| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions |
| // are met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the |
| // distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| // OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2012 the V8 project authors. All rights reserved. |
| |
| #include "src/codegen/arm/assembler-arm.h" |
| |
| #if V8_TARGET_ARCH_ARM |
| |
| #include "src/base/bits.h" |
| #include "src/base/cpu.h" |
| #include "src/codegen/arm/assembler-arm-inl.h" |
| #include "src/codegen/assembler-inl.h" |
| #include "src/codegen/macro-assembler.h" |
| #include "src/codegen/string-constants.h" |
| #include "src/deoptimizer/deoptimizer.h" |
| #include "src/objects/objects-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| static const unsigned kArmv6 = 0u; |
| static const unsigned kArmv7 = kArmv6 | (1u << ARMv7); |
| static const unsigned kArmv7WithSudiv = kArmv7 | (1u << ARMv7_SUDIV); |
| static const unsigned kArmv8 = kArmv7WithSudiv | (1u << ARMv8); |
| |
| static unsigned CpuFeaturesFromCommandLine() { |
| unsigned result; |
| if (strcmp(FLAG_arm_arch, "armv8") == 0) { |
| result = kArmv8; |
| } else if (strcmp(FLAG_arm_arch, "armv7+sudiv") == 0) { |
| result = kArmv7WithSudiv; |
| } else if (strcmp(FLAG_arm_arch, "armv7") == 0) { |
| result = kArmv7; |
| } else if (strcmp(FLAG_arm_arch, "armv6") == 0) { |
| result = kArmv6; |
| } else { |
| fprintf(stderr, "Error: unrecognised value for --arm-arch ('%s').\n", |
| FLAG_arm_arch); |
| fprintf(stderr, |
| "Supported values are: armv8\n" |
| " armv7+sudiv\n" |
| " armv7\n" |
| " armv6\n"); |
| FATAL("arm-arch"); |
| } |
| |
| // If any of the old (deprecated) flags are specified, print a warning, but |
| // otherwise try to respect them for now. |
| // TODO(jbramley): When all the old bots have been updated, remove this. |
| if (FLAG_enable_armv7.has_value || FLAG_enable_vfp3.has_value || |
| FLAG_enable_32dregs.has_value || FLAG_enable_neon.has_value || |
| FLAG_enable_sudiv.has_value || FLAG_enable_armv8.has_value) { |
| // As an approximation of the old behaviour, set the default values from the |
| // arm_arch setting, then apply the flags over the top. |
| bool enable_armv7 = (result & (1u << ARMv7)) != 0; |
| bool enable_vfp3 = (result & (1u << ARMv7)) != 0; |
| bool enable_32dregs = (result & (1u << ARMv7)) != 0; |
| bool enable_neon = (result & (1u << ARMv7)) != 0; |
| bool enable_sudiv = (result & (1u << ARMv7_SUDIV)) != 0; |
| bool enable_armv8 = (result & (1u << ARMv8)) != 0; |
| if (FLAG_enable_armv7.has_value) { |
| fprintf(stderr, |
| "Warning: --enable_armv7 is deprecated. " |
| "Use --arm_arch instead.\n"); |
| enable_armv7 = FLAG_enable_armv7.value; |
| } |
| if (FLAG_enable_vfp3.has_value) { |
| fprintf(stderr, |
| "Warning: --enable_vfp3 is deprecated. " |
| "Use --arm_arch instead.\n"); |
| enable_vfp3 = FLAG_enable_vfp3.value; |
| } |
| if (FLAG_enable_32dregs.has_value) { |
| fprintf(stderr, |
| "Warning: --enable_32dregs is deprecated. " |
| "Use --arm_arch instead.\n"); |
| enable_32dregs = FLAG_enable_32dregs.value; |
| } |
| if (FLAG_enable_neon.has_value) { |
| fprintf(stderr, |
| "Warning: --enable_neon is deprecated. " |
| "Use --arm_arch instead.\n"); |
| enable_neon = FLAG_enable_neon.value; |
| } |
| if (FLAG_enable_sudiv.has_value) { |
| fprintf(stderr, |
| "Warning: --enable_sudiv is deprecated. " |
| "Use --arm_arch instead.\n"); |
| enable_sudiv = FLAG_enable_sudiv.value; |
| } |
| if (FLAG_enable_armv8.has_value) { |
| fprintf(stderr, |
| "Warning: --enable_armv8 is deprecated. " |
| "Use --arm_arch instead.\n"); |
| enable_armv8 = FLAG_enable_armv8.value; |
| } |
| // Emulate the old implications. |
| if (enable_armv8) { |
| enable_vfp3 = true; |
| enable_neon = true; |
| enable_32dregs = true; |
| enable_sudiv = true; |
| } |
| // Select the best available configuration. |
| if (enable_armv7 && enable_vfp3 && enable_32dregs && enable_neon) { |
| if (enable_sudiv) { |
| if (enable_armv8) { |
| result = kArmv8; |
| } else { |
| result = kArmv7WithSudiv; |
| } |
| } else { |
| result = kArmv7; |
| } |
| } else { |
| result = kArmv6; |
| } |
| } |
| return result; |
| } |
| |
| // Get the CPU features enabled by the build. |
| // For cross compilation the preprocessor symbols such as |
| // CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP3_INSTRUCTIONS can be used to |
| // enable ARMv7 and VFPv3 instructions when building the snapshot. However, |
| // these flags should be consistent with a supported ARM configuration: |
| // "armv6": ARMv6 + VFPv2 |
| // "armv7": ARMv7 + VFPv3-D32 + NEON |
| // "armv7+sudiv": ARMv7 + VFPv4-D32 + NEON + SUDIV |
| // "armv8": ARMv8 (+ all of the above) |
| static constexpr unsigned CpuFeaturesFromCompiler() { |
| // TODO(jbramley): Once the build flags are simplified, these tests should |
| // also be simplified. |
| |
| // Check *architectural* implications. |
| #if defined(CAN_USE_ARMV8_INSTRUCTIONS) && !defined(CAN_USE_ARMV7_INSTRUCTIONS) |
| #error "CAN_USE_ARMV8_INSTRUCTIONS should imply CAN_USE_ARMV7_INSTRUCTIONS" |
| #endif |
| #if defined(CAN_USE_ARMV8_INSTRUCTIONS) && !defined(CAN_USE_SUDIV) |
| #error "CAN_USE_ARMV8_INSTRUCTIONS should imply CAN_USE_SUDIV" |
| #endif |
| #if defined(CAN_USE_ARMV7_INSTRUCTIONS) != defined(CAN_USE_VFP3_INSTRUCTIONS) |
| // V8 requires VFP, and all ARMv7 devices with VFP have VFPv3. Similarly, |
| // VFPv3 isn't available before ARMv7. |
| #error "CAN_USE_ARMV7_INSTRUCTIONS should match CAN_USE_VFP3_INSTRUCTIONS" |
| #endif |
| #if defined(CAN_USE_NEON) && !defined(CAN_USE_ARMV7_INSTRUCTIONS) |
| #error "CAN_USE_NEON should imply CAN_USE_ARMV7_INSTRUCTIONS" |
| #endif |
| |
| // Find compiler-implied features. |
| #if defined(CAN_USE_ARMV8_INSTRUCTIONS) && \ |
| defined(CAN_USE_ARMV7_INSTRUCTIONS) && defined(CAN_USE_SUDIV) && \ |
| defined(CAN_USE_NEON) && defined(CAN_USE_VFP3_INSTRUCTIONS) |
| return kArmv8; |
| #elif defined(CAN_USE_ARMV7_INSTRUCTIONS) && defined(CAN_USE_SUDIV) && \ |
| defined(CAN_USE_NEON) && defined(CAN_USE_VFP3_INSTRUCTIONS) |
| return kArmv7WithSudiv; |
| #elif defined(CAN_USE_ARMV7_INSTRUCTIONS) && defined(CAN_USE_NEON) && \ |
| defined(CAN_USE_VFP3_INSTRUCTIONS) |
| return kArmv7; |
| #else |
| return kArmv6; |
| #endif |
| } |
| |
| void CpuFeatures::ProbeImpl(bool cross_compile) { |
| dcache_line_size_ = 64; |
| |
| unsigned command_line = CpuFeaturesFromCommandLine(); |
| // Only use statically determined features for cross compile (snapshot). |
| if (cross_compile) { |
| supported_ |= command_line & CpuFeaturesFromCompiler(); |
| return; |
| } |
| |
| #ifndef __arm__ |
| // For the simulator build, use whatever the flags specify. |
| supported_ |= command_line; |
| |
| #else // __arm__ |
| // Probe for additional features at runtime. |
| base::CPU cpu; |
| // Runtime detection is slightly fuzzy, and some inferences are necessary. |
| unsigned runtime = kArmv6; |
| // NEON and VFPv3 imply at least ARMv7-A. |
| if (cpu.has_neon() && cpu.has_vfp3_d32()) { |
| DCHECK(cpu.has_vfp3()); |
| runtime |= kArmv7; |
| if (cpu.has_idiva()) { |
| runtime |= kArmv7WithSudiv; |
| if (cpu.architecture() >= 8) { |
| runtime |= kArmv8; |
| } |
| } |
| } |
| |
| // Use the best of the features found by CPU detection and those inferred from |
| // the build system. In both cases, restrict available features using the |
| // command-line. Note that the command-line flags are very permissive (kArmv8) |
| // by default. |
| supported_ |= command_line & CpuFeaturesFromCompiler(); |
| supported_ |= command_line & runtime; |
| |
| // Additional tuning options. |
| |
| // ARM Cortex-A9 and Cortex-A5 have 32 byte cachelines. |
| if (cpu.implementer() == base::CPU::ARM && |
| (cpu.part() == base::CPU::ARM_CORTEX_A5 || |
| cpu.part() == base::CPU::ARM_CORTEX_A9)) { |
| dcache_line_size_ = 32; |
| } |
| #endif |
| |
| DCHECK_IMPLIES(IsSupported(ARMv7_SUDIV), IsSupported(ARMv7)); |
| DCHECK_IMPLIES(IsSupported(ARMv8), IsSupported(ARMv7_SUDIV)); |
| } |
| |
| void CpuFeatures::PrintTarget() { |
| const char* arm_arch = nullptr; |
| const char* arm_target_type = ""; |
| const char* arm_no_probe = ""; |
| const char* arm_fpu = ""; |
| const char* arm_thumb = ""; |
| const char* arm_float_abi = nullptr; |
| |
| #if !defined __arm__ |
| arm_target_type = " simulator"; |
| #endif |
| |
| #if defined ARM_TEST_NO_FEATURE_PROBE |
| arm_no_probe = " noprobe"; |
| #endif |
| |
| #if defined CAN_USE_ARMV8_INSTRUCTIONS |
| arm_arch = "arm v8"; |
| #elif defined CAN_USE_ARMV7_INSTRUCTIONS |
| arm_arch = "arm v7"; |
| #else |
| arm_arch = "arm v6"; |
| #endif |
| |
| #if defined CAN_USE_NEON |
| arm_fpu = " neon"; |
| #elif defined CAN_USE_VFP3_INSTRUCTIONS |
| #if defined CAN_USE_VFP32DREGS |
| arm_fpu = " vfp3"; |
| #else |
| arm_fpu = " vfp3-d16"; |
| #endif |
| #else |
| arm_fpu = " vfp2"; |
| #endif |
| |
| #ifdef __arm__ |
| arm_float_abi = base::OS::ArmUsingHardFloat() ? "hard" : "softfp"; |
| #elif USE_EABI_HARDFLOAT |
| arm_float_abi = "hard"; |
| #else |
| arm_float_abi = "softfp"; |
| #endif |
| |
| #if defined __arm__ && (defined __thumb__) || (defined __thumb2__) |
| arm_thumb = " thumb"; |
| #endif |
| |
| printf("target%s%s %s%s%s %s\n", arm_target_type, arm_no_probe, arm_arch, |
| arm_fpu, arm_thumb, arm_float_abi); |
| } |
| |
| void CpuFeatures::PrintFeatures() { |
| printf("ARMv8=%d ARMv7=%d VFPv3=%d VFP32DREGS=%d NEON=%d SUDIV=%d", |
| CpuFeatures::IsSupported(ARMv8), CpuFeatures::IsSupported(ARMv7), |
| CpuFeatures::IsSupported(VFPv3), CpuFeatures::IsSupported(VFP32DREGS), |
| CpuFeatures::IsSupported(NEON), CpuFeatures::IsSupported(SUDIV)); |
| #ifdef __arm__ |
| bool eabi_hardfloat = base::OS::ArmUsingHardFloat(); |
| #elif USE_EABI_HARDFLOAT |
| bool eabi_hardfloat = true; |
| #else |
| bool eabi_hardfloat = false; |
| #endif |
| printf(" USE_EABI_HARDFLOAT=%d\n", eabi_hardfloat); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfo |
| |
| // static |
| const int RelocInfo::kApplyMask = |
| RelocInfo::ModeMask(RelocInfo::RELATIVE_CODE_TARGET); |
| |
| bool RelocInfo::IsCodedSpecially() { |
| // The deserializer needs to know whether a pointer is specially coded. Â Being |
| // specially coded on ARM means that it is a movw/movt instruction. We don't |
| // generate those for relocatable pointers. |
| return false; |
| } |
| |
| bool RelocInfo::IsInConstantPool() { |
| return Assembler::is_constant_pool_load(pc_); |
| } |
| |
| uint32_t RelocInfo::wasm_call_tag() const { |
| DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL); |
| return static_cast<uint32_t>( |
| Assembler::target_address_at(pc_, constant_pool_)); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Operand and MemOperand |
| // See assembler-arm-inl.h for inlined constructors |
| |
| Operand::Operand(Handle<HeapObject> handle) { |
| rm_ = no_reg; |
| value_.immediate = static_cast<intptr_t>(handle.address()); |
| rmode_ = RelocInfo::FULL_EMBEDDED_OBJECT; |
| } |
| |
| Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) { |
| DCHECK(is_uint5(shift_imm)); |
