kSystemPointerSize); |
| __ CopyDoubleWords(copy_to, copy_from, count, |
| TurboAssembler::kSrcLessThanDst); |
| // Drop two slots. These are copies of the last two arguments. |
| __ Drop(2); |
| } |
| |
| // 5. Adjust argument count to make the original first argument the new |
| // receiver and call the callable. |
| __ Bind(&arguments_ready); |
| __ Sub(argc, argc, 1); |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x0 : argc |
| // -- sp[0] : argumentsList (if argc == 3) |
| // -- sp[8] : thisArgument (if argc >= 2) |
| // -- sp[16] : target (if argc >= 1) |
| // -- sp[24] : receiver |
| // ----------------------------------- |
| ASM_LOCATION("Builtins::Generate_ReflectApply"); |
| |
| Register argc = x0; |
| Register arguments_list = x2; |
| Register target = x1; |
| Register this_argument = x4; |
| Register undefined_value = x3; |
| |
| __ LoadRoot(undefined_value, RootIndex::kUndefinedValue); |
| |
| // 1. Load target into x1 (if present), argumentsList into x2 (if present), |
| // remove all arguments from the stack (including the receiver), and push |
| // thisArgument (if present) instead. |
| { |
| // Push four undefined values on the stack, to put it in a consistent state |
| // so that we can always read the three arguments we need from it. The |
| // fourth value is used for stack alignment. |
| __ Push(undefined_value, undefined_value, undefined_value, undefined_value); |
| |
| // The state of the stack (with arrows pointing to the slots we will read) |
| // is as follows: |
| // |
| // argc = 0 argc = 1 argc = 2 |
| // sp[32]: receiver sp[40]: receiver sp[48]: receiver |
| // -> sp[24]: undefined -> sp[32]: target -> sp[40]: target |
| // -> sp[16]: undefined -> sp[24]: undefined -> sp[32]: this_argument |
| // -> sp[8]: undefined -> sp[16]: undefined -> sp[24]: undefined |
| // sp[0]: undefined sp[8]: undefined sp[16]: undefined |
| // sp[0]: undefined sp[8]: undefined |
| // sp[0]: undefined |
| // argc = 3 |
| // sp[56]: receiver |
| // -> sp[48]: target |
| // -> sp[40]: this_argument |
| // -> sp[32]: arguments_list |
| // sp[24]: undefined |
| // sp[16]: undefined |
| // sp[8]: undefined |
| // sp[0]: undefined |
| // |
| // There are now always three arguments to read, in the slots starting from |
| // slot (argc + 1). |
| Register scratch = x10; |
| __ SlotAddress(scratch, argc); |
| __ Ldp(arguments_list, this_argument, |
| MemOperand(scratch, 1 * kSystemPointerSize)); |
| __ Ldr(target, MemOperand(scratch, 3 * kSystemPointerSize)); |
| |
| __ Drop(4); // Drop the undefined values we pushed above. |
| __ DropArguments(argc, TurboAssembler::kCountExcludesReceiver); |
| |
| __ PushArgument(this_argument); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- x2 : argumentsList |
| // -- x1 : target |
| // -- sp[0] : thisArgument |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable target here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Apply the target to the given argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x0 : argc |
| // -- sp[0] : new.target (optional) |
| // -- sp[8] : argumentsList |
| // -- sp[16] : target |
| // -- sp[24] : receiver |
| // ----------------------------------- |
| ASM_LOCATION("Builtins::Generate_ReflectConstruct"); |
| |
| Register argc = x0; |
| Register arguments_list = x2; |
| Register target = x1; |
| Register new_target = x3; |
| Register undefined_value = x4; |
| |
| __ LoadRoot(undefined_value, RootIndex::kUndefinedValue); |
| |
| // 1. Load target into x1 (if present), argumentsList into x2 (if present), |
| // new.target into x3 (if present, otherwise use target), remove all |
| // arguments from the stack (including the receiver), and push thisArgument |
| // (if present) instead. |
| { |
| // Push four undefined values on the stack, to put it in a consistent state |
| // so that we can always read the three arguments we need from it. The |
| // fourth value is used for stack alignment. |
| __ Push(undefined_value, undefined_value, undefined_value, undefined_value); |
| |
| // The state of the stack (with arrows pointing to the slots we will read) |
| // is as follows: |
| // |
| // argc = 0 argc = 1 argc = 2 |
| // sp[32]: receiver sp[40]: receiver sp[48]: receiver |
| // -> sp[24]: undefined -> sp[32]: target -> sp[40]: target |
| // -> sp[16]: undefined -> sp[24]: undefined -> sp[32]: arguments_list |
| // -> sp[8]: undefined -> sp[16]: undefined -> sp[24]: undefined |
| // sp[0]: undefined sp[8]: undefined sp[16]: undefined |
| // sp[0]: undefined sp[8]: undefined |
| // sp[0]: undefined |
| // argc = 3 |
| // sp[56]: receiver |
| // -> sp[48]: target |
| // -> sp[40]: arguments_list |
| // -> sp[32]: new_target |
| // sp[24]: undefined |
| // sp[16]: undefined |
| // sp[8]: undefined |
| // sp[0]: undefined |
| // |
| // There are now always three arguments to read, in the slots starting from |
| // slot (argc + 1). |
| Register scratch = x10; |
| __ SlotAddress(scratch, argc); |
| __ Ldp(new_target, arguments_list, |
| MemOperand(scratch, 1 * kSystemPointerSize)); |
| __ Ldr(target, MemOperand(scratch, 3 * kSystemPointerSize)); |
| |
| __ Cmp(argc, 2); |
| __ CmovX(new_target, target, ls); // target if argc <= 2. |
