blob: 8d22767b587d944a902a191b825e5319e764b2af [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/api/api.h"
#include "src/builtins/builtins-utils-gen.h"
#include "src/builtins/builtins.h"
#include "src/codegen/code-stub-assembler.h"
#include "src/codegen/macro-assembler.h"
#include "src/heap/heap-inl.h" // crbug.com/v8/8499
#include "src/ic/accessor-assembler.h"
#include "src/ic/keyed-store-generic.h"
#include "src/logging/counters.h"
#include "src/objects/debug-objects.h"
#include "src/objects/shared-function-info.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
template <typename T>
using TNode = compiler::TNode<T>;
// -----------------------------------------------------------------------------
// Stack checks.
void Builtins::Generate_StackCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kStackGuard);
}
// -----------------------------------------------------------------------------
// TurboFan support builtins.
TF_BUILTIN(CopyFastSmiOrObjectElements, CodeStubAssembler) {
Node* object = Parameter(Descriptor::kObject);
// Load the {object}s elements.
Node* source = LoadObjectField(object, JSObject::kElementsOffset);
Node* target = CloneFixedArray(source, ExtractFixedArrayFlag::kFixedArrays);
StoreObjectField(object, JSObject::kElementsOffset, target);
Return(target);
}
TF_BUILTIN(GrowFastDoubleElements, CodeStubAssembler) {
Node* object = Parameter(Descriptor::kObject);
Node* key = Parameter(Descriptor::kKey);
Node* context = Parameter(Descriptor::kContext);
Label runtime(this, Label::kDeferred);
Node* elements = LoadElements(object);
elements = TryGrowElementsCapacity(object, elements, PACKED_DOUBLE_ELEMENTS,
key, &runtime);
Return(elements);
BIND(&runtime);
TailCallRuntime(Runtime::kGrowArrayElements, context, object, key);
}
TF_BUILTIN(GrowFastSmiOrObjectElements, CodeStubAssembler) {
Node* object = Parameter(Descriptor::kObject);
Node* key = Parameter(Descriptor::kKey);
Node* context = Parameter(Descriptor::kContext);
Label runtime(this, Label::kDeferred);
Node* elements = LoadElements(object);
elements =
TryGrowElementsCapacity(object, elements, PACKED_ELEMENTS, key, &runtime);
Return(elements);
BIND(&runtime);
TailCallRuntime(Runtime::kGrowArrayElements, context, object, key);
}
TF_BUILTIN(NewArgumentsElements, CodeStubAssembler) {
Node* frame = Parameter(Descriptor::kFrame);
TNode<IntPtrT> length = SmiToIntPtr(Parameter(Descriptor::kLength));
TNode<IntPtrT> mapped_count =
SmiToIntPtr(Parameter(Descriptor::kMappedCount));
// Check if we can allocate in new space.
ElementsKind kind = PACKED_ELEMENTS;
int max_elements = FixedArray::GetMaxLengthForNewSpaceAllocation(kind);
Label if_newspace(this), if_oldspace(this, Label::kDeferred);
Branch(IntPtrLessThan(length, IntPtrConstant(max_elements)), &if_newspace,
&if_oldspace);
BIND(&if_newspace);
{
// Prefer EmptyFixedArray in case of non-positive {length} (the {length}
// can be negative here for rest parameters).
Label if_empty(this), if_notempty(this);
Branch(IntPtrLessThanOrEqual(length, IntPtrConstant(0)), &if_empty,
&if_notempty);
BIND(&if_empty);
Return(EmptyFixedArrayConstant());
BIND(&if_notempty);
{
// Allocate a FixedArray in new space.
TNode<FixedArray> result = CAST(AllocateFixedArray(kind, length));
// The elements might be used to back mapped arguments. In that case fill
// the mapped elements (i.e. the first {mapped_count}) with the hole, but
// make sure not to overshoot the {length} if some arguments are missing.
TNode<IntPtrT> number_of_holes = IntPtrMin(mapped_count, length);
Node* the_hole = TheHoleConstant();
// Fill the first elements up to {number_of_holes} with the hole.
TVARIABLE(IntPtrT, var_index, IntPtrConstant(0));
Label loop1(this, &var_index), done_loop1(this);
Goto(&loop1);
BIND(&loop1);
{
// Load the current {index}.
TNode<IntPtrT> index = var_index.value();
// Check if we are done.
GotoIf(WordEqual(index, number_of_holes), &done_loop1);
// Store the hole into the {result}.
StoreFixedArrayElement(result, index, the_hole, SKIP_WRITE_BARRIER);
// Continue with next {index}.
var_index = IntPtrAdd(index, IntPtrConstant(1));
Goto(&loop1);
}
BIND(&done_loop1);
// Compute the effective {offset} into the {frame}.
TNode<IntPtrT> offset = IntPtrAdd(length, IntPtrConstant(1));
// Copy the parameters from {frame} (starting at {offset}) to {result}.
Label loop2(this, &var_index), done_loop2(this);
Goto(&loop2);
BIND(&loop2);
{
// Load the current {index}.
TNode<IntPtrT> index = var_index.value();
// Check if we are done.
GotoIf(WordEqual(index, length), &done_loop2);
// Load the parameter at the given {index}.
TNode<Object> value = BitcastWordToTagged(
Load(MachineType::Pointer(), frame,
TimesSystemPointerSize(IntPtrSub(offset, index))));
// Store the {value} into the {result}.