| |
| rm_ = rm; |
| rs_ = no_reg; |
| shift_op_ = shift_op; |
| shift_imm_ = shift_imm & 31; |
| |
| if ((shift_op == ROR) && (shift_imm == 0)) { |
| // ROR #0 is functionally equivalent to LSL #0 and this allow us to encode |
| // RRX as ROR #0 (See below). |
| shift_op = LSL; |
| } else if (shift_op == RRX) { |
| // encoded as ROR with shift_imm == 0 |
| DCHECK_EQ(shift_imm, 0); |
| shift_op_ = ROR; |
| shift_imm_ = 0; |
| } |
| } |
| |
| Operand::Operand(Register rm, ShiftOp shift_op, Register rs) { |
| DCHECK(shift_op != RRX); |
| rm_ = rm; |
| rs_ = no_reg; |
| shift_op_ = shift_op; |
| rs_ = rs; |
| } |
| |
| Operand Operand::EmbeddedNumber(double value) { |
| int32_t smi; |
| if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi)); |
| Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT); |
| result.is_heap_object_request_ = true; |
| result.value_.heap_object_request = HeapObjectRequest(value); |
| return result; |
| } |
| |
| Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) { |
| Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT); |
| result.is_heap_object_request_ = true; |
| result.value_.heap_object_request = HeapObjectRequest(str); |
| return result; |
| } |
| |
| MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) |
| : rn_(rn), rm_(no_reg), offset_(offset), am_(am) { |
| // Accesses below the stack pointer are not safe, and are prohibited by the |
| // ABI. We can check obvious violations here. |
| if (rn == sp) { |
| if (am == Offset) DCHECK_LE(0, offset); |
| if (am == NegOffset) DCHECK_GE(0, offset); |
| } |
| } |
| |
| MemOperand::MemOperand(Register rn, Register rm, AddrMode am) |
| : rn_(rn), rm_(rm), shift_op_(LSL), shift_imm_(0), am_(am) {} |
| |
| MemOperand::MemOperand(Register rn, Register rm, ShiftOp shift_op, |
| int shift_imm, AddrMode am) |
| : rn_(rn), |
| rm_(rm), |
| shift_op_(shift_op), |
| shift_imm_(shift_imm & 31), |
| am_(am) { |
| DCHECK(is_uint5(shift_imm)); |
| } |
| |
| NeonMemOperand::NeonMemOperand(Register rn, AddrMode am, int align) |
| : rn_(rn), rm_(am == Offset ? pc : sp) { |
| DCHECK((am == Offset) || (am == PostIndex)); |
| SetAlignment(align); |
| } |
| |
| NeonMemOperand::NeonMemOperand(Register rn, Register rm, int align) |
| : rn_(rn), rm_(rm) { |
| SetAlignment(align); |
| } |
| |
| void NeonMemOperand::SetAlignment(int align) { |
| switch (align) { |
| case 0: |
| align_ = 0; |
| break; |
| case 64: |
| align_ = 1; |
| break; |
| case 128: |
| align_ = 2; |
| break; |
| case 256: |
| align_ = 3; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) { |
| DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty()); |
| for (auto& request : heap_object_requests_) { |
| Handle<HeapObject> object; |
| switch (request.kind()) { |
| case HeapObjectRequest::kHeapNumber: |
| object = isolate->factory()->NewHeapNumber(request.heap_number(), |
| AllocationType::kOld); |
| break; |
| case HeapObjectRequest::kStringConstant: { |
| const StringConstantBase* str = request.string(); |
| CHECK_NOT_NULL(str); |
| object = str->AllocateStringConstant(isolate); |
| break; |
| } |
| } |
| Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset(); |
| Memory<Address>(constant_pool_entry_address(pc, 0 /* unused */)) = |
| object.address(); |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Specific instructions, constants, and masks. |
| |
| // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) |
| // register r is not encoded. |
| const Instr kPushRegPattern = al | B26 | 4 | NegPreIndex | sp.code() * B16; |
| // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) |
| // register r is not encoded. |
| const Instr kPopRegPattern = al | B26 | L | 4 | PostIndex | sp.code() * B16; |
| // ldr rd, [pc, #offset] |
| const Instr kLdrPCImmedMask = 15 * B24 | 7 * B20 | 15 * B16; |
| const Instr kLdrPCImmedPattern = 5 * B24 | L | pc.code() * B16; |
| // Pc-relative call or jump to a signed imm24 offset. |
| // bl pc + #offset |
| // b pc + #offset |
| const Instr kBOrBlPCImmedMask = 0xE * B24; |
| const Instr kBOrBlPCImmedPattern = 0xA * B24; |
| // vldr dd, [pc, #offset] |
| const Instr kVldrDPCMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8; |
| const Instr kVldrDPCPattern = 13 * B24 | L | pc.code() * B16 | 11 * B8; |
| // blxcc rm |
| const Instr kBlxRegMask = |
| 15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4; |
| const Instr kBlxRegPattern = B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX; |
| const Instr kBlxIp = al | kBlxRegPattern | ip.code(); |
| const Instr kMovMvnMask = 0x6D * B21 | 0xF * B16; |
| const Instr kMovMvnPattern = 0xD * B21; |
| const Instr kMovMvnFlip = B22; |
| const Instr kMovLeaveCCMask = 0xDFF * B16; |
| const Instr kMovLeaveCCPattern = 0x1A0 * B16; |
| const Instr kMovwPattern = 0x30 * B20; |
| const Instr kMovtPattern = 0x34 * B20; |
| const Instr kMovwLeaveCCFlip = 0x5 * B21; |
| const Instr kMovImmedMask = 0x7F * B21; |
| const Instr kMovImmedPattern = 0x1D * B21; |
| const Instr kOrrImmedMask = 0x7F * B21; |
| const Instr kOrrImmedPattern = 0x1C * B21; |
| const Instr kCmpCmnMask = 0xDD * B20 | 0xF * B12; |
| const Instr kCmpCmnPattern = 0x15 * B20; |
| const Instr kCmpCmnFlip = B21; |
| const Instr kAddSubFlip = 0x6 * B21; |
| const Instr kAndBicFlip = 0xE * B21; |
| |
| // A mask for the Rd register for push, pop, ldr, str instructions. |
| const Instr kLdrRegFpOffsetPattern = al | B26 | L | Offset | fp.code() * B16; |
| const Instr kStrRegFpOffsetPattern = al | B26 | Offset | fp.code() * B16; |
| const Instr kLdrRegFpNegOffsetPattern = |
| al | B26 | L | NegOffset | fp.code() * B16; |
| const Instr kStrRegFpNegOffsetPattern = al | B26 | NegOffset | fp.code() * B16; |
| const Instr kLdrStrInstrTypeMask = 0xFFFF0000; |
| |
| Assembler::Assembler(const AssemblerOptions& options, |
| std::unique_ptr<AssemblerBuffer> buffer) |
| : AssemblerBase(options, std::move(buffer)), |
| pending_32_bit_constants_(), |
| scratch_register_list_(ip.bit()) { |
| pending_32_bit_constants_.reserve(kMinNumPendingConstants); |
| reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_); |
| next_buffer_check_ = 0; |
| const_pool_blocked_nesting_ = 0; |
| no_const_pool_before_ = 0; |
| first_const_pool_32_use_ = -1; |
| last_bound_pos_ = 0; |
| if (CpuFeatures::IsSupported(VFP32DREGS)) { |
| // Register objects tend to be abstracted and survive between scopes, so |
| // it's awkward to use CpuFeatures::VFP32DREGS with CpuFeatureScope. To make |
| // its use consistent with other features, we always enable it if we can. |
| EnableCpuFeature(VFP32DREGS); |
| // Make sure we pick two D registers which alias a Q register. This way, we |
| // can use a Q as a scratch if NEON is supported. |
| scratch_vfp_register_list_ = d14.ToVfpRegList() | d15.ToVfpRegList(); |
| } else { |
| // When VFP32DREGS is not supported, d15 become allocatable. Therefore we |
| // cannot use it as a scratch. |
| scratch_vfp_register_list_ = d14.ToVfpRegList(); |
| } |
| } |
| |
| Assembler::~Assembler() { DCHECK_EQ(const_pool_blocked_nesting_, 0); } |
| |
| void Assembler::GetCode(Isolate* isolate, CodeDesc* desc, |
| SafepointTableBuilder* safepoint_table_builder, |
| int handler_table_offset) { |
| // Emit constant pool if necessary. |
| CheckConstPool(true, false); |
| DCHECK(pending_32_bit_constants_.empty()); |
| |
| int code_comments_size = WriteCodeComments(); |
| |
| AllocateAndInstallRequestedHeapObjects(isolate); |
| |
| // Set up code descriptor. |
| // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to |
| // this point to make CodeDesc initialization less fiddly. |
| |
| static constexpr int kConstantPoolSize = 0; |
| const int instruction_size = pc_offset(); |
| const int code_comments_offset = instruction_size - code_comments_size; |
| const int constant_pool_offset = code_comments_offset - kConstantPoolSize; |
| const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable) |
| ? constant_pool_offset |
| : handler_table_offset; |
| const int safepoint_table_offset = |
| (safepoint_table_builder == kNoSafepointTable) |
| ? handler_table_offset2 |
| : safepoint_table_builder->GetCodeOffset(); |
| const int reloc_info_offset = |
| static_cast<int>(reloc_info_writer.pos() - buffer_->start()); |
| CodeDesc::Initialize(desc, this, safepoint_table_offset, |
| handler_table_offset2, constant_pool_offset, |
| code_comments_offset, reloc_info_offset); |
| } |
| |
| void Assembler::Align(int m) { |
| DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m)); |
| DCHECK_EQ(pc_offset() & (kInstrSize - 1), 0); |
| while ((pc_offset() & (m - 1)) != 0) { |
| nop(); |
| } |
| } |
| |
| void Assembler::CodeTargetAlign() { |
| // Preferred alignment of jump targets on some ARM chips. |
| Align(8); |
| } |
| |
| Condition Assembler::GetCondition(Instr instr) { |
| return Instruction::ConditionField(instr); |
| } |
| |
| bool Assembler::IsLdrRegisterImmediate(Instr instr) { |
| return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20); |
| } |
| |
| bool Assembler::IsVldrDRegisterImmediate(Instr instr) { |
| return (instr & (15 * B24 | 3 * B20 | 15 * B8)) == (13 * B24 | B20 | 11 * B8); |
| } |
| |
| int Assembler::GetLdrRegisterImmediateOffset(Instr instr) { |
| DCHECK(IsLdrRegisterImmediate(instr)); |
| bool positive = (instr & B23) == B23; |
| int offset = instr & kOff12Mask; // Zero extended offset. |
| return positive ? offset : -offset; |
| } |
| |
| int Assembler::GetVldrDRegisterImmediateOffset(Instr instr) { |
| DCHECK(IsVldrDRegisterImmediate(instr)); |
| bool positive = (instr & B23) == B23; |
| int offset = instr & kOff8Mask; // Zero extended offset. |
| offset <<= 2; |
| return positive ? offset : -offset; |
| } |
| |
| Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) { |
| DCHECK(IsLdrRegisterImmediate(instr)); |
| bool positive = offset >= 0; |
| if (!positive) offset = -offset; |
| DCHECK(is_uint12(offset)); |
| // Set bit indicating whether the offset should be added. |
| instr = (instr & ~B23) | (positive ? B23 : 0); |
| // Set the actual offset. |
| return (instr & ~kOff12Mask) | offset; |
| } |
| |
| Instr Assembler::SetVldrDRegisterImmediateOffset(Instr instr, int offset) { |
| DCHECK(IsVldrDRegisterImmediate(instr)); |
| DCHECK((offset & ~3) == offset); // Must be 64-bit aligned. |
| bool positive = offset >= 0; |
| if (!positive) offset = -offset; |
| DCHECK(is_uint10(offset)); |
| // Set bit indicating whether the offset should be added. |
| instr = (instr & ~B23) | (positive ? B23 : 0); |
| // Set the actual offset. Its bottom 2 bits are zero. |
| return (instr & ~kOff8Mask) | (offset >> 2); |
| } |
| |
| bool Assembler::IsStrRegisterImmediate(Instr instr) { |
| return (instr & (B27 | B26 | B25 | B22 | B20)) == B26; |
| } |
| |
| Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) { |
| DCHECK(IsStrRegisterImmediate(instr)); |
| bool positive = offset >= 0; |
| if (!positive) offset = -offset; |
| DCHECK(is_uint12(offset)); |
| // Set bit indicating whether the offset should be added. |
| instr = (instr & ~B23) | (positive ? B23 : 0); |