| |
| __ Drop(4); // Drop the undefined values we pushed above. |
| __ DropArguments(argc, TurboAssembler::kCountExcludesReceiver); |
| |
| // Push receiver (undefined). |
| __ PushArgument(undefined_value); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- x2 : argumentsList |
| // -- x1 : target |
| // -- x3 : new.target |
| // -- sp[0] : receiver (undefined) |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for constructor target here, |
| // since that's the first thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 3. We don't need to check explicitly for constructor new.target here, |
| // since that's the second thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 4. Construct the target with the given new.target and argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| namespace { |
| |
| void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { |
| __ Push(lr, fp); |
| __ Mov(x11, StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)); |
| __ Push(x11, x1); // x1: function |
| __ SmiTag(x11, x0); // x0: number of arguments. |
| __ Push(x11, padreg); |
| __ Add(fp, sp, ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp); |
| } |
| |
| void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x0 : result being passed through |
| // ----------------------------------- |
| // Get the number of arguments passed (as a smi), tear down the frame and |
| // then drop the parameters and the receiver. |
| __ Ldr(x10, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ Mov(sp, fp); |
| __ Pop(fp, lr); |
| |
| // Drop actual parameters and receiver. |
| __ SmiUntag(x10); |
| __ DropArguments(x10, TurboAssembler::kCountExcludesReceiver); |
| } |
| |
| // Prepares the stack for copying the varargs. First we claim the necessary |
| // slots, taking care of potential padding. Then we copy the existing arguments |
| // one slot up or one slot down, as needed. |
| void Generate_PrepareForCopyingVarargs(MacroAssembler* masm, Register argc, |
| Register len) { |
| Label len_odd, exit; |
| Register slots_to_copy = x10; // If needed. |
| __ Add(slots_to_copy, argc, 1); |
| __ Add(argc, argc, len); |
| __ Tbnz(len, 0, &len_odd); |
| __ Claim(len); |
| __ B(&exit); |
| |
| __ Bind(&len_odd); |
| // Claim space we need. If argc is even, slots_to_claim = len + 1, as we need |
| // one extra padding slot. If argc is odd, we know that the original arguments |
| // will have a padding slot we can reuse (since len is odd), so |
| // slots_to_claim = len - 1. |
| { |
| Register scratch = x11; |
| Register slots_to_claim = x12; |
| __ Add(slots_to_claim, len, 1); |
| __ And(scratch, argc, 1); |
| __ Sub(slots_to_claim, slots_to_claim, Operand(scratch, LSL, 1)); |
| __ Claim(slots_to_claim); |
| } |
| |
| Label copy_down; |
| __ Tbz(slots_to_copy, 0, ©_down); |
| |
| // Copy existing arguments one slot up. |
| { |
| Register src = x11; |
| Register dst = x12; |
| Register scratch = x13; |
| __ Sub(scratch, argc, 1); |
| __ SlotAddress(src, scratch); |
| __ SlotAddress(dst, argc); |
| __ CopyDoubleWords(dst, src, slots_to_copy, |
| TurboAssembler::kSrcLessThanDst); |
| } |
| __ B(&exit); |
| |
| // Copy existing arguments one slot down and add padding. |
| __ Bind(©_down); |
| { |
| Register src = x11; |
| Register dst = x12; |
| Register scratch = x13; |
| __ Add(src, len, 1); |
| __ Mov(dst, len); // CopySlots will corrupt dst. |
| __ CopySlots(dst, src, slots_to_copy); |
| __ Add(scratch, argc, 1); |
| __ Poke(padreg, |
| Operand(scratch, LSL, kSystemPointerSizeLog2)); // Store padding. |
| } |
| |
| __ Bind(&exit); |
| } |
| |
| } // namespace |
| |
| // static |
| void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- x1 : target |
| // -- x0 : number of parameters on the stack (not including the receiver) |
| // -- x2 : arguments list (a FixedArray) |
| // -- x4 : len (number of elements to push from args) |
| // -- x3 : new.target (for [[Construct]]) |
| // ----------------------------------- |
| if (masm->emit_debug_code()) { |
| // Allow x2 to be a FixedArray, or a FixedDoubleArray if x4 == 0. |
| Label ok, fail; |
| __ AssertNotSmi(x2, AbortReason::kOperandIsNotAFixedArray); |
| __ LoadTaggedPointerField(x10, FieldMemOperand(x2, HeapObject::kMapOffset)); |
| __ Ldrh(x13, FieldMemOperand(x10, Map::kInstanceTypeOffset)); |
| __ Cmp(x13, FIXED_ARRAY_TYPE); |
| __ B(eq, &ok); |
| __ Cmp(x13, FIXED_DOUBLE_ARRAY_TYPE); |
| __ B(ne, &fail); |
| __ Cmp(x4, 0); |
| __ B(eq, &ok); |
| // Fall through. |
| __ bind(&fail); |
| __ Abort(AbortReason::kOperandIsNotAFixedArray); |
| |
| __ bind(&ok); |
| } |
| |
| Register arguments_list = x2; |
| Register argc = x0; |
| Register len = x4; |
| |
| Label stack_overflow; |
| Generate_StackOverflowCheck(masm, len, &stack_overflow); |
| |
| // Skip argument setup if we don't need to push any varargs. |
| Label done; |
| __ Cbz(len, &done); |
| |
| Generate_PrepareForCopyingVarargs(masm, argc, len); |
| |
| // Push varargs. |
| { |
| Label loop; |
| Register src = x10; |
| Register the_hole_value = x11; |
| Register undefined_value = x12; |
| Register scratch = x13; |
| __ Add(src, arguments_list, FixedArray::kHeaderSize - kHeapObjectTag); |