StoreFixedArrayElement(result, index, value, SKIP_WRITE_BARRIER);
// Continue with next {index}.
var_index = IntPtrAdd(index, IntPtrConstant(1));
Goto(&loop2);
}
BIND(&done_loop2);
Return(result);
}
}
BIND(&if_oldspace);
{
// Allocate in old space (or large object space).
TailCallRuntime(Runtime::kNewArgumentsElements, NoContextConstant(),
BitcastWordToTagged(frame), SmiFromIntPtr(length),
SmiFromIntPtr(mapped_count));
}
}
TF_BUILTIN(ReturnReceiver, CodeStubAssembler) {
Return(Parameter(Descriptor::kReceiver));
}
TF_BUILTIN(DebugBreakTrampoline, CodeStubAssembler) {
Label tailcall_to_shared(this);
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> new_target = CAST(Parameter(Descriptor::kJSNewTarget));
TNode<Int32T> arg_count =
UncheckedCast<Int32T>(Parameter(Descriptor::kJSActualArgumentsCount));
TNode<JSFunction> function = CAST(Parameter(Descriptor::kJSTarget));
// Check break-at-entry flag on the debug info.
TNode<SharedFunctionInfo> shared =
CAST(LoadObjectField(function, JSFunction::kSharedFunctionInfoOffset));
TNode<Object> maybe_heap_object_or_smi =
LoadObjectField(shared, SharedFunctionInfo::kScriptOrDebugInfoOffset);
TNode<HeapObject> maybe_debug_info =
TaggedToHeapObject(maybe_heap_object_or_smi, &tailcall_to_shared);
GotoIfNot(HasInstanceType(maybe_debug_info, InstanceType::DEBUG_INFO_TYPE),
&tailcall_to_shared);
{
TNode<DebugInfo> debug_info = CAST(maybe_debug_info);
TNode<Smi> flags =
CAST(LoadObjectField(debug_info, DebugInfo::kFlagsOffset));
GotoIfNot(SmiToInt32(SmiAnd(flags, SmiConstant(DebugInfo::kBreakAtEntry))),
&tailcall_to_shared);
CallRuntime(Runtime::kDebugBreakAtEntry, context, function);
Goto(&tailcall_to_shared);
}
BIND(&tailcall_to_shared);
// Tail call into code object on the SharedFunctionInfo.
TNode<Code> code = GetSharedFunctionInfoCode(shared);
TailCallJSCode(code, context, function, new_target, arg_count);
}
class RecordWriteCodeStubAssembler : public CodeStubAssembler {
public:
explicit RecordWriteCodeStubAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
Node* IsMarking() {
Node* is_marking_addr = ExternalConstant(
ExternalReference::heap_is_marking_flag_address(this->isolate()));
return Load(MachineType::Uint8(), is_marking_addr);
}
TNode<BoolT> IsPageFlagSet(TNode<IntPtrT> object, int mask) {
TNode<IntPtrT> page = PageFromAddress(object);
TNode<IntPtrT> flags =
UncheckedCast<IntPtrT>(Load(MachineType::Pointer(), page,
IntPtrConstant(MemoryChunk::kFlagsOffset)));
return WordNotEqual(WordAnd(flags, IntPtrConstant(mask)),
IntPtrConstant(0));
}
TNode<BoolT> IsWhite(TNode<IntPtrT> object) {
DCHECK_EQ(strcmp(Marking::kWhiteBitPattern, "00"), 0);
Node* cell;
Node* mask;
GetMarkBit(object, &cell, &mask);
mask = TruncateIntPtrToInt32(mask);
// Non-white has 1 for the first bit, so we only need to check for the first
// bit.
return Word32Equal(Word32And(Load(MachineType::Int32(), cell), mask),
Int32Constant(0));
}
void GetMarkBit(TNode<IntPtrT> object, Node** cell, Node** mask) {
TNode<IntPtrT> page = PageFromAddress(object);
Node* bitmap = Load(MachineType::Pointer(), page,
IntPtrConstant(MemoryChunk::kMarkBitmapOffset));
{
// Temp variable to calculate cell offset in bitmap.
Node* r0;
int shift = Bitmap::kBitsPerCellLog2 + kTaggedSizeLog2 -
Bitmap::kBytesPerCellLog2;
r0 = WordShr(object, IntPtrConstant(shift));
r0 = WordAnd(r0, IntPtrConstant((kPageAlignmentMask >> shift) &
~(Bitmap::kBytesPerCell - 1)));
*cell = IntPtrAdd(bitmap, r0);
}
{
// Temp variable to calculate bit offset in cell.
Node* r1;
r1 = WordShr(object, IntPtrConstant(kTaggedSizeLog2));
r1 = WordAnd(r1, IntPtrConstant((1 << Bitmap::kBitsPerCellLog2) - 1));
// It seems that LSB(e.g. cl) is automatically used, so no manual masking
// is needed. Uncomment the following line otherwise.