| // Set the actual offset. |
| return (instr & ~kOff12Mask) | offset; |
| } |
| |
| bool Assembler::IsAddRegisterImmediate(Instr instr) { |
| return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23); |
| } |
| |
| Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) { |
| DCHECK(IsAddRegisterImmediate(instr)); |
| DCHECK_GE(offset, 0); |
| DCHECK(is_uint12(offset)); |
| // Set the offset. |
| return (instr & ~kOff12Mask) | offset; |
| } |
| |
| Register Assembler::GetRd(Instr instr) { |
| return Register::from_code(Instruction::RdValue(instr)); |
| } |
| |
| Register Assembler::GetRn(Instr instr) { |
| return Register::from_code(Instruction::RnValue(instr)); |
| } |
| |
| Register Assembler::GetRm(Instr instr) { |
| return Register::from_code(Instruction::RmValue(instr)); |
| } |
| |
| bool Assembler::IsPush(Instr instr) { |
| return ((instr & ~kRdMask) == kPushRegPattern); |
| } |
| |
| bool Assembler::IsPop(Instr instr) { |
| return ((instr & ~kRdMask) == kPopRegPattern); |
| } |
| |
| bool Assembler::IsStrRegFpOffset(Instr instr) { |
| return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern); |
| } |
| |
| bool Assembler::IsLdrRegFpOffset(Instr instr) { |
| return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern); |
| } |
| |
| bool Assembler::IsStrRegFpNegOffset(Instr instr) { |
| return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern); |
| } |
| |
| bool Assembler::IsLdrRegFpNegOffset(Instr instr) { |
| return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern); |
| } |
| |
| bool Assembler::IsLdrPcImmediateOffset(Instr instr) { |
| // Check the instruction is indeed a |
| // ldr<cond> <Rd>, [pc +/- offset_12]. |
| return (instr & kLdrPCImmedMask) == kLdrPCImmedPattern; |
| } |
| |
| bool Assembler::IsBOrBlPcImmediateOffset(Instr instr) { |
| return (instr & kBOrBlPCImmedMask) == kBOrBlPCImmedPattern; |
| } |
| |
| bool Assembler::IsVldrDPcImmediateOffset(Instr instr) { |
| // Check the instruction is indeed a |
| // vldr<cond> <Dd>, [pc +/- offset_10]. |
| return (instr & kVldrDPCMask) == kVldrDPCPattern; |
| } |
| |
| bool Assembler::IsBlxReg(Instr instr) { |
| // Check the instruction is indeed a |
| // blxcc <Rm> |
| return (instr & kBlxRegMask) == kBlxRegPattern; |
| } |
| |
| bool Assembler::IsBlxIp(Instr instr) { |
| // Check the instruction is indeed a |
| // blx ip |
| return instr == kBlxIp; |
| } |
| |
| bool Assembler::IsTstImmediate(Instr instr) { |
| return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) == (I | TST | S); |
| } |
| |
| bool Assembler::IsCmpRegister(Instr instr) { |
| return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) == |
| (CMP | S); |
| } |
| |
| bool Assembler::IsCmpImmediate(Instr instr) { |
| return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) == (I | CMP | S); |
| } |
| |
| Register Assembler::GetCmpImmediateRegister(Instr instr) { |
| DCHECK(IsCmpImmediate(instr)); |
| return GetRn(instr); |
| } |
| |
| int Assembler::GetCmpImmediateRawImmediate(Instr instr) { |
| DCHECK(IsCmpImmediate(instr)); |
| return instr & kOff12Mask; |
| } |
| |
| // Labels refer to positions in the (to be) generated code. |
| // There are bound, linked, and unused labels. |
| // |
| // Bound labels refer to known positions in the already |
| // generated code. pos() is the position the label refers to. |
| // |
| // Linked labels refer to unknown positions in the code |
| // to be generated; pos() is the position of the last |
| // instruction using the label. |
| // |
| // The linked labels form a link chain by making the branch offset |
| // in the instruction steam to point to the previous branch |
| // instruction using the same label. |
| // |
| // The link chain is terminated by a branch offset pointing to the |
| // same position. |
| |
| int Assembler::target_at(int pos) { |
| Instr instr = instr_at(pos); |
| if (is_uint24(instr)) { |
| // Emitted link to a label, not part of a branch. |
| return instr; |
| } |
| DCHECK_EQ(5 * B25, instr & 7 * B25); // b, bl, or blx imm24 |
| int imm26 = ((instr & kImm24Mask) << 8) >> 6; |
| if ((Instruction::ConditionField(instr) == kSpecialCondition) && |
| ((instr & B24) != 0)) { |
| // blx uses bit 24 to encode bit 2 of imm26 |
| imm26 += 2; |
| } |
| return pos + Instruction::kPcLoadDelta + imm26; |
| } |
| |
| void Assembler::target_at_put(int pos, int target_pos) { |
| Instr instr = instr_at(pos); |
| if (is_uint24(instr)) { |
| DCHECK(target_pos == pos || target_pos >= 0); |
| // Emitted link to a label, not part of a branch. |
| // Load the position of the label relative to the generated code object |
| // pointer in a register. |
| |
| // The existing code must be a single 24-bit label chain link, followed by |
| // nops encoding the destination register. See mov_label_offset. |
| |
| // Extract the destination register from the first nop instructions. |
| Register dst = |
| Register::from_code(Instruction::RmValue(instr_at(pos + kInstrSize))); |
| // In addition to the 24-bit label chain link, we expect to find one nop for |
| // ARMv7 and above, or two nops for ARMv6. See mov_label_offset. |
| DCHECK(IsNop(instr_at(pos + kInstrSize), dst.code())); |
| if (!CpuFeatures::IsSupported(ARMv7)) { |
| DCHECK(IsNop(instr_at(pos + 2 * kInstrSize), dst.code())); |
| } |
| |
| // Here are the instructions we need to emit: |
| // For ARMv7: target24 => target16_1:target16_0 |
| // movw dst, #target16_0 |
| // movt dst, #target16_1 |
| // For ARMv6: target24 => target8_2:target8_1:target8_0 |
| // mov dst, #target8_0 |
| // orr dst, dst, #target8_1 << 8 |
| // orr dst, dst, #target8_2 << 16 |
| |
| uint32_t target24 = target_pos + (Code::kHeaderSize - kHeapObjectTag); |
| DCHECK(is_uint24(target24)); |
| if (is_uint8(target24)) { |
| // If the target fits in a byte then only patch with a mov |
| // instruction. |
| PatchingAssembler patcher( |
| options(), reinterpret_cast<byte*>(buffer_start_ + pos), 1); |
| patcher.mov(dst, Operand(target24)); |
| } else { |
| uint16_t target16_0 = target24 & kImm16Mask; |
| uint16_t target16_1 = target24 >> 16; |
| if (CpuFeatures::IsSupported(ARMv7)) { |
| // Patch with movw/movt. |
| if (target16_1 == 0) { |
| PatchingAssembler patcher( |
| options(), reinterpret_cast<byte*>(buffer_start_ + pos), 1); |
| CpuFeatureScope scope(&patcher, ARMv7); |
| patcher.movw(dst, target16_0); |
| } else { |
| PatchingAssembler patcher( |
| options(), reinterpret_cast<byte*>(buffer_start_ + pos), 2); |
| CpuFeatureScope scope(&patcher, ARMv7); |
| patcher.movw(dst, target16_0); |
| patcher.movt(dst, target16_1); |
| } |
| } else { |
| // Patch with a sequence of mov/orr/orr instructions. |
| uint8_t target8_0 = target16_0 & kImm8Mask; |
| uint8_t target8_1 = target16_0 >> 8; |
| uint8_t target8_2 = target16_1 & kImm8Mask; |
| if (target8_2 == 0) { |
| PatchingAssembler patcher( |
| options(), reinterpret_cast<byte*>(buffer_start_ + pos), 2); |
| patcher.mov(dst, Operand(target8_0)); |
| patcher.orr(dst, dst, Operand(target8_1 << 8)); |
| } else { |
| PatchingAssembler patcher( |
| options(), reinterpret_cast<byte*>(buffer_start_ + pos), 3); |
| patcher.mov(dst, Operand(target8_0)); |
| patcher.orr(dst, dst, Operand(target8_1 << 8)); |
| patcher.orr(dst, dst, Operand(target8_2 << 16)); |
| } |
| } |
| } |
| return; |
| } |
| int imm26 = target_pos - (pos + Instruction::kPcLoadDelta); |
| DCHECK_EQ(5 * B25, instr & 7 * B25); // b, bl, or blx imm24 |
| if (Instruction::ConditionField(instr) == kSpecialCondition) { |
| // blx uses bit 24 to encode bit 2 of imm26 |
| DCHECK_EQ(0, imm26 & 1); |
| instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1) * B24; |
| } else { |
| DCHECK_EQ(0, imm26 & 3); |
| instr &= ~kImm24Mask; |
| } |
| int imm24 = imm26 >> 2; |
| DCHECK(is_int24(imm24)); |
| instr_at_put(pos, instr | (imm24 & kImm24Mask)); |
| } |
| |
| void Assembler::print(const Label* L) { |
| if (L->is_unused()) { |
| PrintF("unused label\n"); |
| } else if (L->is_bound()) { |
| PrintF("bound label to %d\n", L->pos()); |
| } else if (L->is_linked()) { |
| Label l; |
| l.link_to(L->pos()); |
| PrintF("unbound label"); |
| while (l.is_linked()) { |
| PrintF("@ %d ", l.pos()); |
| Instr instr = instr_at(l.pos()); |
| if ((instr & ~kImm24Mask) == 0) { |
| PrintF("value\n"); |
| } else { |
| DCHECK_EQ(instr & 7 * B25, 5 * B25); // b, bl, or blx |
| Condition cond = Instruction::ConditionField(instr); |
| const char* b; |
| const char* c; |
| if (cond == kSpecialCondition) { |
| b = "blx"; |
| c = ""; |
| } else { |
| if ((instr & B24) != 0) |
| b = "bl"; |
| else |
| b = "b"; |
| |
| switch (cond) { |
| case eq: |
| c = "eq"; |
| break; |
| case ne: |
| c = "ne"; |
| break; |
| case hs: |
| c = "hs"; |
| break; |
| case lo: |
| c = "lo"; |
| break; |
| case mi: |
| c = "mi"; |
| break; |
| case pl: |
| c = "pl"; |
| break; |
| case vs: |
| c = "vs"; |
| break; |
| case vc: |
| c = "vc"; |
| break; |
| case hi: |
| c = "hi"; |
| break; |
| case ls: |
| c = "ls"; |
| break; |
| case ge: |
| c = "ge"; |
| break; |
| case lt: |
| c = "lt"; |
| break; |
| case gt: |
| c = "gt"; |
| break; |
| case le: |
| c = "le"; |
| break; |
| case al: |
| c = ""; |
| break; |
| default: |
| c = ""; |
| UNREACHABLE(); |
| } |
| } |
| PrintF("%s%s\n", b, c); |
| } |
| next(&l); |
| } |
| } else { |
| PrintF("label in inconsistent state (pos = %d)\n", L->pos_); |
| } |
| } |
| |
| void Assembler::bind_to(Label* L, int pos) { |
| DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position |
| while (L->is_linked()) { |
| int fixup_pos = L->pos(); |
| next(L); // call next before overwriting link with target at fixup_pos |
| target_at_put(fixup_pos, pos); |
| } |
| L->bind_to(pos); |
| |
| // Keep track of the last bound label so we don't eliminate any instructions |
| // before a bound label. |
| if (pos > last_bound_pos_) last_bound_pos_ = pos; |
| } |
| |
| void Assembler::bind(Label* L) { |
| DCHECK(!L->is_bound()); // label can only be bound once |
| bind_to(L, pc_offset()); |
| } |
| |
| void Assembler::next(Label* L) { |
| DCHECK(L->is_linked()); |
| int link = target_at(L->pos()); |
| if (link == L->pos()) { |
| // Branch target points to the same instruction. This is the end of the link |
| // chain. |
| L->Unuse(); |
| } else { |
| DCHECK_GE(link, 0); |
| L->link_to(link); |
| } |
| } |
| |
| namespace { |
| |
| // Low-level code emission routines depending on the addressing mode. |
| // If this returns true then you have to use the rotate_imm and immed_8 |
| // that it returns, because it may have already changed the instruction |
| // to match them! |
| bool FitsShifter(uint32_t imm32, uint32_t* rotate_imm, uint32_t* immed_8, |
| Instr* instr) { |
| // imm32 must be unsigned. |
| for (int rot = 0; rot < 16; rot++) { |
| uint32_t imm8 = base::bits::RotateLeft32(imm32, 2 * rot); |
| if ((imm8 <= 0xFF)) { |
| *rotate_imm = rot; |
| *immed_8 = imm8; |
| return true; |
| } |
| } |
| // If the opcode is one with a complementary version and the complementary |
| // immediate fits, change the opcode. |