| __ LoadRoot(the_hole_value, RootIndex::kTheHoleValue); |
| __ LoadRoot(undefined_value, RootIndex::kUndefinedValue); |
| // We do not use the CompareRoot macro as it would do a LoadRoot behind the |
| // scenes and we want to avoid that in a loop. |
| // TODO(all): Consider using Ldp and Stp. |
| __ Bind(&loop); |
| __ Sub(len, len, 1); |
| __ LoadAnyTaggedField(scratch, MemOperand(src, kTaggedSize, PostIndex)); |
| __ Cmp(scratch, the_hole_value); |
| __ Csel(scratch, scratch, undefined_value, ne); |
| __ Poke(scratch, Operand(len, LSL, kSystemPointerSizeLog2)); |
| __ Cbnz(len, &loop); |
| } |
| __ Bind(&done); |
| |
| // Tail-call to the actual Call or Construct builtin. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| |
| __ bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, |
| CallOrConstructMode mode, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- x0 : the number of arguments (not including the receiver) |
| // -- x3 : the new.target (for [[Construct]] calls) |
| // -- x1 : the target to call (can be any Object) |
| // -- x2 : start index (to support rest parameters) |
| // ----------------------------------- |
| |
| Register argc = x0; |
| Register start_index = x2; |
| |
| // Check if new.target has a [[Construct]] internal method. |
| if (mode == CallOrConstructMode::kConstruct) { |
| Label new_target_constructor, new_target_not_constructor; |
| __ JumpIfSmi(x3, &new_target_not_constructor); |
| __ LoadTaggedPointerField(x5, FieldMemOperand(x3, HeapObject::kMapOffset)); |
| __ Ldrb(x5, FieldMemOperand(x5, Map::kBitFieldOffset)); |
| __ TestAndBranchIfAnySet(x5, Map::IsConstructorBit::kMask, |
| &new_target_constructor); |
| __ Bind(&new_target_not_constructor); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ PushArgument(x3); |
| __ CallRuntime(Runtime::kThrowNotConstructor); |
| } |
| __ Bind(&new_target_constructor); |
| } |
| |
| // Check if we have an arguments adaptor frame below the function frame. |
| // args_fp will point to the frame that contains the actual arguments, which |
| // will be the current frame unless we have an arguments adaptor frame, in |
| // which case args_fp points to the arguments adaptor frame. |
| Register args_fp = x5; |
| Register len = x6; |
| { |
| Label arguments_adaptor, arguments_done; |
| Register scratch = x10; |
| __ Ldr(args_fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ Ldr(x4, MemOperand(args_fp, |
| CommonFrameConstants::kContextOrFrameTypeOffset)); |
| __ Cmp(x4, StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)); |
| __ B(eq, &arguments_adaptor); |
| { |
| __ Ldr(scratch, |
| MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ LoadTaggedPointerField( |
| scratch, |
| FieldMemOperand(scratch, JSFunction::kSharedFunctionInfoOffset)); |
| __ Ldrh(len, |
| FieldMemOperand(scratch, |
| SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ Mov(args_fp, fp); |
| } |
| __ B(&arguments_done); |
| __ Bind(&arguments_adaptor); |
| { |
| // Just load the length from ArgumentsAdaptorFrame. |
| __ SmiUntag( |
| len, |
| MemOperand(args_fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| } |
| __ Bind(&arguments_done); |
| } |
| |
| Label stack_done, stack_overflow; |
| __ Subs(len, len, start_index); |
| __ B(le, &stack_done); |
| // Check for stack overflow. |
| Generate_StackOverflowCheck(masm, x6, &stack_overflow); |
| |
| Generate_PrepareForCopyingVarargs(masm, argc, len); |
| |
| // Push varargs. |
| { |
| Register dst = x13; |
| __ Add(args_fp, args_fp, 2 * kSystemPointerSize); |
| __ SlotAddress(dst, 0); |
| __ CopyDoubleWords(dst, args_fp, len); |
| } |
| __ B(&stack_done); |
| |
| __ Bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ Bind(&stack_done); |
| |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_CallFunction(MacroAssembler* masm, |
| ConvertReceiverMode mode) { |
| ASM_LOCATION("Builtins::Generate_CallFunction"); |
| // ----------- S t a t e ------------- |
| // -- x0 : the number of arguments (not including the receiver) |
| // -- x1 : the function to call (checked to be a JSFunction) |
| // ----------------------------------- |
| __ AssertFunction(x1); |
| |
| // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) |
| // Check that function is not a "classConstructor". |
| Label class_constructor; |
| __ LoadTaggedPointerField( |
| x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); |
| __ Ldr(w3, FieldMemOperand(x2, SharedFunctionInfo::kFlagsOffset)); |
| __ TestAndBranchIfAnySet(w3, SharedFunctionInfo::IsClassConstructorBit::kMask, |
| &class_constructor); |
| |
| // Enter the context of the function; ToObject has to run in the function |
| // context, and we also need to take the global proxy from the function |
| // context in case of conversion. |
| __ LoadTaggedPointerField(cp, |
| FieldMemOperand(x1, JSFunction::kContextOffset)); |
| // We need to convert the receiver for non-native sloppy mode functions. |
| Label done_convert; |
| __ TestAndBranchIfAnySet(w3, |
| SharedFunctionInfo::IsNativeBit::kMask | |
| SharedFunctionInfo::IsStrictBit::kMask, |
| &done_convert); |
| { |
| // ----------- S t a t e ------------- |
| // -- x0 : the number of arguments (not including the receiver) |