// WordAnd(r1, IntPtrConstant((1 << kBitsPerByte) - 1)));
*mask = WordShl(IntPtrConstant(1), r1);
}
}
Node* ShouldSkipFPRegs(Node* mode) {
return WordEqual(mode, SmiConstant(kDontSaveFPRegs));
}
Node* ShouldEmitRememberSet(Node* remembered_set) {
return WordEqual(remembered_set, SmiConstant(EMIT_REMEMBERED_SET));
}
void CallCFunction1WithCallerSavedRegistersMode(MachineType return_type,
MachineType arg0_type,
Node* function, Node* arg0,
Node* mode, Label* next) {
Label dont_save_fp(this), save_fp(this);
Branch(ShouldSkipFPRegs(mode), &dont_save_fp, &save_fp);
BIND(&dont_save_fp);
{
CallCFunctionWithCallerSavedRegisters(function, return_type,
kDontSaveFPRegs,
std::make_pair(arg0_type, arg0));
Goto(next);
}
BIND(&save_fp);
{
CallCFunctionWithCallerSavedRegisters(function, return_type,
kSaveFPRegs,
std::make_pair(arg0_type, arg0));
Goto(next);
}
}
void CallCFunction3WithCallerSavedRegistersMode(
MachineType return_type, MachineType arg0_type, MachineType arg1_type,
MachineType arg2_type, Node* function, Node* arg0, Node* arg1, Node* arg2,
Node* mode, Label* next) {
Label dont_save_fp(this), save_fp(this);
Branch(ShouldSkipFPRegs(mode), &dont_save_fp, &save_fp);
BIND(&dont_save_fp);
{
CallCFunctionWithCallerSavedRegisters(
function, return_type, kDontSaveFPRegs,
std::make_pair(arg0_type, arg0), std::make_pair(arg1_type, arg1),
std::make_pair(arg2_type, arg2));
Goto(next);
}
BIND(&save_fp);
{
CallCFunctionWithCallerSavedRegisters(
function, return_type, kSaveFPRegs, std::make_pair(arg0_type, arg0),
std::make_pair(arg1_type, arg1), std::make_pair(arg2_type, arg2));
Goto(next);
}
}
void InsertToStoreBufferAndGoto(Node* isolate, Node* slot, Node* mode,
Label* next) {
Node* store_buffer_top_addr =
ExternalConstant(ExternalReference::store_buffer_top(this->isolate()));
Node* store_buffer_top =
Load(MachineType::Pointer(), store_buffer_top_addr);
StoreNoWriteBarrier(MachineType::PointerRepresentation(), store_buffer_top,
slot);
Node* new_store_buffer_top =
IntPtrAdd(store_buffer_top, IntPtrConstant(kSystemPointerSize));
StoreNoWriteBarrier(MachineType::PointerRepresentation(),
store_buffer_top_addr, new_store_buffer_top);
Node* test = WordAnd(new_store_buffer_top,
IntPtrConstant(Heap::store_buffer_mask_constant()));
Label overflow(this);
Branch(WordEqual(test, IntPtrConstant(0)), &overflow, next);
BIND(&overflow);
{
Node* function =
ExternalConstant(ExternalReference::store_buffer_overflow_function());
CallCFunction1WithCallerSavedRegistersMode(MachineType::Int32(),
MachineType::Pointer(),
function, isolate, mode, next);
}
}
};
TF_BUILTIN(RecordWrite, RecordWriteCodeStubAssembler) {
Label generational_wb(this);
Label incremental_wb(this);
Label exit(this);
Node* remembered_set = Parameter(Descriptor::kRememberedSet);
Branch(ShouldEmitRememberSet(remembered_set), &generational_wb,
&incremental_wb);
BIND(&generational_wb);
{
Label test_old_to_young_flags(this);
Label store_buffer_exit(this), store_buffer_incremental_wb(this);
// When incremental marking is not on, we skip cross generation pointer
// checking here, because there are checks for
// `kPointersFromHereAreInterestingMask` and
// `kPointersToHereAreInterestingMask` in
// `src/compiler/<arch>/code-generator-<arch>.cc` before calling this stub,
// which serves as the cross generation checking.
TNode<IntPtrT> slot = UncheckedCast<IntPtrT>(Parameter(Descriptor::kSlot));
Branch(IsMarking(), &test_old_to_young_flags, &store_buffer_exit);
BIND(&test_old_to_young_flags);
{
// TODO(ishell): do a new-space range check instead.
TNode<IntPtrT> value =
BitcastTaggedToWord(Load(MachineType::TaggedPointer(), slot));
// TODO(albertnetymk): Try to cache the page flag for value and object,
// instead of calling IsPageFlagSet each time.
TNode<BoolT> value_is_young =
IsPageFlagSet(value, MemoryChunk::kIsInYoungGenerationMask);
GotoIfNot(value_is_young, &incremental_wb);
TNode<IntPtrT> object =
BitcastTaggedToWord(Parameter(Descriptor::kObject));
TNode<BoolT> object_is_young =
IsPageFlagSet(object, MemoryChunk::kIsInYoungGenerationMask);
Branch(object_is_young, &incremental_wb, &store_buffer_incremental_wb);
}
BIND(&store_buffer_exit);
{
Node* isolate_constant =
ExternalConstant(ExternalReference::isolate_address(isolate()));
Node* fp_mode = Parameter(Descriptor::kFPMode);
InsertToStoreBufferAndGoto(isolate_constant, slot, fp_mode, &exit);
}
BIND(&store_buffer_incremental_wb);
{
Node* isolate_constant =
ExternalConstant(ExternalReference::isolate_address(isolate()));
Node* fp_mode = Parameter(Descriptor::kFPMode);
InsertToStoreBufferAndGoto(isolate_constant, slot, fp_mode,
&incremental_wb);
}
}
BIND(&incremental_wb);
{
Label call_incremental_wb(this);
TNode<IntPtrT> slot = UncheckedCast<IntPtrT>(Parameter(Descriptor::kSlot));
TNode<IntPtrT> value =
BitcastTaggedToWord(Load(MachineType::TaggedPointer(), slot));
// There are two cases we need to call incremental write barrier.