| if (instr != nullptr) { |
| if ((*instr & kMovMvnMask) == kMovMvnPattern) { |
| if (FitsShifter(~imm32, rotate_imm, immed_8, nullptr)) { |
| *instr ^= kMovMvnFlip; |
| return true; |
| } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) { |
| if (CpuFeatures::IsSupported(ARMv7)) { |
| if (imm32 < 0x10000) { |
| *instr ^= kMovwLeaveCCFlip; |
| *instr |= Assembler::EncodeMovwImmediate(imm32); |
| *rotate_imm = *immed_8 = 0; // Not used for movw. |
| return true; |
| } |
| } |
| } |
| } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) { |
| if (FitsShifter(-static_cast<int>(imm32), rotate_imm, immed_8, nullptr)) { |
| *instr ^= kCmpCmnFlip; |
| return true; |
| } |
| } else { |
| Instr alu_insn = (*instr & kALUMask); |
| if (alu_insn == ADD || alu_insn == SUB) { |
| if (FitsShifter(-static_cast<int>(imm32), rotate_imm, immed_8, |
| nullptr)) { |
| *instr ^= kAddSubFlip; |
| return true; |
| } |
| } else if (alu_insn == AND || alu_insn == BIC) { |
| if (FitsShifter(~imm32, rotate_imm, immed_8, nullptr)) { |
| *instr ^= kAndBicFlip; |
| return true; |
| } |
| } |
| } |
| } |
| return false; |
| } |
| |
| // We have to use the temporary register for things that can be relocated even |
| // if they can be encoded in the ARM's 12 bits of immediate-offset instruction |
| // space. There is no guarantee that the relocated location can be similarly |
| // encoded. |
| bool MustOutputRelocInfo(RelocInfo::Mode rmode, const Assembler* assembler) { |
| if (RelocInfo::IsOnlyForSerializer(rmode)) { |
| if (assembler->predictable_code_size()) return true; |
| return assembler->options().record_reloc_info_for_serialization; |
| } else if (RelocInfo::IsNone(rmode)) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool UseMovImmediateLoad(const Operand& x, const Assembler* assembler) { |
| DCHECK_NOT_NULL(assembler); |
| if (x.MustOutputRelocInfo(assembler)) { |
| // Prefer constant pool if data is likely to be patched. |
| return false; |
| } else { |
| // Otherwise, use immediate load if movw / movt is available. |
| return CpuFeatures::IsSupported(ARMv7); |
| } |
| } |
| |
| } // namespace |
| |
| bool Operand::MustOutputRelocInfo(const Assembler* assembler) const { |
| return v8::internal::MustOutputRelocInfo(rmode_, assembler); |
| } |
| |
| int Operand::InstructionsRequired(const Assembler* assembler, |
| Instr instr) const { |
| DCHECK_NOT_NULL(assembler); |
| if (rm_.is_valid()) return 1; |
| uint32_t dummy1, dummy2; |
| if (MustOutputRelocInfo(assembler) || |
| !FitsShifter(immediate(), &dummy1, &dummy2, &instr)) { |
| // The immediate operand cannot be encoded as a shifter operand, or use of |
| // constant pool is required. First account for the instructions required |
| // for the constant pool or immediate load |
| int instructions; |
| if (UseMovImmediateLoad(*this, assembler)) { |
| DCHECK(CpuFeatures::IsSupported(ARMv7)); |
| // A movw / movt immediate load. |
| instructions = 2; |
| } else { |
| // A small constant pool load. |
| instructions = 1; |
| } |
| if ((instr & ~kCondMask) != 13 * B21) { // mov, S not set |
| // For a mov or mvn instruction which doesn't set the condition |
| // code, the constant pool or immediate load is enough, otherwise we need |
| // to account for the actual instruction being requested. |
| instructions += 1; |
| } |
| return instructions; |
| } else { |
| // No use of constant pool and the immediate operand can be encoded as a |
| // shifter operand. |
| return 1; |
| } |
| } |
| |
| void Assembler::Move32BitImmediate(Register rd, const Operand& x, |
| Condition cond) { |
| if (UseMovImmediateLoad(x, this)) { |
| CpuFeatureScope scope(this, ARMv7); |
| // UseMovImmediateLoad should return false when we need to output |
| // relocation info, since we prefer the constant pool for values that |
| // can be patched. |
| DCHECK(!x.MustOutputRelocInfo(this)); |
| UseScratchRegisterScope temps(this); |
| // Re-use the destination register as a scratch if possible. |
| Register target = rd != pc && rd != sp ? rd : temps.Acquire(); |
| uint32_t imm32 = static_cast<uint32_t>(x.immediate()); |
| movw(target, imm32 & 0xFFFF, cond); |
| movt(target, imm32 >> 16, cond); |
| if (target.code() != rd.code()) { |
| mov(rd, target, LeaveCC, cond); |
| } |
| } else { |
| int32_t immediate; |
| if (x.IsHeapObjectRequest()) { |
| RequestHeapObject(x.heap_object_request()); |
| immediate = 0; |
| } else { |
| immediate = x.immediate(); |
| } |
| ConstantPoolAddEntry(pc_offset(), x.rmode_, immediate); |
| ldr_pcrel(rd, 0, cond); |
| } |
| } |
| |
| void Assembler::AddrMode1(Instr instr, Register rd, Register rn, |
| const Operand& x) { |
| CheckBuffer(); |
| uint32_t opcode = instr & kOpCodeMask; |
| bool set_flags = (instr & S) != 0; |
| DCHECK((opcode == ADC) || (opcode == ADD) || (opcode == AND) || |
| (opcode == BIC) || (opcode == EOR) || (opcode == ORR) || |
| (opcode == RSB) || (opcode == RSC) || (opcode == SBC) || |
| (opcode == SUB) || (opcode == CMN) || (opcode == CMP) || |
| (opcode == TEQ) || (opcode == TST) || (opcode == MOV) || |
| (opcode == MVN)); |
| // For comparison instructions, rd is not defined. |
| DCHECK(rd.is_valid() || (opcode == CMN) || (opcode == CMP) || |
| (opcode == TEQ) || (opcode == TST)); |
| // For move instructions, rn is not defined. |
| DCHECK(rn.is_valid() || (opcode == MOV) || (opcode == MVN)); |
| DCHECK(rd.is_valid() || rn.is_valid()); |
| DCHECK_EQ(instr & ~(kCondMask | kOpCodeMask | S), 0); |
| if (!AddrMode1TryEncodeOperand(&instr, x)) { |
| DCHECK(x.IsImmediate()); |
| // Upon failure to encode, the opcode should not have changed. |
| DCHECK(opcode == (instr & kOpCodeMask)); |
| UseScratchRegisterScope temps(this); |
| Condition cond = Instruction::ConditionField(instr); |
| if ((opcode == MOV) && !set_flags) { |
| // Generate a sequence of mov instructions or a load from the constant |
| // pool only for a MOV instruction which does not set the flags. |
| DCHECK(!rn.is_valid()); |
| Move32BitImmediate(rd, x, cond); |
| } else if ((opcode == ADD) && !set_flags && (rd == rn) && |
| !temps.CanAcquire()) { |
| // Split the operation into a sequence of additions if we cannot use a |
| // scratch register. In this case, we cannot re-use rn and the assembler |
| // does not have any scratch registers to spare. |
| uint32_t imm = x.immediate(); |
| do { |
| // The immediate encoding format is composed of 8 bits of data and 4 |
| // bits encoding a rotation. Each of the 16 possible rotations accounts |
| // for a rotation by an even number. |
| // 4 bits -> 16 rotations possible |
| // -> 16 rotations of 2 bits each fits in a 32-bit value. |
| // This means that finding the even number of trailing zeroes of the |
| // immediate allows us to more efficiently split it: |
| int trailing_zeroes = base::bits::CountTrailingZeros(imm) & ~1u; |
| uint32_t mask = (0xFF << trailing_zeroes); |
| add(rd, rd, Operand(imm & mask), LeaveCC, cond); |
| imm = imm & ~mask; |
| } while (!ImmediateFitsAddrMode1Instruction(imm)); |
| add(rd, rd, Operand(imm), LeaveCC, cond); |
| } else { |
| // The immediate operand cannot be encoded as a shifter operand, so load |
| // it first to a scratch register and change the original instruction to |
| // use it. |
| // Re-use the destination register if possible. |
| Register scratch = (rd.is_valid() && rd != rn && rd != pc && rd != sp) |
| ? rd |
| : temps.Acquire(); |
| mov(scratch, x, LeaveCC, cond); |
| AddrMode1(instr, rd, rn, Operand(scratch)); |
| } |
| return; |
| } |
| if (!rd.is_valid()) { |
| // Emit a comparison instruction. |
| emit(instr | rn.code() * B16); |
| } else if (!rn.is_valid()) { |
| // Emit a move instruction. If the operand is a register-shifted register, |
| // then prevent the destination from being PC as this is unpredictable. |
| DCHECK(!x.IsRegisterShiftedRegister() || rd != pc); |
| emit(instr | rd.code() * B12); |
| } else { |
| emit(instr | rn.code() * B16 | rd.code() * B12); |
| } |
| if (rn == pc || x.rm_ == pc) { |
| // Block constant pool emission for one instruction after reading pc. |
| BlockConstPoolFor(1); |
| } |
| } |
| |
| bool Assembler::AddrMode1TryEncodeOperand(Instr* instr, const Operand& x) { |
| if (x.IsImmediate()) { |
| // Immediate. |
| uint32_t rotate_imm; |
| uint32_t immed_8; |
| if (x.MustOutputRelocInfo(this) || |
| !FitsShifter(x.immediate(), &rotate_imm, &immed_8, instr)) { |
| // Let the caller handle generating multiple instructions. |
| return false; |
| } |
| *instr |= I | rotate_imm * B8 | immed_8; |
| } else if (x.IsImmediateShiftedRegister()) { |
| *instr |= x.shift_imm_ * B7 | x.shift_op_ | x.rm_.code(); |
| } else { |
| DCHECK(x.IsRegisterShiftedRegister()); |
| // It is unpredictable to use the PC in this case. |
| DCHECK(x.rm_ != pc && x.rs_ != pc); |
| *instr |= x.rs_.code() * B8 | x.shift_op_ | B4 | x.rm_.code(); |
| } |
| |
| return true; |
| } |
| |
| void Assembler::AddrMode2(Instr instr, Register rd, const MemOperand& x) { |
| DCHECK((instr & ~(kCondMask | B | L)) == B26); |
| // This method does not handle pc-relative addresses. ldr_pcrel() should be |
| // used instead. |
| DCHECK(x.rn_ != pc); |
| int am = x.am_; |
| if (!x.rm_.is_valid()) { |
| // Immediate offset. |
| int offset_12 = x.offset_; |
| if (offset_12 < 0) { |
| offset_12 = -offset_12; |
| am ^= U; |
| } |
| if (!is_uint12(offset_12)) { |
| // Immediate offset cannot be encoded, load it first to a scratch |
| // register. |
| UseScratchRegisterScope temps(this); |
| // Allow re-using rd for load instructions if possible. |
| bool is_load = (instr & L) == L; |
| Register scratch = (is_load && rd != x.rn_ && rd != pc && rd != sp) |
| ? rd |
| : temps.Acquire(); |
| mov(scratch, Operand(x.offset_), LeaveCC, |
| Instruction::ConditionField(instr)); |
| AddrMode2(instr, rd, MemOperand(x.rn_, scratch, x.am_)); |
| return; |
| } |
| DCHECK_GE(offset_12, 0); // no masking needed |
| instr |= offset_12; |
| } else { |
| // Register offset (shift_imm_ and shift_op_ are 0) or scaled |
| // register offset the constructors make sure than both shift_imm_ |
| // and shift_op_ are initialized. |
| DCHECK(x.rm_ != pc); |
| instr |= B25 | x.shift_imm_ * B7 | x.shift_op_ | x.rm_.code(); |
| } |
| DCHECK((am & (P | W)) == P || x.rn_ != pc); // no pc base with writeback |
| emit(instr | am | x.rn_.code() * B16 | rd.code() * B12); |
| } |
| |
| void Assembler::AddrMode3(Instr instr, Register rd, const MemOperand& x) { |
| DCHECK((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7)); |
| DCHECK(x.rn_.is_valid()); |
| // This method does not handle pc-relative addresses. ldr_pcrel() should be |
| // used instead. |
| DCHECK(x.rn_ != pc); |
| int am = x.am_; |
| bool is_load = (instr & L) == L; |
| if (!x.rm_.is_valid()) { |
| // Immediate offset. |
| int offset_8 = x.offset_; |
| if (offset_8 < 0) { |
| offset_8 = -offset_8; |
| am ^= U; |
| } |
| if (!is_uint8(offset_8)) { |
| // Immediate offset cannot be encoded, load it first to a scratch |
| // register. |
| UseScratchRegisterScope temps(this); |