| // -- x1 : the function to call (checked to be a JSFunction) |
| // -- x2 : the shared function info. |
| // -- cp : the function context. |
| // ----------------------------------- |
| |
| if (mode == ConvertReceiverMode::kNullOrUndefined) { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(x3); |
| } else { |
| Label convert_to_object, convert_receiver; |
| __ Peek(x3, Operand(x0, LSL, kXRegSizeLog2)); |
| __ JumpIfSmi(x3, &convert_to_object); |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CompareObjectType(x3, x4, x4, FIRST_JS_RECEIVER_TYPE); |
| __ B(hs, &done_convert); |
| if (mode != ConvertReceiverMode::kNotNullOrUndefined) { |
| Label convert_global_proxy; |
| __ JumpIfRoot(x3, RootIndex::kUndefinedValue, &convert_global_proxy); |
| __ JumpIfNotRoot(x3, RootIndex::kNullValue, &convert_to_object); |
| __ Bind(&convert_global_proxy); |
| { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(x3); |
| } |
| __ B(&convert_receiver); |
| } |
| __ Bind(&convert_to_object); |
| { |
| // Convert receiver using ToObject. |
| // TODO(bmeurer): Inline the allocation here to avoid building the frame |
| // in the fast case? (fall back to AllocateInNewSpace?) |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ SmiTag(x0); |
| __ Push(padreg, x0, x1, cp); |
| __ Mov(x0, x3); |
| __ Call(BUILTIN_CODE(masm->isolate(), ToObject), |
| RelocInfo::CODE_TARGET); |
| __ Mov(x3, x0); |
| __ Pop(cp, x1, x0, padreg); |
| __ SmiUntag(x0); |
| } |
| __ LoadTaggedPointerField( |
| x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); |
| __ Bind(&convert_receiver); |
| } |
| __ Poke(x3, Operand(x0, LSL, kXRegSizeLog2)); |
| } |
| __ Bind(&done_convert); |
| |
| // ----------- S t a t e ------------- |
| // -- x0 : the number of arguments (not including the receiver) |
| // -- x1 : the function to call (checked to be a JSFunction) |
| // -- x2 : the shared function info. |
| // -- cp : the function context. |
| // ----------------------------------- |
| |
| __ Ldrh(x2, |
| FieldMemOperand(x2, SharedFunctionInfo::kFormalParameterCountOffset)); |
| ParameterCount actual(x0); |
| ParameterCount expected(x2); |
| __ InvokeFunctionCode(x1, no_reg, expected, actual, JUMP_FUNCTION); |
| |
| // The function is a "classConstructor", need to raise an exception. |
| __ Bind(&class_constructor); |
| { |
| FrameScope frame(masm, StackFrame::INTERNAL); |
| __ PushArgument(x1); |
| __ CallRuntime(Runtime::kThrowConstructorNonCallableError); |
| } |
| } |
| |
| namespace { |
| |
| void Generate_PushBoundArguments(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x0 : the number of arguments (not including the receiver) |
| // -- x1 : target (checked to be a JSBoundFunction) |
| // -- x3 : new.target (only in case of [[Construct]]) |
| // ----------------------------------- |
| |
| Register bound_argc = x4; |
| Register bound_argv = x2; |
| |
| // Load [[BoundArguments]] into x2 and length of that into x4. |
| Label no_bound_arguments; |
| __ LoadTaggedPointerField( |
| bound_argv, FieldMemOperand(x1, JSBoundFunction::kBoundArgumentsOffset)); |
| __ SmiUntagField(bound_argc, |
| FieldMemOperand(bound_argv, FixedArray::kLengthOffset)); |
| __ Cbz(bound_argc, &no_bound_arguments); |
| { |
| // ----------- S t a t e ------------- |
| // -- x0 : the number of arguments (not including the receiver) |
| // -- x1 : target (checked to be a JSBoundFunction) |
| // -- x2 : the [[BoundArguments]] (implemented as FixedArray) |
| // -- x3 : new.target (only in case of [[Construct]]) |
| // -- x4 : the number of [[BoundArguments]] |
| // ----------------------------------- |
| |
| Register argc = x0; |
| |
| // Check for stack overflow. |
| { |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack |
| // limit". |
| Label done; |
| __ LoadRoot(x10, RootIndex::kRealStackLimit); |
| // Make x10 the space we have left. The stack might already be overflowed |
| // here which will cause x10 to become negative. |
| __ Sub(x10, sp, x10); |
| // Check if the arguments will overflow the stack. |
| __ Cmp(x10, Operand(bound_argc, LSL, kSystemPointerSizeLog2)); |
| __ B(gt, &done); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ Bind(&done); |
| } |
| |
| // Check if we need padding. |
| Label copy_args, copy_bound_args; |
| Register total_argc = x15; |
| Register slots_to_claim = x12; |
| __ Add(total_argc, argc, bound_argc); |
| __ Mov(slots_to_claim, bound_argc); |
| __ Tbz(bound_argc, 0, ©_args); |
| |
| // Load receiver before we start moving the arguments. We will only |
| // need this in this path because the bound arguments are odd. |
| Register receiver = x14; |
| __ Peek(receiver, Operand(argc, LSL, kSystemPointerSizeLog2)); |
| |
| // Claim space we need. If argc is even, slots_to_claim = bound_argc + 1, |
| // as we need one extra padding slot. If argc is odd, we know that the |
| // original arguments will have a padding slot we can reuse (since |
| // bound_argc is odd), so slots_to_claim = bound_argc - 1. |
| { |
| Register scratch = x11; |
| __ Add(slots_to_claim, bound_argc, 1); |
| __ And(scratch, total_argc, 1); |
| __ Sub(slots_to_claim, slots_to_claim, Operand(scratch, LSL, 1)); |
| } |
| |
| // Copy bound arguments. |