// 1) value_is_white
GotoIf(IsWhite(value), &call_incremental_wb);
// 2) is_compacting && value_in_EC && obj_isnt_skip
// is_compacting = true when is_marking = true
GotoIfNot(IsPageFlagSet(value, MemoryChunk::kEvacuationCandidateMask),
&exit);
TNode<IntPtrT> object = BitcastTaggedToWord(Parameter(Descriptor::kObject));
Branch(
IsPageFlagSet(object, MemoryChunk::kSkipEvacuationSlotsRecordingMask),
&exit, &call_incremental_wb);
BIND(&call_incremental_wb);
{
Node* function = ExternalConstant(
ExternalReference::incremental_marking_record_write_function());
Node* isolate_constant =
ExternalConstant(ExternalReference::isolate_address(isolate()));
Node* fp_mode = Parameter(Descriptor::kFPMode);
TNode<IntPtrT> object =
BitcastTaggedToWord(Parameter(Descriptor::kObject));
CallCFunction3WithCallerSavedRegistersMode(
MachineType::Int32(), MachineType::Pointer(), MachineType::Pointer(),
MachineType::Pointer(), function, object, slot, isolate_constant,
fp_mode, &exit);
}
}
BIND(&exit);
IncrementCounter(isolate()->counters()->write_barriers(), 1);
Return(TrueConstant());
}
TF_BUILTIN(EphemeronKeyBarrier, RecordWriteCodeStubAssembler) {
Label exit(this);
Node* function = ExternalConstant(
ExternalReference::ephemeron_key_write_barrier_function());
Node* isolate_constant =
ExternalConstant(ExternalReference::isolate_address(isolate()));
Node* address = Parameter(Descriptor::kSlotAddress);
Node* object = BitcastTaggedToWord(Parameter(Descriptor::kObject));
Node* fp_mode = Parameter(Descriptor::kFPMode);
CallCFunction3WithCallerSavedRegistersMode(
MachineType::Int32(), MachineType::Pointer(), MachineType::Pointer(),
MachineType::Pointer(), function, object, address, isolate_constant,
fp_mode, &exit);
BIND(&exit);
IncrementCounter(isolate()->counters()->write_barriers(), 1);
Return(TrueConstant());
}
class DeletePropertyBaseAssembler : public AccessorAssembler {
public:
explicit DeletePropertyBaseAssembler(compiler::CodeAssemblerState* state)
: AccessorAssembler(state) {}
void DeleteDictionaryProperty(TNode<Object> receiver,
TNode<NameDictionary> properties,
TNode<Name> name, TNode<Context> context,
Label* dont_delete, Label* notfound) {
TVARIABLE(IntPtrT, var_name_index);
Label dictionary_found(this, &var_name_index);
NameDictionaryLookup<NameDictionary>(properties, name, &dictionary_found,
&var_name_index, notfound);
BIND(&dictionary_found);
TNode<IntPtrT> key_index = var_name_index.value();
TNode<Uint32T> details =
LoadDetailsByKeyIndex<NameDictionary>(properties, key_index);
GotoIf(IsSetWord32(details, PropertyDetails::kAttributesDontDeleteMask),
dont_delete);
// Overwrite the entry itself (see NameDictionary::SetEntry).
TNode<HeapObject> filler = TheHoleConstant();
DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kTheHoleValue));
StoreFixedArrayElement(properties, key_index, filler, SKIP_WRITE_BARRIER);
StoreValueByKeyIndex<NameDictionary>(properties, key_index, filler,
SKIP_WRITE_BARRIER);
StoreDetailsByKeyIndex<NameDictionary>(properties, key_index,
SmiConstant(0));
// Update bookkeeping information (see NameDictionary::ElementRemoved).
TNode<Smi> nof = GetNumberOfElements<NameDictionary>(properties);
TNode<Smi> new_nof = SmiSub(nof, SmiConstant(1));
SetNumberOfElements<NameDictionary>(properties, new_nof);
TNode<Smi> num_deleted =
GetNumberOfDeletedElements<NameDictionary>(properties);
TNode<Smi> new_deleted = SmiAdd(num_deleted, SmiConstant(1));
SetNumberOfDeletedElements<NameDictionary>(properties, new_deleted);
// Shrink the dictionary if necessary (see NameDictionary::Shrink).
Label shrinking_done(this);
TNode<Smi> capacity = GetCapacity<NameDictionary>(properties);
GotoIf(SmiGreaterThan(new_nof, SmiShr(capacity, 2)), &shrinking_done);
GotoIf(SmiLessThan(new_nof, SmiConstant(16)), &shrinking_done);
CallRuntime(Runtime::kShrinkPropertyDictionary, context, receiver);
Goto(&shrinking_done);
BIND(&shrinking_done);
Return(TrueConstant());
}
};
TF_BUILTIN(DeleteProperty, DeletePropertyBaseAssembler) {
TNode<Object> receiver = CAST(Parameter(Descriptor::kObject));
TNode<Object> key = CAST(Parameter(Descriptor::kKey));
TNode<Smi> language_mode = CAST(Parameter(Descriptor::kLanguageMode));
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
VARIABLE(var_index, MachineType::PointerRepresentation());
VARIABLE(var_unique, MachineRepresentation::kTagged, key);
Label if_index(this), if_unique_name(this), if_notunique(this),
if_notfound(this), slow(this);
GotoIf(TaggedIsSmi(receiver), &slow);
TNode<Map> receiver_map = LoadMap(CAST(receiver));
TNode<Int32T> instance_type = LoadMapInstanceType(receiver_map);
GotoIf(IsCustomElementsReceiverInstanceType(instance_type), &slow);
TryToName(key, &if_index, &var_index, &if_unique_name, &var_unique, &slow,
&if_notunique);
BIND(&if_index);
{
Comment("integer index");
Goto(&slow); // TODO(jkummerow): Implement more smarts here.