| // Allow re-using rd for load instructions if possible. |
| Register scratch = (is_load && rd != x.rn_ && rd != pc && rd != sp) |
| ? rd |
| : temps.Acquire(); |
| mov(scratch, Operand(x.offset_), LeaveCC, |
| Instruction::ConditionField(instr)); |
| AddrMode3(instr, rd, MemOperand(x.rn_, scratch, x.am_)); |
| return; |
| } |
| DCHECK_GE(offset_8, 0); // no masking needed |
| instr |= B | (offset_8 >> 4) * B8 | (offset_8 & 0xF); |
| } else if (x.shift_imm_ != 0) { |
| // Scaled register offsets are not supported, compute the offset separately |
| // to a scratch register. |
| UseScratchRegisterScope temps(this); |
| // Allow re-using rd for load instructions if possible. |
| Register scratch = |
| (is_load && rd != x.rn_ && rd != pc && rd != sp) ? rd : temps.Acquire(); |
| mov(scratch, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC, |
| Instruction::ConditionField(instr)); |
| AddrMode3(instr, rd, MemOperand(x.rn_, scratch, x.am_)); |
| return; |
| } else { |
| // Register offset. |
| DCHECK((am & (P | W)) == P || x.rm_ != pc); // no pc index with writeback |
| instr |= x.rm_.code(); |
| } |
| DCHECK((am & (P | W)) == P || x.rn_ != pc); // no pc base with writeback |
| emit(instr | am | x.rn_.code() * B16 | rd.code() * B12); |
| } |
| |
| void Assembler::AddrMode4(Instr instr, Register rn, RegList rl) { |
| DCHECK((instr & ~(kCondMask | P | U | W | L)) == B27); |
| DCHECK_NE(rl, 0); |
| DCHECK(rn != pc); |
| emit(instr | rn.code() * B16 | rl); |
| } |
| |
| void Assembler::AddrMode5(Instr instr, CRegister crd, const MemOperand& x) { |
| // Unindexed addressing is not encoded by this function. |
| DCHECK_EQ((B27 | B26), |
| (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L))); |
| DCHECK(x.rn_.is_valid() && !x.rm_.is_valid()); |
| int am = x.am_; |
| int offset_8 = x.offset_; |
| DCHECK_EQ(offset_8 & 3, 0); // offset must be an aligned word offset |
| offset_8 >>= 2; |
| if (offset_8 < 0) { |
| offset_8 = -offset_8; |
| am ^= U; |
| } |
| DCHECK(is_uint8(offset_8)); // unsigned word offset must fit in a byte |
| DCHECK((am & (P | W)) == P || x.rn_ != pc); // no pc base with writeback |
| |
| // Post-indexed addressing requires W == 1; different than in AddrMode2/3. |
| if ((am & P) == 0) am |= W; |
| |
| DCHECK_GE(offset_8, 0); // no masking needed |
| emit(instr | am | x.rn_.code() * B16 | crd.code() * B12 | offset_8); |
| } |
| |
| int Assembler::branch_offset(Label* L) { |
| int target_pos; |
| if (L->is_bound()) { |
| target_pos = L->pos(); |
| } else { |
| if (L->is_linked()) { |
| // Point to previous instruction that uses the link. |
| target_pos = L->pos(); |
| } else { |
| // First entry of the link chain points to itself. |
| target_pos = pc_offset(); |
| } |
| L->link_to(pc_offset()); |
| } |
| |
| // Block the emission of the constant pool, since the branch instruction must |
| // be emitted at the pc offset recorded by the label. |
| if (!is_const_pool_blocked()) BlockConstPoolFor(1); |
| |
| return target_pos - (pc_offset() + Instruction::kPcLoadDelta); |
| } |
| |
| // Branch instructions. |
| void Assembler::b(int branch_offset, Condition cond, RelocInfo::Mode rmode) { |
| if (!RelocInfo::IsNone(rmode)) RecordRelocInfo(rmode); |
| DCHECK_EQ(branch_offset & 3, 0); |
| int imm24 = branch_offset >> 2; |
| const bool b_imm_check = is_int24(imm24); |
| CHECK(b_imm_check); |
| emit(cond | B27 | B25 | (imm24 & kImm24Mask)); |
| |
| if (cond == al) { |
| // Dead code is a good location to emit the constant pool. |
| CheckConstPool(false, false); |
| } |
| } |
| |
| void Assembler::bl(int branch_offset, Condition cond, RelocInfo::Mode rmode) { |
| if (!RelocInfo::IsNone(rmode)) RecordRelocInfo(rmode); |
| DCHECK_EQ(branch_offset & 3, 0); |
| int imm24 = branch_offset >> 2; |
| const bool bl_imm_check = is_int24(imm24); |
| CHECK(bl_imm_check); |
| emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask)); |
| } |
| |
| void Assembler::blx(int branch_offset) { |
| DCHECK_EQ(branch_offset & 1, 0); |
| int h = ((branch_offset & 2) >> 1) * B24; |
| int imm24 = branch_offset >> 2; |
| const bool blx_imm_check = is_int24(imm24); |
| CHECK(blx_imm_check); |
| emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask)); |
| } |
| |
| void Assembler::blx(Register target, Condition cond) { |
| DCHECK(target != pc); |
| emit(cond | B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX | target.code()); |
| } |
| |
| void Assembler::bx(Register target, Condition cond) { |
| DCHECK(target != pc); // use of pc is actually allowed, but discouraged |
| emit(cond | B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BX | target.code()); |
| } |
| |
| void Assembler::b(Label* L, Condition cond) { |
| CheckBuffer(); |
| b(branch_offset(L), cond); |
| } |
| |
| void Assembler::bl(Label* L, Condition cond) { |
| CheckBuffer(); |
| bl(branch_offset(L), cond); |
| } |
| |
| void Assembler::blx(Label* L) { |
| CheckBuffer(); |
| blx(branch_offset(L)); |
| } |
| |
| // Data-processing instructions. |
| |
| void Assembler::and_(Register dst, Register src1, const Operand& src2, SBit s, |
| Condition cond) { |
| AddrMode1(cond | AND | s, dst, src1, src2); |
| } |
| |
| void Assembler::and_(Register dst, Register src1, Register src2, SBit s, |
| Condition cond) { |
| and_(dst, src1, Operand(src2), s, cond); |
| } |
| |
| void Assembler::eor(Register dst, Register src1, const Operand& src2, SBit s, |
| Condition cond) { |
| AddrMode1(cond | EOR | s, dst, src1, src2); |
| } |
| |
| void Assembler::eor(Register dst, Register src1, Register src2, SBit s, |
| Condition cond) { |
| AddrMode1(cond | EOR | s, dst, src1, Operand(src2)); |
| } |
| |
| void Assembler::sub(Register dst, Register src1, const Operand& src2, SBit s, |
| Condition cond) { |
| AddrMode1(cond | SUB | s, dst, src1, src2); |
| } |
| |
| void Assembler::sub(Register dst, Register src1, Register src2, SBit s, |
| Condition cond) { |
| sub(dst, src1, Operand(src2), s, cond); |
| } |
| |
| void Assembler::rsb(Register dst, Register src1, const Operand& src2, SBit s, |
| Condition cond) { |
| AddrMode1(cond | RSB | s, dst, src1, src2); |
| } |
| |
| void Assembler::add(Register dst, Register src1, const Operand& src2, SBit s, |
| Condition cond) { |
| AddrMode1(cond | ADD | s, dst, src1, src2); |
| } |
| |
| void Assembler::add(Register dst, Register src1, Register src2, SBit s, |
| Condition cond) { |
| add(dst, src1, Operand(src2), s, cond); |
| } |
| |
| void Assembler::adc(Register dst, Register src1, const Operand& src2, SBit s, |
| Condition cond) { |
| AddrMode1(cond | ADC | s, dst, src1, src2); |
| } |
| |
| void Assembler::sbc(Register dst, Register src1, const Operand& src2, SBit s, |
| Condition cond) { |
| AddrMode1(cond | SBC | s, dst, src1, src2); |
| } |
| |
| void Assembler::rsc(Register dst, Register src1, const Operand& src2, SBit s, |
| Condition cond) { |
| AddrMode1(cond | RSC | s, dst, src1, src2); |
| } |
| |
| void Assembler::tst(Register src1, const Operand& src2, Condition cond) { |
| AddrMode1(cond | TST | S, no_reg, src1, src2); |
| } |
| |
| void Assembler::tst(Register src1, Register src2, Condition cond) { |
| tst(src1, Operand(src2), cond); |
| } |
| |
| void Assembler::teq(Register src1, const Operand& src2, Condition cond) { |
| AddrMode1(cond | TEQ | S, no_reg, src1, src2); |
| } |
| |
| void Assembler::cmp(Register src1, const Operand& src2, Condition cond) { |
| AddrMode1(cond | CMP | S, no_reg, src1, src2); |
| } |
| |
| void Assembler::cmp(Register src1, Register src2, Condition cond) { |
| cmp(src1, Operand(src2), cond); |
| } |
| |
| void Assembler::cmp_raw_immediate(Register src, int raw_immediate, |
| Condition cond) { |
| DCHECK(is_uint12(raw_immediate)); |
| emit(cond | I | CMP | S | src.code() << 16 | raw_immediate); |
| } |
| |
| void Assembler::cmn(Register src1, const Operand& src2, Condition cond) { |
| AddrMode1(cond | CMN | S, no_reg, src1, src2); |
| } |
| |
| void Assembler::orr(Register dst, Register src1, const Operand& src2, SBit s, |
| Condition cond) { |
| AddrMode1(cond | ORR | s, dst, src1, src2); |
| } |
| |
| void Assembler::orr(Register dst, Register src1, Register src2, SBit s, |
| Condition cond) { |
| orr(dst, src1, Operand(src2), s, cond); |
| } |
| |
| void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) { |
| // Don't allow nop instructions in the form mov rn, rn to be generated using |
| // the mov instruction. They must be generated using nop(int/NopMarkerTypes). |
| DCHECK(!(src.IsRegister() && src.rm() == dst && s == LeaveCC && cond == al)); |
| AddrMode1(cond | MOV | s, dst, no_reg, src); |
| } |
| |
| void Assembler::mov(Register dst, Register src, SBit s, Condition cond) { |
| mov(dst, Operand(src), s, cond); |
| } |
| |
| void Assembler::mov_label_offset(Register dst, Label* label) { |
| if (label->is_bound()) { |
| mov(dst, Operand(label->pos() + (Code::kHeaderSize - kHeapObjectTag))); |
| } else { |
| // Emit the link to the label in the code stream followed by extra nop |
| // instructions. |
| // If the label is not linked, then start a new link chain by linking it to |
| // itself, emitting pc_offset(). |
| int link = label->is_linked() ? label->pos() : pc_offset(); |
| label->link_to(pc_offset()); |
| |
| // When the label is bound, these instructions will be patched with a |
| // sequence of movw/movt or mov/orr/orr instructions. They will load the |
| // destination register with the position of the label from the beginning |
| // of the code. |
| // |
| // The link will be extracted from the first instruction and the destination |
| // register from the second. |
| // For ARMv7: |
| // link |
| // mov dst, dst |
| // For ARMv6: |
| // link |
| // mov dst, dst |
| // mov dst, dst |
| // |
| // When the label gets bound: target_at extracts the link and target_at_put |
| // patches the instructions. |
| CHECK(is_uint24(link)); |
| BlockConstPoolScope block_const_pool(this); |
| emit(link); |
| nop(dst.code()); |
| if (!CpuFeatures::IsSupported(ARMv7)) { |
| nop(dst.code()); |
| } |
| } |
| } |
| |
| void Assembler::movw(Register reg, uint32_t immediate, Condition cond) { |
| DCHECK(IsEnabled(ARMv7)); |
| emit(cond | 0x30 * B20 | reg.code() * B12 | EncodeMovwImmediate(immediate)); |
| } |
| |
| void Assembler::movt(Register reg, uint32_t immediate, Condition cond) { |
| DCHECK(IsEnabled(ARMv7)); |
| emit(cond | 0x34 * B20 | reg.code() * B12 | EncodeMovwImmediate(immediate)); |
| } |
| |
| void Assembler::bic(Register dst, Register src1, const Operand& src2, SBit s, |
| Condition cond) { |
| AddrMode1(cond | BIC | s, dst, src1, src2); |
| } |
| |
| void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) { |
| AddrMode1(cond | MVN | s, dst, no_reg, src); |
| } |
| |
| void Assembler::asr(Register dst, Register src1, const Operand& src2, SBit s, |
| Condition cond) { |
| if (src2.IsRegister()) { |
| mov(dst, Operand(src1, ASR, src2.rm()), s, cond); |
| } else { |
| mov(dst, Operand(src1, ASR, src2.immediate()), s, cond); |
| } |
| } |
| |
| void Assembler::lsl(Register dst, Register src1, const Operand& src2, SBit s, |