| __ Bind(©_args); |
| // Skip claim and copy of existing arguments in the special case where we |
| // do not need to claim any slots (this will be the case when |
| // bound_argc == 1 and the existing arguments have padding we can reuse). |
| __ Cbz(slots_to_claim, ©_bound_args); |
| __ Claim(slots_to_claim); |
| { |
| Register count = x10; |
| // Relocate arguments to a lower address. |
| __ Mov(count, argc); |
| __ CopySlots(0, slots_to_claim, count); |
| |
| __ Bind(©_bound_args); |
| // Copy [[BoundArguments]] to the stack (below the arguments). The first |
| // element of the array is copied to the highest address. |
| { |
| Label loop; |
| Register counter = x10; |
| Register scratch = x11; |
| Register copy_to = x12; |
| __ Add(bound_argv, bound_argv, |
| FixedArray::kHeaderSize - kHeapObjectTag); |
| __ SlotAddress(copy_to, argc); |
| __ Add(argc, argc, |
| bound_argc); // Update argc to include bound arguments. |
| __ Lsl(counter, bound_argc, kTaggedSizeLog2); |
| __ Bind(&loop); |
| __ Sub(counter, counter, kTaggedSize); |
| __ LoadAnyTaggedField(scratch, MemOperand(bound_argv, counter)); |
| // Poke into claimed area of stack. |
| __ Str(scratch, MemOperand(copy_to, kSystemPointerSize, PostIndex)); |
| __ Cbnz(counter, &loop); |
| } |
| |
| { |
| Label done; |
| Register scratch = x10; |
| __ Tbz(bound_argc, 0, &done); |
| // Store receiver. |
| __ Add(scratch, sp, Operand(total_argc, LSL, kSystemPointerSizeLog2)); |
| __ Str(receiver, MemOperand(scratch, kSystemPointerSize, PostIndex)); |
| __ Tbnz(total_argc, 0, &done); |
| // Store padding. |
| __ Str(padreg, MemOperand(scratch)); |
| __ Bind(&done); |
| } |
| } |
| } |
| __ Bind(&no_bound_arguments); |
| } |
| |
| } // namespace |
| |
| // static |
| void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x0 : the number of arguments (not including the receiver) |
| // -- x1 : the function to call (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| __ AssertBoundFunction(x1); |
| |
| // Patch the receiver to [[BoundThis]]. |
| __ LoadAnyTaggedField(x10, |
| FieldMemOperand(x1, JSBoundFunction::kBoundThisOffset)); |
| __ Poke(x10, Operand(x0, LSL, kSystemPointerSizeLog2)); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Call the [[BoundTargetFunction]] via the Call builtin. |
| __ LoadTaggedPointerField( |
| x1, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- x0 : the number of arguments (not including the receiver) |
| // -- x1 : the target to call (can be any Object). |
| // ----------------------------------- |
| |
| Label non_callable, non_function, non_smi; |
| __ JumpIfSmi(x1, &non_callable); |
| __ Bind(&non_smi); |
| __ CompareObjectType(x1, x4, x5, JS_FUNCTION_TYPE); |
| __ Jump(masm->isolate()->builtins()->CallFunction(mode), |
| RelocInfo::CODE_TARGET, eq); |
| __ Cmp(x5, JS_BOUND_FUNCTION_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), |
| RelocInfo::CODE_TARGET, eq); |
| |
| // Check if target has a [[Call]] internal method. |
| __ Ldrb(x4, FieldMemOperand(x4, Map::kBitFieldOffset)); |
| __ TestAndBranchIfAllClear(x4, Map::IsCallableBit::kMask, &non_callable); |
| |
| // Check if target is a proxy and call CallProxy external builtin |
| __ Cmp(x5, JS_PROXY_TYPE); |
| __ B(ne, &non_function); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET); |
| |
| // 2. Call to something else, which might have a [[Call]] internal method (if |
| // not we raise an exception). |
| __ Bind(&non_function); |
| // Overwrite the original receiver with the (original) target. |
| __ Poke(x1, Operand(x0, LSL, kXRegSizeLog2)); |
| // Let the "call_as_function_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, x1); |
| __ Jump(masm->isolate()->builtins()->CallFunction( |
| ConvertReceiverMode::kNotNullOrUndefined), |
| RelocInfo::CODE_TARGET); |
| |
| // 3. Call to something that is not callable. |
| __ bind(&non_callable); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ PushArgument(x1); |
| __ CallRuntime(Runtime::kThrowCalledNonCallable); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x0 : the number of arguments (not including the receiver) |
| // -- x1 : the constructor to call (checked to be a JSFunction) |
| // -- x3 : the new target (checked to be a constructor) |
| // ----------------------------------- |
| __ AssertConstructor(x1); |
| __ AssertFunction(x1); |
| |
| // Calling convention for function specific ConstructStubs require |
| // x2 to contain either an AllocationSite or undefined. |
| __ LoadRoot(x2, RootIndex::kUndefinedValue); |
| |
| Label call_generic_stub; |
| |
| // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric. |
| __ LoadTaggedPointerField( |
| x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); |
| __ Ldr(w4, FieldMemOperand(x4, SharedFunctionInfo::kFlagsOffset)); |
| __ TestAndBranchIfAllClear( |
| w4, SharedFunctionInfo::ConstructAsBuiltinBit::kMask, &call_generic_stub); |
| |
| __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub), |
| RelocInfo::CODE_TARGET); |
| |
| __ bind(&call_generic_stub); |
| __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x0 : the number of arguments (not including the receiver) |
| // -- x1 : the function to call (checked to be a JSBoundFunction) |