}
BIND(&if_unique_name);
{
Comment("key is unique name");
TNode<Name> unique = CAST(var_unique.value());
CheckForAssociatedProtector(unique, &slow);
Label dictionary(this), dont_delete(this);
GotoIf(IsDictionaryMap(receiver_map), &dictionary);
// Fast properties need to clear recorded slots, which can only be done
// in C++.
Goto(&slow);
BIND(&dictionary);
{
InvalidateValidityCellIfPrototype(receiver_map);
TNode<NameDictionary> properties =
CAST(LoadSlowProperties(CAST(receiver)));
DeleteDictionaryProperty(receiver, properties, unique, context,
&dont_delete, &if_notfound);
}
BIND(&dont_delete);
{
STATIC_ASSERT(LanguageModeSize == 2);
GotoIf(SmiNotEqual(language_mode, SmiConstant(LanguageMode::kSloppy)),
&slow);
Return(FalseConstant());
}
}
BIND(&if_notunique);
{
// If the string was not found in the string table, then no object can
// have a property with that name.
TryInternalizeString(key, &if_index, &var_index, &if_unique_name,
&var_unique, &if_notfound, &slow);
}
BIND(&if_notfound);
Return(TrueConstant());
BIND(&slow);
{
TailCallRuntime(Runtime::kDeleteProperty, context, receiver, key,
language_mode);
}
}
namespace {
class SetOrCopyDataPropertiesAssembler : public CodeStubAssembler {
public:
explicit SetOrCopyDataPropertiesAssembler(compiler::CodeAssemblerState* state)
: CodeStubAssembler(state) {}
protected:
TNode<Object> SetOrCopyDataProperties(TNode<Context> context,
TNode<JSReceiver> target,
TNode<Object> source, Label* if_runtime,
bool use_set = true) {
Label if_done(this), if_noelements(this),
if_sourcenotjsobject(this, Label::kDeferred);
// JSPrimitiveWrapper wrappers for numbers don't have any enumerable own
// properties, so we can immediately skip the whole operation if {source} is
// a Smi.
GotoIf(TaggedIsSmi(source), &if_done);
// Otherwise check if {source} is a proper JSObject, and if not, defer
// to testing for non-empty strings below.
TNode<Map> source_map = LoadMap(CAST(source));
TNode<Int32T> source_instance_type = LoadMapInstanceType(source_map);
GotoIfNot(IsJSObjectInstanceType(source_instance_type),
&if_sourcenotjsobject);
TNode<FixedArrayBase> source_elements = LoadElements(CAST(source));
GotoIf(IsEmptyFixedArray(source_elements), &if_noelements);
Branch(IsEmptySlowElementDictionary(source_elements), &if_noelements,
if_runtime);
BIND(&if_noelements);
{
// If the target is deprecated, the object will be updated on first store.
// If the source for that store equals the target, this will invalidate
// the cached representation of the source. Handle this case in runtime.
TNode<Map> target_map = LoadMap(target);
GotoIf(IsDeprecatedMap(target_map), if_runtime);
if (use_set) {
TNode<BoolT> target_is_simple_receiver = IsSimpleObjectMap(target_map);
ForEachEnumerableOwnProperty(
context, source_map, CAST(source), kEnumerationOrder,
[=](TNode<Name> key, TNode<Object> value) {
KeyedStoreGenericGenerator::SetProperty(
state(), context, target, target_is_simple_receiver, key,
value, LanguageMode::kStrict);
},
if_runtime);
} else {
ForEachEnumerableOwnProperty(
context, source_map, CAST(source), kEnumerationOrder,
[=](TNode<Name> key, TNode<Object> value) {
CallBuiltin(Builtins::kSetPropertyInLiteral, context, target, key,
value);
},
if_runtime);
}
Goto(&if_done);
}
BIND(&if_sourcenotjsobject);
{
// Handle other JSReceivers in the runtime.
GotoIf(IsJSReceiverInstanceType(source_instance_type), if_runtime);
// Non-empty strings are the only non-JSReceivers that need to be
// handled explicitly by Object.assign() and CopyDataProperties.