| Condition cond) { |
| if (src2.IsRegister()) { |
| mov(dst, Operand(src1, LSL, src2.rm()), s, cond); |
| } else { |
| mov(dst, Operand(src1, LSL, src2.immediate()), s, cond); |
| } |
| } |
| |
| void Assembler::lsr(Register dst, Register src1, const Operand& src2, SBit s, |
| Condition cond) { |
| if (src2.IsRegister()) { |
| mov(dst, Operand(src1, LSR, src2.rm()), s, cond); |
| } else { |
| mov(dst, Operand(src1, LSR, src2.immediate()), s, cond); |
| } |
| } |
| |
| // Multiply instructions. |
| void Assembler::mla(Register dst, Register src1, Register src2, Register srcA, |
| SBit s, Condition cond) { |
| DCHECK(dst != pc && src1 != pc && src2 != pc && srcA != pc); |
| emit(cond | A | s | dst.code() * B16 | srcA.code() * B12 | src2.code() * B8 | |
| B7 | B4 | src1.code()); |
| } |
| |
| void Assembler::mls(Register dst, Register src1, Register src2, Register srcA, |
| Condition cond) { |
| DCHECK(dst != pc && src1 != pc && src2 != pc && srcA != pc); |
| DCHECK(IsEnabled(ARMv7)); |
| emit(cond | B22 | B21 | dst.code() * B16 | srcA.code() * B12 | |
| src2.code() * B8 | B7 | B4 | src1.code()); |
| } |
| |
| void Assembler::sdiv(Register dst, Register src1, Register src2, |
| Condition cond) { |
| DCHECK(dst != pc && src1 != pc && src2 != pc); |
| DCHECK(IsEnabled(SUDIV)); |
| emit(cond | B26 | B25 | B24 | B20 | dst.code() * B16 | 0xF * B12 | |
| src2.code() * B8 | B4 | src1.code()); |
| } |
| |
| void Assembler::udiv(Register dst, Register src1, Register src2, |
| Condition cond) { |
| DCHECK(dst != pc && src1 != pc && src2 != pc); |
| DCHECK(IsEnabled(SUDIV)); |
| emit(cond | B26 | B25 | B24 | B21 | B20 | dst.code() * B16 | 0xF * B12 | |
| src2.code() * B8 | B4 | src1.code()); |
| } |
| |
| void Assembler::mul(Register dst, Register src1, Register src2, SBit s, |
| Condition cond) { |
| DCHECK(dst != pc && src1 != pc && src2 != pc); |
| // dst goes in bits 16-19 for this instruction! |
| emit(cond | s | dst.code() * B16 | src2.code() * B8 | B7 | B4 | src1.code()); |
| } |
| |
| void Assembler::smmla(Register dst, Register src1, Register src2, Register srcA, |
| Condition cond) { |
| DCHECK(dst != pc && src1 != pc && src2 != pc && srcA != pc); |
| emit(cond | B26 | B25 | B24 | B22 | B20 | dst.code() * B16 | |
| srcA.code() * B12 | src2.code() * B8 | B4 | src1.code()); |
| } |
| |
| void Assembler::smmul(Register dst, Register src1, Register src2, |
| Condition cond) { |
| DCHECK(dst != pc && src1 != pc && src2 != pc); |
| emit(cond | B26 | B25 | B24 | B22 | B20 | dst.code() * B16 | 0xF * B12 | |
| src2.code() * B8 | B4 | src1.code()); |
| } |
| |
| void Assembler::smlal(Register dstL, Register dstH, Register src1, |
| Register src2, SBit s, Condition cond) { |
| DCHECK(dstL != pc && dstH != pc && src1 != pc && src2 != pc); |
| DCHECK(dstL != dstH); |
| emit(cond | B23 | B22 | A | s | dstH.code() * B16 | dstL.code() * B12 | |
| src2.code() * B8 | B7 | B4 | src1.code()); |
| } |
| |
| void Assembler::smull(Register dstL, Register dstH, Register src1, |
| Register src2, SBit s, Condition cond) { |
| DCHECK(dstL != pc && dstH != pc && src1 != pc && src2 != pc); |
| DCHECK(dstL != dstH); |
| emit(cond | B23 | B22 | s | dstH.code() * B16 | dstL.code() * B12 | |
| src2.code() * B8 | B7 | B4 | src1.code()); |
| } |
| |
| void Assembler::umlal(Register dstL, Register dstH, Register src1, |
| Register src2, SBit s, Condition cond) { |
| DCHECK(dstL != pc && dstH != pc && src1 != pc && src2 != pc); |
| DCHECK(dstL != dstH); |
| emit(cond | B23 | A | s | dstH.code() * B16 | dstL.code() * B12 | |
| src2.code() * B8 | B7 | B4 | src1.code()); |
| } |
| |
| void Assembler::umull(Register dstL, Register dstH, Register src1, |
| Register src2, SBit s, Condition cond) { |
| DCHECK(dstL != pc && dstH != pc && src1 != pc && src2 != pc); |
| DCHECK(dstL != dstH); |
| emit(cond | B23 | s | dstH.code() * B16 | dstL.code() * B12 | |
| src2.code() * B8 | B7 | B4 | src1.code()); |
| } |
| |
| // Miscellaneous arithmetic instructions. |
| void Assembler::clz(Register dst, Register src, Condition cond) { |
| DCHECK(dst != pc && src != pc); |
| emit(cond | B24 | B22 | B21 | 15 * B16 | dst.code() * B12 | 15 * B8 | CLZ | |
| src.code()); |
| } |
| |
| // Saturating instructions. |
| |
| // Unsigned saturate. |
| void Assembler::usat(Register dst, int satpos, const Operand& src, |
| Condition cond) { |
| DCHECK(dst != pc && src.rm_ != pc); |
| DCHECK((satpos >= 0) && (satpos <= 31)); |
| DCHECK(src.IsImmediateShiftedRegister()); |
| DCHECK((src.shift_op_ == ASR) || (src.shift_op_ == LSL)); |
| |
| int sh = 0; |
| if (src.shift_op_ == ASR) { |
| sh = 1; |
| } |
| |
| emit(cond | 0x6 * B24 | 0xE * B20 | satpos * B16 | dst.code() * B12 | |
| src.shift_imm_ * B7 | sh * B6 | 0x1 * B4 | src.rm_.code()); |
| } |
| |
| // Bitfield manipulation instructions. |
| |
| // Unsigned bit field extract. |
| // Extracts #width adjacent bits from position #lsb in a register, and |
| // writes them to the low bits of a destination register. |
| // ubfx dst, src, #lsb, #width |
| void Assembler::ubfx(Register dst, Register src, int lsb, int width, |
| Condition cond) { |
| DCHECK(IsEnabled(ARMv7)); |
| DCHECK(dst != pc && src != pc); |
| DCHECK((lsb >= 0) && (lsb <= 31)); |
| DCHECK((width >= 1) && (width <= (32 - lsb))); |
| emit(cond | 0xF * B23 | B22 | B21 | (width - 1) * B16 | dst.code() * B12 | |
| lsb * B7 | B6 | B4 | src.code()); |
| } |
| |
| // Signed bit field extract. |
| // Extracts #width adjacent bits from position #lsb in a register, and |
| // writes them to the low bits of a destination register. The extracted |
| // value is sign extended to fill the destination register. |
| // sbfx dst, src, #lsb, #width |
| void Assembler::sbfx(Register dst, Register src, int lsb, int width, |
| Condition cond) { |
| DCHECK(IsEnabled(ARMv7)); |
| DCHECK(dst != pc && src != pc); |
| DCHECK((lsb >= 0) && (lsb <= 31)); |
| DCHECK((width >= 1) && (width <= (32 - lsb))); |
| emit(cond | 0xF * B23 | B21 | (width - 1) * B16 | dst.code() * B12 | |
| lsb * B7 | B6 | B4 | src.code()); |
| } |
| |
| // Bit field clear. |
| // Sets #width adjacent bits at position #lsb in the destination register |
| // to zero, preserving the value of the other bits. |
| // bfc dst, #lsb, #width |
| void Assembler::bfc(Register dst, int lsb, int width, Condition cond) { |
| DCHECK(IsEnabled(ARMv7)); |
| DCHECK(dst != pc); |
| DCHECK((lsb >= 0) && (lsb <= 31)); |
| DCHECK((width >= 1) && (width <= (32 - lsb))); |
| int msb = lsb + width - 1; |
| emit(cond | 0x1F * B22 | msb * B16 | dst.code() * B12 | lsb * B7 | B4 | 0xF); |
| } |
| |
| // Bit field insert. |
| // Inserts #width adjacent bits from the low bits of the source register |
| // into position #lsb of the destination register. |
| // bfi dst, src, #lsb, #width |
| void Assembler::bfi(Register dst, Register src, int lsb, int width, |
| Condition cond) { |
| DCHECK(IsEnabled(ARMv7)); |
| DCHECK(dst != pc && src != pc); |
| DCHECK((lsb >= 0) && (lsb <= 31)); |
| DCHECK((width >= 1) && (width <= (32 - lsb))); |
| int msb = lsb + width - 1; |
| emit(cond | 0x1F * B22 | msb * B16 | dst.code() * B12 | lsb * B7 | B4 | |
| src.code()); |
| } |
| |
| void Assembler::pkhbt(Register dst, Register src1, const Operand& src2, |
| Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.125. |
| // cond(31-28) | 01101000(27-20) | Rn(19-16) | |
| // Rd(15-12) | imm5(11-7) | 0(6) | 01(5-4) | Rm(3-0) |
| DCHECK(dst != pc); |
| DCHECK(src1 != pc); |
| DCHECK(src2.IsImmediateShiftedRegister()); |
| DCHECK(src2.rm() != pc); |
| DCHECK((src2.shift_imm_ >= 0) && (src2.shift_imm_ <= 31)); |
| DCHECK(src2.shift_op() == LSL); |
| emit(cond | 0x68 * B20 | src1.code() * B16 | dst.code() * B12 | |
| src2.shift_imm_ * B7 | B4 | src2.rm().code()); |
| } |
| |
| void Assembler::pkhtb(Register dst, Register src1, const Operand& src2, |
| Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.125. |
| // cond(31-28) | 01101000(27-20) | Rn(19-16) | |
| // Rd(15-12) | imm5(11-7) | 1(6) | 01(5-4) | Rm(3-0) |
| DCHECK(dst != pc); |
| DCHECK(src1 != pc); |
| DCHECK(src2.IsImmediateShiftedRegister()); |
| DCHECK(src2.rm() != pc); |
| DCHECK((src2.shift_imm_ >= 1) && (src2.shift_imm_ <= 32)); |
| DCHECK(src2.shift_op() == ASR); |
| int asr = (src2.shift_imm_ == 32) ? 0 : src2.shift_imm_; |
| emit(cond | 0x68 * B20 | src1.code() * B16 | dst.code() * B12 | asr * B7 | |
| B6 | B4 | src2.rm().code()); |
| } |
| |
| void Assembler::sxtb(Register dst, Register src, int rotate, Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.233. |
| // cond(31-28) | 01101010(27-20) | 1111(19-16) | |
| // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) |
| DCHECK(dst != pc); |
| DCHECK(src != pc); |
| DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); |
| emit(cond | 0x6A * B20 | 0xF * B16 | dst.code() * B12 | |
| ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code()); |
| } |
| |
| void Assembler::sxtab(Register dst, Register src1, Register src2, int rotate, |
| Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.233. |
| // cond(31-28) | 01101010(27-20) | Rn(19-16) | |
| // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) |
| DCHECK(dst != pc); |
| DCHECK(src1 != pc); |
| DCHECK(src2 != pc); |
| DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); |
| emit(cond | 0x6A * B20 | src1.code() * B16 | dst.code() * B12 | |
| ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code()); |
| } |
| |
| void Assembler::sxth(Register dst, Register src, int rotate, Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.235. |
| // cond(31-28) | 01101011(27-20) | 1111(19-16) | |
| // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) |
| DCHECK(dst != pc); |
| DCHECK(src != pc); |
| DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); |
| emit(cond | 0x6B * B20 | 0xF * B16 | dst.code() * B12 | |
| ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code()); |
| } |
| |
| void Assembler::sxtah(Register dst, Register src1, Register src2, int rotate, |
| Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.235. |
| // cond(31-28) | 01101011(27-20) | Rn(19-16) | |
| // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) |
| DCHECK(dst != pc); |
| DCHECK(src1 != pc); |
| DCHECK(src2 != pc); |
| DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); |
| emit(cond | 0x6B * B20 | src1.code() * B16 | dst.code() * B12 | |
| ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code()); |
| } |
| |
| void Assembler::uxtb(Register dst, Register src, int rotate, Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.274. |
| // cond(31-28) | 01101110(27-20) | 1111(19-16) | |
| // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) |
| DCHECK(dst != pc); |
| DCHECK(src != pc); |
| DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); |
| emit(cond | 0x6E * B20 | 0xF * B16 | dst.code() * B12 | |
| ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code()); |
| } |
| |
| void Assembler::uxtab(Register dst, Register src1, Register src2, int rotate, |
| Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.271. |
| // cond(31-28) | 01101110(27-20) | Rn(19-16) | |
| // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) |
| DCHECK(dst != pc); |
| DCHECK(src1 != pc); |
| DCHECK(src2 != pc); |
| DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); |
| emit(cond | 0x6E * B20 | src1.code() * B16 | dst.code() * B12 | |
| ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code()); |
| } |
| |
| void Assembler::uxtb16(Register dst, Register src, int rotate, Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.275. |
| // cond(31-28) | 01101100(27-20) | 1111(19-16) | |
| // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) |
| DCHECK(dst != pc); |
| DCHECK(src != pc); |
| DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); |
| emit(cond | 0x6C * B20 | 0xF * B16 | dst.code() * B12 | |
| ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code()); |
| } |
| |
| void Assembler::uxth(Register dst, Register src, int rotate, Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.276. |
| // cond(31-28) | 01101111(27-20) | 1111(19-16) | |
| // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) |
| DCHECK(dst != pc); |
| DCHECK(src != pc); |
| DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); |
| emit(cond | 0x6F * B20 | 0xF * B16 | dst.code() * B12 | |
| ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code()); |
| } |
| |
| void Assembler::uxtah(Register dst, Register src1, Register src2, int rotate, |
| Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.273. |
| // cond(31-28) | 01101111(27-20) | Rn(19-16) | |
| // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) |
| DCHECK(dst != pc); |
| DCHECK(src1 != pc); |
| DCHECK(src2 != pc); |
| DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); |
| emit(cond | 0x6F * B20 | src1.code() * B16 | dst.code() * B12 | |
| ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code()); |
| } |
| |
| void Assembler::rbit(Register dst, Register src, Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.144. |
| // cond(31-28) | 011011111111(27-16) | Rd(15-12) | 11110011(11-4) | Rm(3-0) |
| DCHECK(IsEnabled(ARMv7)); |
| DCHECK(dst != pc); |
| DCHECK(src != pc); |
| emit(cond | 0x6FF * B16 | dst.code() * B12 | 0xF3 * B4 | src.code()); |
| } |
| |
| void Assembler::rev(Register dst, Register src, Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.144. |
| // cond(31-28) | 011010111111(27-16) | Rd(15-12) | 11110011(11-4) | Rm(3-0) |
| DCHECK(dst != pc); |
| DCHECK(src != pc); |
| emit(cond | 0x6BF * B16 | dst.code() * B12 | 0xF3 * B4 | src.code()); |
| } |
| |
| // Status register access instructions. |
| void Assembler::mrs(Register dst, SRegister s, Condition cond) { |
| DCHECK(dst != pc); |
| emit(cond | B24 | s | 15 * B16 | dst.code() * B12); |
| } |
| |
| void Assembler::msr(SRegisterFieldMask fields, const Operand& src, |
| Condition cond) { |
| DCHECK_NE(fields & 0x000F0000, 0); // At least one field must be set. |
| DCHECK(((fields & 0xFFF0FFFF) == CPSR) || ((fields & 0xFFF0FFFF) == SPSR)); |
| Instr instr; |
| if (src.IsImmediate()) { |
| // Immediate. |
| uint32_t rotate_imm; |
| uint32_t immed_8; |
| if (src.MustOutputRelocInfo(this) || |
| !FitsShifter(src.immediate(), &rotate_imm, &immed_8, nullptr)) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| // Immediate operand cannot be encoded, load it first to a scratch |
| // register. |
| Move32BitImmediate(scratch, src); |
| msr(fields, Operand(scratch), cond); |
| return; |
| } |
| instr = I | rotate_imm * B8 | immed_8; |
| } else { |
| DCHECK(src.IsRegister()); // Only rm is allowed. |
| instr = src.rm_.code(); |
| } |
| emit(cond | instr | B24 | B21 | fields | 15 * B12); |
| } |
| |
| // Load/Store instructions. |
| void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) { |
| AddrMode2(cond | B26 | L, dst, src); |
| } |
| |
| void Assembler::str(Register src, const MemOperand& dst, Condition cond) { |
| AddrMode2(cond | B26, src, dst); |
| } |
| |
| void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) { |
| AddrMode2(cond | B26 | B | L, dst, src); |
| } |
| |
| void Assembler::strb(Register src, const MemOperand& dst, Condition cond) { |
| AddrMode2(cond | B26 | B, src, dst); |
| } |
| |
| void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) { |
| AddrMode3(cond | L | B7 | H | B4, dst, src); |
| } |
| |
| void Assembler::strh(Register src, const MemOperand& dst, Condition cond) { |
| AddrMode3(cond | B7 | H | B4, src, dst); |
| } |
| |
| void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) { |
| AddrMode3(cond | L | B7 | S6 | B4, dst, src); |
| } |
| |
| void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) { |
| AddrMode3(cond | L | B7 | S6 | H | B4, dst, src); |
| } |
| |
| void Assembler::ldrd(Register dst1, Register dst2, const MemOperand& src, |
| Condition cond) { |
| DCHECK(src.rm() == no_reg); |
| DCHECK(dst1 != lr); // r14. |
| DCHECK_EQ(0, dst1.code() % 2); |
| DCHECK_EQ(dst1.code() + 1, dst2.code()); |
| AddrMode3(cond | B7 | B6 | B4, dst1, src); |
| } |
| |
| void Assembler::strd(Register src1, Register src2, const MemOperand& dst, |
| Condition cond) { |
| DCHECK(dst.rm() == no_reg); |
| DCHECK(src1 != lr); // r14. |
| DCHECK_EQ(0, src1.code() % 2); |
| DCHECK_EQ(src1.code() + 1, src2.code()); |
| AddrMode3(cond | B7 | B6 | B5 | B4, src1, dst); |
| } |
| |
| void Assembler::ldr_pcrel(Register dst, int imm12, Condition cond) { |
| AddrMode am = Offset; |
| if (imm12 < 0) { |
| imm12 = -imm12; |
| am = NegOffset; |
| } |
| DCHECK(is_uint12(imm12)); |
| emit(cond | B26 | am | L | pc.code() * B16 | dst.code() * B12 | imm12); |
| } |
| |
| // Load/Store exclusive instructions. |
| void Assembler::ldrex(Register dst, Register src, Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.75. |
| // cond(31-28) | 00011001(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0) |
| DCHECK(dst != pc); |
| DCHECK(src != pc); |
| emit(cond | B24 | B23 | B20 | src.code() * B16 | dst.code() * B12 | 0xF9F); |
| } |
| |
| void Assembler::strex(Register src1, Register src2, Register dst, |
| Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.212. |
| // cond(31-28) | 00011000(27-20) | Rn(19-16) | Rd(15-12) | 11111001(11-4) | |
| // Rt(3-0) |
| DCHECK(dst != pc); |
| DCHECK(src1 != pc); |
| DCHECK(src2 != pc); |
| DCHECK(src1 != dst); |
| DCHECK(src1 != src2); |
| emit(cond | B24 | B23 | dst.code() * B16 | src1.code() * B12 | 0xF9 * B4 | |
| src2.code()); |
| } |
| |
| void Assembler::ldrexb(Register dst, Register src, Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.76. |
| // cond(31-28) | 00011101(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0) |
| DCHECK(dst != pc); |
| DCHECK(src != pc); |
| emit(cond | B24 | B23 | B22 | B20 | src.code() * B16 | dst.code() * B12 | |
| 0xF9F); |
| } |
| |
| void Assembler::strexb(Register src1, Register src2, Register dst, |
| Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.213. |
| // cond(31-28) | 00011100(27-20) | Rn(19-16) | Rd(15-12) | 11111001(11-4) | |
| // Rt(3-0) |
| DCHECK(dst != pc); |
| DCHECK(src1 != pc); |
| DCHECK(src2 != pc); |
| DCHECK(src1 != dst); |
| DCHECK(src1 != src2); |
| emit(cond | B24 | B23 | B22 | dst.code() * B16 | src1.code() * B12 | |
| 0xF9 * B4 | src2.code()); |
| } |
| |
| void Assembler::ldrexh(Register dst, Register src, Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.78. |
| // cond(31-28) | 00011111(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0) |
| DCHECK(dst != pc); |
| DCHECK(src != pc); |
| emit(cond | B24 | B23 | B22 | B21 | B20 | src.code() * B16 | |
| dst.code() * B12 | 0xF9F); |
| } |
| |
| void Assembler::strexh(Register src1, Register src2, Register dst, |
| Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.215. |
| // cond(31-28) | 00011110(27-20) | Rn(19-16) | Rd(15-12) | 11111001(11-4) | |
| // Rt(3-0) |
| DCHECK(dst != pc); |
| DCHECK(src1 != pc); |
| DCHECK(src2 != pc); |
| DCHECK(src1 != dst); |
| DCHECK(src1 != src2); |
| emit(cond | B24 | B23 | B22 | B21 | dst.code() * B16 | src1.code() * B12 | |
| 0xF9 * B4 | src2.code()); |
| } |
| |
| void Assembler::ldrexd(Register dst1, Register dst2, Register src, |
| Condition cond) { |
| // cond(31-28) | 00011011(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0) |
| DCHECK(dst1 != lr); // r14. |
| // The pair of destination registers is restricted to being an even-numbered |
| // register and the odd-numbered register that immediately follows it. |
| DCHECK_EQ(0, dst1.code() % 2); |
| DCHECK_EQ(dst1.code() + 1, dst2.code()); |
| emit(cond | B24 | B23 | B21 | B20 | src.code() * B16 | dst1.code() * B12 | |
| 0xF9F); |
| } |
| |
| void Assembler::strexd(Register res, Register src1, Register src2, Register dst, |
| Condition cond) { |
| // cond(31-28) | 00011010(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0) |
| DCHECK(src1 != lr); // r14. |
| // The pair of source registers is restricted to being an even-numbered |
| // register and the odd-numbered register that immediately follows it. |
| DCHECK_EQ(0, src1.code() % 2); |
| DCHECK_EQ(src1.code() + 1, src2.code()); |
| emit(cond | B24 | B23 | B21 | dst.code() * B16 | res.code() * B12 | |
| 0xF9 * B4 | src1.code()); |
| } |
| |
| // Preload instructions. |
| void Assembler::pld(const MemOperand& address) { |
| // Instruction details available in ARM DDI 0406C.b, A8.8.128. |
| // 1111(31-28) | 0111(27-24) | U(23) | R(22) | 01(21-20) | Rn(19-16) | |
| // 1111(15-12) | imm5(11-07) | type(6-5) | 0(4)| Rm(3-0) | |
| DCHECK(address.rm() == no_reg); |
| DCHECK(address.am() == Offset); |
| int U = B23; |
| int offset = address.offset(); |
| if (offset < 0) { |
| offset = -offset; |
| U = 0; |
| } |
| DCHECK_LT(offset, 4096); |
| emit(kSpecialCondition | B26 | B24 | U | B22 | B20 | |
| address.rn().code() * B16 | 0xF * B12 | offset); |
| } |
| |
| // Load/Store multiple instructions. |
| void Assembler::ldm(BlockAddrMode am, Register base, RegList dst, |
| Condition cond) { |
| // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable. |
| DCHECK(base == sp || (dst & sp.bit()) == 0); |
| |
| AddrMode4(cond | B27 | am | L, base, dst); |
| |
| // Emit the constant pool after a function return implemented by ldm ..{..pc}. |
| if (cond == al && (dst & pc.bit()) != 0) { |
| // There is a slight chance that the ldm instruction was actually a call, |
| // in which case it would be wrong to return into the constant pool; we |
| // recognize this case by checking if the emission of the pool was blocked |
| // at the pc of the ldm instruction by a mov lr, pc instruction; if this is |
| // the case, we emit a jump over the pool. |
| CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize); |
| } |
| } |
| |
| void Assembler::stm(BlockAddrMode am, Register base, RegList src, |
| Condition cond) { |
| AddrMode4(cond | B27 | am, base, src); |
| } |
| |
| // Exception-generating instructions and debugging support. |
| // Stops with a non-negative code less than kNumOfWatchedStops support |
| // enabling/disabling and a counter feature. See simulator-arm.h . |