| // -- x3 : the new target (checked to be a constructor) |
| // ----------------------------------- |
| __ AssertConstructor(x1); |
| __ AssertBoundFunction(x1); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Patch new.target to [[BoundTargetFunction]] if new.target equals target. |
| { |
| Label done; |
| __ Cmp(x1, x3); |
| __ B(ne, &done); |
| __ LoadTaggedPointerField( |
| x3, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Bind(&done); |
| } |
| |
| // Construct the [[BoundTargetFunction]] via the Construct builtin. |
| __ LoadTaggedPointerField( |
| x1, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Construct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- x0 : the number of arguments (not including the receiver) |
| // -- x1 : the constructor to call (can be any Object) |
| // -- x3 : the new target (either the same as the constructor or |
| // the JSFunction on which new was invoked initially) |
| // ----------------------------------- |
| |
| // Check if target is a Smi. |
| Label non_constructor, non_proxy; |
| __ JumpIfSmi(x1, &non_constructor); |
| |
| // Check if target has a [[Construct]] internal method. |
| __ LoadTaggedPointerField(x4, FieldMemOperand(x1, HeapObject::kMapOffset)); |
| __ Ldrb(x2, FieldMemOperand(x4, Map::kBitFieldOffset)); |
| __ TestAndBranchIfAllClear(x2, Map::IsConstructorBit::kMask, |
| &non_constructor); |
| |
| // Dispatch based on instance type. |
| __ CompareInstanceType(x4, x5, JS_FUNCTION_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), |
| RelocInfo::CODE_TARGET, eq); |
| |
| // Only dispatch to bound functions after checking whether they are |
| // constructors. |
| __ Cmp(x5, JS_BOUND_FUNCTION_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), |
| RelocInfo::CODE_TARGET, eq); |
| |
| // Only dispatch to proxies after checking whether they are constructors. |
| __ Cmp(x5, JS_PROXY_TYPE); |
| __ B(ne, &non_proxy); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), |
| RelocInfo::CODE_TARGET); |
| |
| // Called Construct on an exotic Object with a [[Construct]] internal method. |
| __ bind(&non_proxy); |
| { |
| // Overwrite the original receiver with the (original) target. |
| __ Poke(x1, Operand(x0, LSL, kXRegSizeLog2)); |
| // Let the "call_as_constructor_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, x1); |
| __ Jump(masm->isolate()->builtins()->CallFunction(), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // Called Construct on an Object that doesn't have a [[Construct]] internal |
| // method. |
| __ bind(&non_constructor); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { |
| ASM_LOCATION("Builtins::Generate_ArgumentsAdaptorTrampoline"); |
| // ----------- S t a t e ------------- |
| // -- x0 : actual number of arguments |
| // -- x1 : function (passed through to callee) |
| // -- x2 : expected number of arguments |
| // -- x3 : new target (passed through to callee) |
| // ----------------------------------- |
| |
| // The frame we are about to construct will look like: |
| // |
| // slot Adaptor frame |
| // +-----------------+-------------------------------- |
| // -n-1 | receiver | ^ |
| // | (parameter 0) | | |
| // |- - - - - - - - -| | |
| // -n | | Caller |
| // ... | ... | frame slots --> actual args |
| // -2 | parameter n-1 | | |
| // |- - - - - - - - -| | |
| // -1 | parameter n | v |
| // -----+-----------------+-------------------------------- |
| // 0 | return addr | ^ |
| // |- - - - - - - - -| | |
| // 1 | saved frame ptr | <-- frame ptr | |
| // |- - - - - - - - -| | |
| // 2 |Frame Type Marker| | |
| // |- - - - - - - - -| | |
| // 3 | function | Callee |
| // |- - - - - - - - -| frame slots |
| // 4 | num of | | |
| // | actual args | | |
| // |- - - - - - - - -| | |
| // 5 | padding | | |
| // |-----------------+---- | |
| // [6] | [padding] | ^ | |
| // |- - - - - - - - -| | | |
| // 6+pad | receiver | | | |
| // | (parameter 0) | | | |
| // |- - - - - - - - -| | | |
| // 7+pad | parameter 1 | | | |
| // |- - - - - - - - -| Frame slots ----> expected args |
| // 8+pad | parameter 2 | | | |
| // |- - - - - - - - -| | | |
| // | | | | |
| // ... | ... | | | |
| // | parameter m | | | |
| // |- - - - - - - - -| | | |
| // | [undefined] | | | |
| // |- - - - - - - - -| | | |
| // | | | | |
| // | ... | | | |
| // | [undefined] | v <-- stack ptr v |
| // -----+-----------------+--------------------------------- |
| // |
| // There is an optional slot of padding above the receiver to ensure stack |
| // alignment of the arguments. |
| // If the number of expected arguments is larger than the number of actual |
| // arguments, the remaining expected slots will be filled with undefined. |
| |
| Register argc_actual = x0; // Excluding the receiver. |
| Register argc_expected = x2; // Excluding the receiver. |
| Register function = x1; |
| Register argc_actual_minus_expected = x5; |
| |
| Label create_adaptor_frame, dont_adapt_arguments, stack_overflow, |
| adapt_arguments_in_place; |
| |
| __ Cmp(argc_expected, SharedFunctionInfo::kDontAdaptArgumentsSentinel); |
| __ B(eq, &dont_adapt_arguments); |
| |
| // When the difference between argc_actual and argc_expected is odd, we |