GotoIfNot(IsStringInstanceType(source_instance_type), &if_done);
TNode<IntPtrT> source_length = LoadStringLengthAsWord(CAST(source));
Branch(WordEqual(source_length, IntPtrConstant(0)), &if_done, if_runtime);
}
BIND(&if_done);
return UndefinedConstant();
}
};
} // namespace
// ES #sec-copydataproperties
TF_BUILTIN(CopyDataProperties, SetOrCopyDataPropertiesAssembler) {
TNode<JSObject> target = CAST(Parameter(Descriptor::kTarget));
TNode<Object> source = CAST(Parameter(Descriptor::kSource));
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
CSA_ASSERT(this, WordNotEqual(target, source));
Label if_runtime(this, Label::kDeferred);
Return(SetOrCopyDataProperties(context, target, source, &if_runtime, false));
BIND(&if_runtime);
TailCallRuntime(Runtime::kCopyDataProperties, context, target, source);
}
TF_BUILTIN(SetDataProperties, SetOrCopyDataPropertiesAssembler) {
TNode<JSReceiver> target = CAST(Parameter(Descriptor::kTarget));
TNode<Object> source = CAST(Parameter(Descriptor::kSource));
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
Label if_runtime(this, Label::kDeferred);
Return(SetOrCopyDataProperties(context, target, source, &if_runtime, true));
BIND(&if_runtime);
TailCallRuntime(Runtime::kSetDataProperties, context, target, source);
}
TF_BUILTIN(ForInEnumerate, CodeStubAssembler) {
Node* receiver = Parameter(Descriptor::kReceiver);
Node* context = Parameter(Descriptor::kContext);
Label if_empty(this), if_runtime(this, Label::kDeferred);
Node* receiver_map = CheckEnumCache(receiver, &if_empty, &if_runtime);
Return(receiver_map);
BIND(&if_empty);
Return(EmptyFixedArrayConstant());
BIND(&if_runtime);
TailCallRuntime(Runtime::kForInEnumerate, context, receiver);
}
TF_BUILTIN(ForInFilter, CodeStubAssembler) {
Node* key = Parameter(Descriptor::kKey);
Node* object = Parameter(Descriptor::kObject);
Node* context = Parameter(Descriptor::kContext);
CSA_ASSERT(this, IsString(key));
Label if_true(this), if_false(this);
TNode<Oddball> result = HasProperty(context, object, key, kForInHasProperty);
Branch(IsTrue(result), &if_true, &if_false);
BIND(&if_true);
Return(key);
BIND(&if_false);
Return(UndefinedConstant());
}
TF_BUILTIN(SameValue, CodeStubAssembler) {
Node* lhs = Parameter(Descriptor::kLeft);
Node* rhs = Parameter(Descriptor::kRight);
Label if_true(this), if_false(this);
BranchIfSameValue(lhs, rhs, &if_true, &if_false);
BIND(&if_true);
Return(TrueConstant());
BIND(&if_false);
Return(FalseConstant());
}
TF_BUILTIN(SameValueNumbersOnly, CodeStubAssembler) {
Node* lhs = Parameter(Descriptor::kLeft);
Node* rhs = Parameter(Descriptor::kRight);
Label if_true(this), if_false(this);
BranchIfSameValue(lhs, rhs, &if_true, &if_false, SameValueMode::kNumbersOnly);
BIND(&if_true);
Return(TrueConstant());
BIND(&if_false);
Return(FalseConstant());
}
TF_BUILTIN(AdaptorWithBuiltinExitFrame, CodeStubAssembler) {
TNode<JSFunction> target = CAST(Parameter(Descriptor::kTarget));
TNode<Object> new_target = CAST(Parameter(Descriptor::kNewTarget));
TNode<WordT> c_function =
UncheckedCast<WordT>(Parameter(Descriptor::kCFunction));
// The logic contained here is mirrored for TurboFan inlining in
// JSTypedLowering::ReduceJSCall{Function,Construct}. Keep these in sync.
// Make sure we operate in the context of the called function (for example
// ConstructStubs implemented in C++ will be run in the context of the caller
// instead of the callee, due to the way that [[Construct]] is defined for
// ordinary functions).
TNode<Context> context =
CAST(LoadObjectField(target, JSFunction::kContextOffset));
// Update arguments count for CEntry to contain the number of arguments
// including the receiver and the extra arguments.
TNode<Int32T> argc =
UncheckedCast<Int32T>(Parameter(Descriptor::kActualArgumentsCount));
argc = Int32Add(
argc,
Int32Constant(BuiltinExitFrameConstants::kNumExtraArgsWithReceiver));
const bool builtin_exit_frame = true;
TNode<Code> code = HeapConstant(CodeFactory::CEntry(
isolate(), 1, kDontSaveFPRegs, kArgvOnStack, builtin_exit_frame));
// Unconditionally push argc, target and new target as extra stack arguments.
// They will be used by stack frame iterators when constructing stack trace.
TailCallStub(CEntry1ArgvOnStackDescriptor{}, // descriptor
code, context, // standard arguments for TailCallStub
argc, c_function, // register arguments
TheHoleConstant(), // additional stack argument 1 (padding)
SmiFromInt32(argc), // additional stack argument 2
target, // additional stack argument 3
new_target); // additional stack argument 4
}
TF_BUILTIN(AllocateInYoungGeneration, CodeStubAssembler) {
TNode<IntPtrT> requested_size =
UncheckedCast<IntPtrT>(Parameter(Descriptor::kRequestedSize));
CSA_CHECK(this, IsValidPositiveSmi(requested_size));
TNode<Smi> allocation_flags =
SmiConstant(Smi::FromInt(AllocateDoubleAlignFlag::encode(false) |
AllowLargeObjectAllocationFlag::encode(true)));
TailCallRuntime(Runtime::kAllocateInYoungGeneration, NoContextConstant(),
SmiFromIntPtr(requested_size), allocation_flags);
}
TF_BUILTIN(AllocateRegularInYoungGeneration, CodeStubAssembler) {
TNode<IntPtrT> requested_size =
UncheckedCast<IntPtrT>(Parameter(Descriptor::kRequestedSize));
CSA_CHECK(this, IsValidPositiveSmi(requested_size));
TNode<Smi> allocation_flags =
SmiConstant(Smi::FromInt(AllocateDoubleAlignFlag::encode(false) |
AllowLargeObjectAllocationFlag::encode(false)));
TailCallRuntime(Runtime::kAllocateInYoungGeneration, NoContextConstant(),
SmiFromIntPtr(requested_size), allocation_flags);
}
TF_BUILTIN(AllocateInOldGeneration, CodeStubAssembler) {
TNode<IntPtrT> requested_size =
UncheckedCast<IntPtrT>(Parameter(Descriptor::kRequestedSize));
CSA_CHECK(this, IsValidPositiveSmi(requested_size));
TNode<Smi> runtime_flags =
SmiConstant(Smi::FromInt(AllocateDoubleAlignFlag::encode(false) |
AllowLargeObjectAllocationFlag::encode(true)));
TailCallRuntime(Runtime::kAllocateInOldGeneration, NoContextConstant(),
SmiFromIntPtr(requested_size), runtime_flags);
}
TF_BUILTIN(AllocateRegularInOldGeneration, CodeStubAssembler) {
TNode<IntPtrT> requested_size =
UncheckedCast<IntPtrT>(Parameter(Descriptor::kRequestedSize));
CSA_CHECK(this, IsValidPositiveSmi(requested_size));
TNode<Smi> runtime_flags =
SmiConstant(Smi::FromInt(AllocateDoubleAlignFlag::encode(false) |
AllowLargeObjectAllocationFlag::encode(false)));
TailCallRuntime(Runtime::kAllocateInOldGeneration, NoContextConstant(),
SmiFromIntPtr(requested_size), runtime_flags);
}
TF_BUILTIN(Abort, CodeStubAssembler) {
TNode<Smi> message_id = CAST(Parameter(Descriptor::kMessageOrMessageId));
TailCallRuntime(Runtime::kAbort, NoContextConstant(), message_id);
}
TF_BUILTIN(AbortCSAAssert, CodeStubAssembler) {
TNode<String> message = CAST(Parameter(Descriptor::kMessageOrMessageId));
TailCallRuntime(Runtime::kAbortCSAAssert, NoContextConstant(), message);
}
void Builtins::Generate_CEntry_Return1_DontSaveFPRegs_ArgvOnStack_NoBuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 1, kDontSaveFPRegs, kArgvOnStack, false);
}
void Builtins::Generate_CEntry_Return1_DontSaveFPRegs_ArgvOnStack_BuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 1, kDontSaveFPRegs, kArgvOnStack, true);
}
void Builtins::
Generate_CEntry_Return1_DontSaveFPRegs_ArgvInRegister_NoBuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 1, kDontSaveFPRegs, kArgvInRegister, false);
}
void Builtins::Generate_CEntry_Return1_SaveFPRegs_ArgvOnStack_NoBuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 1, kSaveFPRegs, kArgvOnStack, false);
}
void Builtins::Generate_CEntry_Return1_SaveFPRegs_ArgvOnStack_BuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 1, kSaveFPRegs, kArgvOnStack, true);
}
void Builtins::Generate_CEntry_Return2_DontSaveFPRegs_ArgvOnStack_NoBuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 2, kDontSaveFPRegs, kArgvOnStack, false);
}
void Builtins::Generate_CEntry_Return2_DontSaveFPRegs_ArgvOnStack_BuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 2, kDontSaveFPRegs, kArgvOnStack, true);
}
void Builtins::
Generate_CEntry_Return2_DontSaveFPRegs_ArgvInRegister_NoBuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 2, kDontSaveFPRegs, kArgvInRegister, false);
}
void Builtins::Generate_CEntry_Return2_SaveFPRegs_ArgvOnStack_NoBuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 2, kSaveFPRegs, kArgvOnStack, false);
}
void Builtins::Generate_CEntry_Return2_SaveFPRegs_ArgvOnStack_BuiltinExit(
MacroAssembler* masm) {
Generate_CEntry(masm, 2, kSaveFPRegs, kArgvOnStack, true);
}
#if !defined(V8_TARGET_ARCH_ARM) && !defined(V8_TARGET_ARCH_MIPS)
void Builtins::Generate_MemCopyUint8Uint8(MacroAssembler* masm) {
masm->Call(BUILTIN_CODE(masm->isolate(), Illegal), RelocInfo::CODE_TARGET);
}
#endif // !defined(V8_TARGET_ARCH_ARM) && !defined(V8_TARGET_ARCH_MIPS)
#ifndef V8_TARGET_ARCH_ARM
void Builtins::Generate_MemCopyUint16Uint8(MacroAssembler* masm) {
masm->Call(BUILTIN_CODE(masm->isolate(), Illegal), RelocInfo::CODE_TARGET);
}
#endif // V8_TARGET_ARCH_ARM
#ifndef V8_TARGET_ARCH_IA32
void Builtins::Generate_MemMove(MacroAssembler* masm) {
masm->Call(BUILTIN_CODE(masm->isolate(), Illegal), RelocInfo::CODE_TARGET);
}
#endif // V8_TARGET_ARCH_IA32
// ES6 [[Get]] operation.
TF_BUILTIN(GetProperty, CodeStubAssembler) {
Node* object = Parameter(Descriptor::kObject);
Node* key = Parameter(Descriptor::kKey);
Node* context = Parameter(Descriptor::kContext);
// TODO(duongn): consider tailcalling to GetPropertyWithReceiver(object,
// object, key, OnNonExistent::kReturnUndefined).