| // create an arguments adaptor frame. |
| __ Sub(argc_actual_minus_expected, argc_actual, argc_expected); |
| __ Tbnz(argc_actual_minus_expected, 0, &create_adaptor_frame); |
| |
| // When the difference is even, check if we are allowed to adjust the |
| // existing frame instead. |
| __ LoadTaggedPointerField( |
| x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); |
| __ Ldr(w4, FieldMemOperand(x4, SharedFunctionInfo::kFlagsOffset)); |
| __ TestAndBranchIfAnySet( |
| w4, SharedFunctionInfo::IsSafeToSkipArgumentsAdaptorBit::kMask, |
| &adapt_arguments_in_place); |
| |
| // ------------------------------------------- |
| // Create an arguments adaptor frame. |
| // ------------------------------------------- |
| __ Bind(&create_adaptor_frame); |
| { |
| __ RecordComment("-- Adapt arguments --"); |
| EnterArgumentsAdaptorFrame(masm); |
| |
| Register copy_from = x10; |
| Register copy_end = x11; |
| Register copy_to = x12; |
| Register argc_to_copy = x13; |
| Register argc_unused_actual = x14; |
| Register scratch1 = x15, scratch2 = x16; |
| |
| // We need slots for the expected arguments, with one extra slot for the |
| // receiver. |
| __ RecordComment("-- Stack check --"); |
| __ Add(scratch1, argc_expected, 1); |
| Generate_StackOverflowCheck(masm, scratch1, &stack_overflow); |
| |
| // Round up number of slots to be even, to maintain stack alignment. |
| __ RecordComment("-- Allocate callee frame slots --"); |
| __ Add(scratch1, scratch1, 1); |
| __ Bic(scratch1, scratch1, 1); |
| __ Claim(scratch1, kSystemPointerSize); |
| |
| __ Mov(copy_to, sp); |
| |
| // Preparing the expected arguments is done in four steps, the order of |
| // which is chosen so we can use LDP/STP and avoid conditional branches as |
| // much as possible. |
| |
| // (1) If we don't have enough arguments, fill the remaining expected |
| // arguments with undefined, otherwise skip this step. |
| Label enough_arguments; |
| __ Subs(scratch1, argc_actual, argc_expected); |
| __ Csel(argc_unused_actual, xzr, scratch1, lt); |
| __ Csel(argc_to_copy, argc_expected, argc_actual, ge); |
| __ B(ge, &enough_arguments); |
| |
| // Fill the remaining expected arguments with undefined. |
| __ RecordComment("-- Fill slots with undefined --"); |
| __ Sub(copy_end, copy_to, Operand(scratch1, LSL, kSystemPointerSizeLog2)); |
| __ LoadRoot(scratch1, RootIndex::kUndefinedValue); |
| |
| Label fill; |
| __ Bind(&fill); |
| __ Stp(scratch1, scratch1, |
| MemOperand(copy_to, 2 * kSystemPointerSize, PostIndex)); |
| // We might write one slot extra, but that is ok because we'll overwrite it |
| // below. |
| __ Cmp(copy_end, copy_to); |
| __ B(hi, &fill); |
| |
| // Correct copy_to, for the case where we wrote one additional slot. |
| __ Mov(copy_to, copy_end); |
| |
| __ Bind(&enough_arguments); |
| // (2) Copy all of the actual arguments, or as many as we need. |
| Label skip_copy; |
| __ RecordComment("-- Copy actual arguments --"); |
| __ Cbz(argc_to_copy, &skip_copy); |
| __ Add(copy_end, copy_to, |
| Operand(argc_to_copy, LSL, kSystemPointerSizeLog2)); |
| __ Add(copy_from, fp, 2 * kSystemPointerSize); |
| // Adjust for difference between actual and expected arguments. |
| __ Add(copy_from, copy_from, |
| Operand(argc_unused_actual, LSL, kSystemPointerSizeLog2)); |
| |
| // Copy arguments. We use load/store pair instructions, so we might |
| // overshoot by one slot, but since we copy the arguments starting from the |
| // last one, if we do overshoot, the extra slot will be overwritten later by |
| // the receiver. |
| Label copy_2_by_2; |
| __ Bind(©_2_by_2); |
| __ Ldp(scratch1, scratch2, |
| MemOperand(copy_from, 2 * kSystemPointerSize, PostIndex)); |
| __ Stp(scratch1, scratch2, |
| MemOperand(copy_to, 2 * kSystemPointerSize, PostIndex)); |
| __ Cmp(copy_end, copy_to); |
| __ B(hi, ©_2_by_2); |
| __ Bind(&skip_copy); |
| |
| // (3) Store padding, which might be overwritten by the receiver, if it is |
| // not necessary. |
| __ RecordComment("-- Store padding --"); |
| __ Str(padreg, MemOperand(fp, -5 * kSystemPointerSize)); |
| |
| // (4) Store receiver. Calculate target address from the sp to avoid |
| // checking for padding. Storing the receiver will overwrite either the |
| // extra slot we copied with the actual arguments, if we did copy one, or |
| // the padding we stored above. |
| __ RecordComment("-- Store receiver --"); |
| __ Add(copy_from, fp, 2 * kSystemPointerSize); |
| __ Ldr(scratch1, |
| MemOperand(copy_from, argc_actual, LSL, kSystemPointerSizeLog2)); |
| __ Str(scratch1, |
| MemOperand(sp, argc_expected, LSL, kSystemPointerSizeLog2)); |
| |
| // Arguments have been adapted. Now call the entry point. |
| __ RecordComment("-- Call entry point --"); |
| __ Mov(argc_actual, argc_expected); |
| // x0 : expected number of arguments |
| // x1 : function (passed through to callee) |
| // x3 : new target (passed through to callee) |
| static_assert(kJavaScriptCallCodeStartRegister == x2, "ABI mismatch"); |
| __ LoadTaggedPointerField( |
| x2, FieldMemOperand(function, JSFunction::kCodeOffset)); |
| __ CallCodeObject(x2); |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset( |
| masm->pc_offset()); |
| |
| // Exit frame and return. |
| LeaveArgumentsAdaptorFrame(masm); |
| __ Ret(); |
| } |
| |
| // ----------------------------------------- |
| // Adapt arguments in the existing frame. |
| // ----------------------------------------- |
| __ Bind(&adapt_arguments_in_place); |
| { |
| __ RecordComment("-- Update arguments in place --"); |
| // The callee cannot observe the actual arguments, so it's safe to just |
| // pass the expected arguments by massaging the stack appropriately. See |
| // http://bit.ly/v8-faster-calls-with-arguments-mismatch for details. |
| Label under_application, over_application; |
| __ Tbnz(argc_actual_minus_expected, kXSignBit, &under_application); |
| |
| __ Bind(&over_application); |
| { |
| // Remove superfluous arguments from the stack. The number of superflous |
| // arguments is even. |
| __ RecordComment("-- Over-application --"); |
| __ Mov(argc_actual, argc_expected); |
| __ Drop(argc_actual_minus_expected); |
| __ B(&dont_adapt_arguments); |
| } |
| |
| __ Bind(&under_application); |
| { |
| // Fill remaining expected arguments with undefined values. |
| __ RecordComment("-- Under-application --"); |
| Label fill; |
| Register undef_value = x16; |
| __ LoadRoot(undef_value, RootIndex::kUndefinedValue); |
| __ Bind(&fill); |
| __ Add(argc_actual, argc_actual, 2); |
| __ Push(undef_value, undef_value); |
| __ Cmp(argc_actual, argc_expected); |
| __ B(lt, &fill); |
| __ B(&dont_adapt_arguments); |
| } |
| } |
| |
| // ------------------------------------------- |
| // Dont adapt arguments. |
| // ------------------------------------------- |
| __ Bind(&dont_adapt_arguments); |
| { |
| // Call the entry point without adapting the arguments. |
| __ RecordComment("-- Call without adapting args --"); |
| static_assert(kJavaScriptCallCodeStartRegister == x2, "ABI mismatch"); |
| __ LoadTaggedPointerField( |
| x2, FieldMemOperand(function, JSFunction::kCodeOffset)); |
| __ JumpCodeObject(x2); |
| } |
| |
| __ Bind(&stack_overflow); |
| __ RecordComment("-- Stack overflow --"); |
| { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ Unreachable(); |
| } |
| } |
| |
| void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { |
| // The function index was put in w8 by the jump table trampoline. |
| // Sign extend and convert to Smi for the runtime call. |
| __ sxtw(kWasmCompileLazyFuncIndexRegister, |
| kWasmCompileLazyFuncIndexRegister.W()); |
| __ SmiTag(kWasmCompileLazyFuncIndexRegister, |
| kWasmCompileLazyFuncIndexRegister); |
| { |
| HardAbortScope hard_abort(masm); // Avoid calls to Abort. |
| FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY); |
| |
| // Save all parameter registers (see wasm-linkage.cc). They might be |
| // overwritten in the runtime call below. We don't have any callee-saved |
| // registers in wasm, so no need to store anything else. |
| constexpr RegList gp_regs = |
| Register::ListOf<x0, x1, x2, x3, x4, x5, x6, x7>(); |
| constexpr RegList fp_regs = |
| Register::ListOf<d0, d1, d2, d3, d4, d5, d6, d7>(); |
| __ PushXRegList(gp_regs); |
| __ PushDRegList(fp_regs); |
| |
| // Pass instance and function index as explicit arguments to the runtime |
| // function. |
| __ Push(kWasmInstanceRegister, kWasmCompileLazyFuncIndexRegister); |
| // Load the correct CEntry builtin from the instance object. |
| __ LoadTaggedPointerField( |
| x2, FieldMemOperand(kWasmInstanceRegister, |
| WasmInstanceObject::kCEntryStubOffset)); |
| // Initialize the JavaScript context with 0. CEntry will use it to |
| // set the current context on the isolate. |
| __ Mov(cp, Smi::zero()); |
| __ CallRuntimeWithCEntry(Runtime::kWasmCompileLazy, x2); |
| // The entrypoint address is the return value. |
| __ mov(x8, kReturnRegister0); |
| |
| // Restore registers. |
| __ PopDRegList(fp_regs); |
| __ PopXRegList(gp_regs); |
| } |
| // Finally, jump to the entrypoint. |
| __ Jump(x8); |
| } |
| |
| void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size, |
| SaveFPRegsMode save_doubles, ArgvMode argv_mode, |
| bool builtin_exit_frame) { |
| // The Abort mechanism relies on CallRuntime, which in turn relies on |
| // CEntry, so until this stub has been generated, we have to use a |
| // fall-back Abort mechanism. |
| // |
| // Note that this stub must be generated before any use of Abort. |
| HardAbortScope hard_aborts(masm); |
| |
| ASM_LOCATION("CEntry::Generate entry"); |
| |
| // Register parameters: |
| // x0: argc (including receiver, untagged) |
| // x1: target |
| // If argv_mode == kArgvInRegister: |
| // x11: argv (pointer to first argument) |
| // |
| // The stack on entry holds the arguments and the receiver, with the receiver |
| // at the highest address: |
| // |
| // sp]argc-1]: receiver |
| // sp[argc-2]: arg[argc-2] |
| // ... ... |
| // sp[1]: arg[1] |
| // sp[0]: arg[0] |
| // |
| // The arguments are in reverse order, so that arg[argc-2] is actually the |
| // first argument to the target function and arg[0] is the last. |
| const Register& argc_input = x0; |
| const Register& target_input = x1; |
| |
| // Calculate argv, argc and the target address, and store them in |
| // callee-saved registers so we can retry the call without having to reload |
| |