Label if_notfound(this), if_proxy(this, Label::kDeferred),
if_slow(this, Label::kDeferred);
CodeStubAssembler::LookupInHolder lookup_property_in_holder =
[=](Node* receiver, Node* holder, Node* holder_map,
Node* holder_instance_type, Node* unique_name, Label* next_holder,
Label* if_bailout) {
VARIABLE(var_value, MachineRepresentation::kTagged);
Label if_found(this);
TryGetOwnProperty(context, receiver, holder, holder_map,
holder_instance_type, unique_name, &if_found,
&var_value, next_holder, if_bailout);
BIND(&if_found);
Return(var_value.value());
};
CodeStubAssembler::LookupInHolder lookup_element_in_holder =
[=](Node* receiver, Node* holder, Node* holder_map,
Node* holder_instance_type, Node* index, Label* next_holder,
Label* if_bailout) {
// Not supported yet.
Use(next_holder);
Goto(if_bailout);
};
TryPrototypeChainLookup(object, object, key, lookup_property_in_holder,
lookup_element_in_holder, &if_notfound, &if_slow,
&if_proxy);
BIND(&if_notfound);
Return(UndefinedConstant());
BIND(&if_slow);
TailCallRuntime(Runtime::kGetProperty, context, object, key);
BIND(&if_proxy);
{
// Convert the {key} to a Name first.
Node* name = CallBuiltin(Builtins::kToName, context, key);
// The {object} is a JSProxy instance, look up the {name} on it, passing
// {object} both as receiver and holder. If {name} is absent we can safely
// return undefined from here.
TailCallBuiltin(Builtins::kProxyGetProperty, context, object, name, object,
SmiConstant(OnNonExistent::kReturnUndefined));
}
}
// ES6 [[Get]] operation with Receiver.
TF_BUILTIN(GetPropertyWithReceiver, CodeStubAssembler) {
Node* object = Parameter(Descriptor::kObject);
Node* key = Parameter(Descriptor::kKey);
Node* context = Parameter(Descriptor::kContext);
Node* receiver = Parameter(Descriptor::kReceiver);
Node* on_non_existent = Parameter(Descriptor::kOnNonExistent);
Label if_notfound(this), if_proxy(this, Label::kDeferred),
if_slow(this, Label::kDeferred);
CodeStubAssembler::LookupInHolder lookup_property_in_holder =
[=](Node* receiver, Node* holder, Node* holder_map,
Node* holder_instance_type, Node* unique_name, Label* next_holder,
Label* if_bailout) {
VARIABLE(var_value, MachineRepresentation::kTagged);
Label if_found(this);
TryGetOwnProperty(context, receiver, holder, holder_map,
holder_instance_type, unique_name, &if_found,
&var_value, next_holder, if_bailout);
BIND(&if_found);
Return(var_value.value());
};
CodeStubAssembler::LookupInHolder lookup_element_in_holder =
[=](Node* receiver, Node* holder, Node* holder_map,
Node* holder_instance_type, Node* index, Label* next_holder,
Label* if_bailout) {
// Not supported yet.
Use(next_holder);
Goto(if_bailout);
};
TryPrototypeChainLookup(receiver, object, key, lookup_property_in_holder,
lookup_element_in_holder, &if_notfound, &if_slow,
&if_proxy);
BIND(&if_notfound);
Label throw_reference_error(this);
GotoIf(WordEqual(on_non_existent,
SmiConstant(OnNonExistent::kThrowReferenceError)),
&throw_reference_error);
CSA_ASSERT(this, WordEqual(on_non_existent,
SmiConstant(OnNonExistent::kReturnUndefined)));
Return(UndefinedConstant());
BIND(&throw_reference_error);
Return(CallRuntime(Runtime::kThrowReferenceError, context, key));
BIND(&if_slow);
TailCallRuntime(Runtime::kGetPropertyWithReceiver, context, object, key,
receiver, on_non_existent);
BIND(&if_proxy);
{
// Convert the {key} to a Name first.
Node* name = CallBuiltin(Builtins::kToName, context, key);
// Proxy cannot handle private symbol so bailout.
GotoIf(IsPrivateSymbol(name), &if_slow);
// The {object} is a JSProxy instance, look up the {name} on it, passing
// {object} both as receiver and holder. If {name} is absent we can safely
// return undefined from here.
TailCallBuiltin(Builtins::kProxyGetProperty, context, object, name,
receiver, on_non_existent);
}
}
// ES6 [[Set]] operation.
TF_BUILTIN(SetProperty, CodeStubAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<Object> receiver = CAST(Parameter(Descriptor::kReceiver));
TNode<Object> key = CAST(Parameter(Descriptor::kKey));
TNode<Object> value = CAST(Parameter(Descriptor::kValue));
KeyedStoreGenericGenerator::SetProperty(state(), context, receiver, key,
value, LanguageMode::kStrict);
}
// ES6 CreateDataProperty(), specialized for the case where objects are still
// being initialized, and have not yet been made accessible to the user. Thus,
// any operation here should be unobservable until after the object has been
// returned.
TF_BUILTIN(SetPropertyInLiteral, CodeStubAssembler) {
TNode<Context> context = CAST(Parameter(Descriptor::kContext));
TNode<JSObject> receiver = CAST(Parameter(Descriptor::kReceiver));
TNode<Object> key = CAST(Parameter(Descriptor::kKey));
TNode<Object> value = CAST(Parameter(Descriptor::kValue));
KeyedStoreGenericGenerator::SetPropertyInLiteral(state(), context, receiver,
key, value);
}
} // namespace internal
} // namespace v8