| void Assembler::stop(Condition cond, int32_t code) { |
| #ifndef __arm__ |
| DCHECK_GE(code, kDefaultStopCode); |
| { |
| BlockConstPoolScope block_const_pool(this); |
| if (code >= 0) { |
| svc(kStopCode + code, cond); |
| } else { |
| svc(kStopCode + kMaxStopCode, cond); |
| } |
| } |
| #else // def __arm__ |
| if (cond != al) { |
| Label skip; |
| b(&skip, NegateCondition(cond)); |
| bkpt(0); |
| bind(&skip); |
| } else { |
| bkpt(0); |
| } |
| #endif // def __arm__ |
| } |
| |
| void Assembler::bkpt(uint32_t imm16) { |
| DCHECK(is_uint16(imm16)); |
| emit(al | B24 | B21 | (imm16 >> 4) * B8 | BKPT | (imm16 & 0xF)); |
| } |
| |
| void Assembler::svc(uint32_t imm24, Condition cond) { |
| DCHECK(is_uint24(imm24)); |
| emit(cond | 15 * B24 | imm24); |
| } |
| |
| void Assembler::dmb(BarrierOption option) { |
| if (CpuFeatures::IsSupported(ARMv7)) { |
| // Details available in ARM DDI 0406C.b, A8-378. |
| emit(kSpecialCondition | 0x57FF * B12 | 5 * B4 | option); |
| } else { |
| // Details available in ARM DDI 0406C.b, B3-1750. |
| // CP15DMB: CRn=c7, opc1=0, CRm=c10, opc2=5, Rt is ignored. |
| mcr(p15, 0, r0, cr7, cr10, 5); |
| } |
| } |
| |
| void Assembler::dsb(BarrierOption option) { |
| if (CpuFeatures::IsSupported(ARMv7)) { |
| // Details available in ARM DDI 0406C.b, A8-380. |
| emit(kSpecialCondition | 0x57FF * B12 | 4 * B4 | option); |
| } else { |
| // Details available in ARM DDI 0406C.b, B3-1750. |
| // CP15DSB: CRn=c7, opc1=0, CRm=c10, opc2=4, Rt is ignored. |
| mcr(p15, 0, r0, cr7, cr10, 4); |
| } |
| } |
| |
| void Assembler::isb(BarrierOption option) { |
| if (CpuFeatures::IsSupported(ARMv7)) { |
| // Details available in ARM DDI 0406C.b, A8-389. |
| emit(kSpecialCondition | 0x57FF * B12 | 6 * B4 | option); |
| } else { |
| // Details available in ARM DDI 0406C.b, B3-1750. |
| // CP15ISB: CRn=c7, opc1=0, CRm=c5, opc2=4, Rt is ignored. |
| mcr(p15, 0, r0, cr7, cr5, 4); |
| } |
| } |
| |
| void Assembler::csdb() { |
| // Details available in Arm Cache Speculation Side-channels white paper, |
| // version 1.1, page 4. |
| emit(0xE320F014); |
| } |
| |
| // Coprocessor instructions. |
| void Assembler::cdp(Coprocessor coproc, int opcode_1, CRegister crd, |
| CRegister crn, CRegister crm, int opcode_2, |
| Condition cond) { |
| DCHECK(is_uint4(opcode_1) && is_uint3(opcode_2)); |
| emit(cond | B27 | B26 | B25 | (opcode_1 & 15) * B20 | crn.code() * B16 | |
| crd.code() * B12 | coproc * B8 | (opcode_2 & 7) * B5 | crm.code()); |
| } |
| |
| void Assembler::cdp2(Coprocessor coproc, int opcode_1, CRegister crd, |
| CRegister crn, CRegister crm, int opcode_2) { |
| cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition); |
| } |
| |
| void Assembler::mcr(Coprocessor coproc, int opcode_1, Register rd, |
| CRegister crn, CRegister crm, int opcode_2, |
| Condition cond) { |
| DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2)); |
| emit(cond | B27 | B26 | B25 | (opcode_1 & 7) * B21 | crn.code() * B16 | |
| rd.code() * B12 | coproc * B8 | (opcode_2 & 7) * B5 | B4 | crm.code()); |
| } |
| |
| void Assembler::mcr2(Coprocessor coproc, int opcode_1, Register rd, |
| CRegister crn, CRegister crm, int opcode_2) { |
| mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition); |
| } |
| |
| void Assembler::mrc(Coprocessor coproc, int opcode_1, Register rd, |
| CRegister crn, CRegister crm, int opcode_2, |
| Condition cond) { |
| DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2)); |
| emit(cond | B27 | B26 | B25 | (opcode_1 & 7) * B21 | L | crn.code() * B16 | |
| rd.code() * B12 | coproc * B8 | (opcode_2 & 7) * B5 | B4 | crm.code()); |
| } |
| |
| void Assembler::mrc2(Coprocessor coproc, int opcode_1, Register rd, |
| CRegister crn, CRegister crm, int opcode_2) { |
| mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition); |
| } |
| |
| void Assembler::ldc(Coprocessor coproc, CRegister crd, const MemOperand& src, |
| LFlag l, Condition cond) { |
| AddrMode5(cond | B27 | B26 | l | L | coproc * B8, crd, src); |
| } |
| |
| void Assembler::ldc(Coprocessor coproc, CRegister crd, Register rn, int option, |
| LFlag l, Condition cond) { |
| // Unindexed addressing. |
| DCHECK(is_uint8(option)); |
| emit(cond | B27 | B26 | U | l | L | rn.code() * B16 | crd.code() * B12 | |
| coproc * B8 | (option & 255)); |
| } |
| |
| void Assembler::ldc2(Coprocessor coproc, CRegister crd, const MemOperand& src, |
| LFlag l) { |
| ldc(coproc, crd, src, l, kSpecialCondition); |
| } |
| |
| void Assembler::ldc2(Coprocessor coproc, CRegister crd, Register rn, int option, |
| LFlag l) { |
| ldc(coproc, crd, rn, option, l, kSpecialCondition); |
| } |
| |
| // Support for VFP. |
| |
| void Assembler::vldr(const DwVfpRegister dst, const Register base, int offset, |
| const Condition cond) { |
| // Ddst = MEM(Rbase + offset). |
| // Instruction details available in ARM DDI 0406C.b, A8-924. |
| // cond(31-28) | 1101(27-24)| U(23) | D(22) | 01(21-20) | Rbase(19-16) | |
| // Vd(15-12) | 1011(11-8) | offset |
| DCHECK(VfpRegisterIsAvailable(dst)); |
| int u = 1; |
| if (offset < 0) { |
| CHECK_NE(offset, kMinInt); |
| offset = -offset; |
| u = 0; |
| } |
| int vd, d; |
| dst.split_code(&vd, &d); |
| |
| DCHECK_GE(offset, 0); |
| if ((offset % 4) == 0 && (offset / 4) < 256) { |
| emit(cond | 0xD * B24 | u * B23 | d * B22 | B20 | base.code() * B16 | |
| vd * B12 | 0xB * B8 | ((offset / 4) & 255)); |
| } else { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| // Larger offsets must be handled by computing the correct address in a |
| // scratch register. |
| DCHECK(base != scratch); |
| if (u == 1) { |
| add(scratch, base, Operand(offset)); |
| } else { |
| sub(scratch, base, Operand(offset)); |
| } |
| emit(cond | 0xD * B24 | d * B22 | B20 | scratch.code() * B16 | vd * B12 | |
| 0xB * B8); |
| } |
| } |
| |
| void Assembler::vldr(const DwVfpRegister dst, const MemOperand& operand, |
| const Condition cond) { |
| DCHECK(VfpRegisterIsAvailable(dst)); |
| DCHECK(operand.am_ == Offset); |
| if (operand.rm().is_valid()) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| add(scratch, operand.rn(), |
| Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); |
| vldr(dst, scratch, 0, cond); |
| } else { |
| vldr(dst, operand.rn(), operand.offset(), cond); |
| } |
| } |
| |
| void Assembler::vldr(const SwVfpRegister dst, const Register base, int offset, |
| const Condition cond) { |
| // Sdst = MEM(Rbase + offset). |
| // Instruction details available in ARM DDI 0406A, A8-628. |
| // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) | |
| // Vdst(15-12) | 1010(11-8) | offset |
| int u = 1; |
| if (offset < 0) { |
| offset = -offset; |
| u = 0; |
| } |
| int sd, d; |
| dst.split_code(&sd, &d); |
| DCHECK_GE(offset, 0); |
| |
| if ((offset % 4) == 0 && (offset / 4) < 256) { |
| emit(cond | u * B23 | d * B22 | 0xD1 * B20 | base.code() * B16 | sd * B12 | |
| 0xA * B8 | ((offset / 4) & 255)); |
| } else { |
| // Larger offsets must be handled by computing the correct address in a |
| // scratch register. |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| DCHECK(base != scratch); |
| if (u == 1) { |
| add(scratch, base, Operand(offset)); |
| } else { |
| sub(scratch, base, Operand(offset)); |
| } |
| emit(cond | d * B22 | 0xD1 * B20 | scratch.code() * B16 | sd * B12 | |
| 0xA * B8); |
| } |
| } |
| |
| void Assembler::vldr(const SwVfpRegister dst, const MemOperand& operand, |
| const Condition cond) { |
| DCHECK(operand.am_ == Offset); |
| if (operand.rm().is_valid()) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| add(scratch, operand.rn(), |
| Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); |
| vldr(dst, scratch, 0, cond); |
| } else { |
| vldr(dst, operand.rn(), operand.offset(), cond); |
| } |
| } |
| |
| void Assembler::vstr(const DwVfpRegister src, const Register base, int offset, |
| const Condition cond) { |
| // MEM(Rbase + offset) = Dsrc. |
| // Instruction details available in ARM DDI 0406C.b, A8-1082. |
| // cond(31-28) | 1101(27-24)| U(23) | D(22) | 00(21-20) | Rbase(19-16) | |
| // Vd(15-12) | 1011(11-8) | (offset/4) |
| DCHECK(VfpRegisterIsAvailable(src)); |
| int u = 1; |
| if (offset < 0) { |
| CHECK_NE(offset, kMinInt); |
| offset = -offset; |
| u = 0; |
| } |
| DCHECK_GE(offset, 0); |
| int vd, d; |
| src.split_code(&vd, &d); |
| |
| if ((offset % 4) == 0 && (offset / 4) < 256) { |
| emit(cond | 0xD * B24 | u * B23 | d * B22 | base.code() * B16 | vd * B12 | |
| 0xB * B8 | ((offset / 4) & 255)); |
| } else { |
| // Larger offsets must be handled by computing the correct address in the a |
| // scratch register. |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| DCHECK(base != scratch); |
| if (u == 1) { |
| add(scratch, base, Operand(offset)); |
| } else { |
| sub(scratch, base, Operand(offset)); |
| } |
| emit(cond | 0xD * B24 | d * B22 | scratch.code() * B16 | vd * B12 | |
| 0xB * B8); |
| } |
| } |
| |
| void Assembler::vstr(const DwVfpRegister src, const MemOperand& operand, |
| const Condition cond) { |
| DCHECK(VfpRegisterIsAvailable(src)); |
| DCHECK(operand.am_ == Offset); |
| if (operand.rm().is_valid()) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| add(scratch, operand.rn(), |
| Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); |
| vstr(src, scratch, 0, cond); |
| } else { |
| vstr(src, operand.rn(), operand.offset(), cond); |
| } |
| } |
| |
| void Assembler::vstr(const SwVfpRegister src, const Register base, int offset, |
| const Condition cond) { |
| // MEM(Rbase + offset) = SSrc. |
| // Instruction details available in ARM DDI 0406A, A8-786. |
| // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) | |
| // Vdst(15-12) | 1010(11-8) | (offset/4) |
| int u = 1; |
| if (offset < 0) { |
| CHECK_NE(offset, kMinInt); |
| offset = -offset; |
| u = 0; |
| } |
| int sd, d; |
| src.split_code(&sd, &d); |
| DCHECK_GE(offset, 0); |
| if ((offset % 4) == 0 && (offset / 4) < 256) { |
| emit(cond | u * B23 | d * B22 | 0xD0 * B20 | base.code() * B16 | sd * B12 | |
| 0xA * B8 | ((offset / 4) & 255)); |
| } else { |
| // Larger offsets must be handled by computing the correct address in a |
| // scratch register. |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| DCHECK(base != scratch); |
| if (u == 1) { |
| add(scratch, base, Operand(offset)); |
| } else { |
| sub(scratch, base, Operand(offset)); |
| } |
| emit(cond | d * B22 | 0xD0 * B20 | scratch.code() * B16 | sd * B12 | |
| 0xA * B8); |
| } |
| } |
| |
| void Assembler::vstr(const SwVfpRegister src, const MemOperand& operand, |
| const Condition cond) { |
| DCHECK(operand.am_ == Offset); |
| if (operand.rm().is_valid()) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| add(scratch, operand.rn(), |
| Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); |
| vstr(src, scratch, 0, cond); |
| } else { |
| vstr(src, operand.rn(), operand.offset(), cond); |
| } |
| } |
| |
| void Assembler::vldm(BlockAddrMode am, Register base, DwVfpRegister first, |
| DwVfpRegister last, Condition cond) { |
| // Instruction details available in ARM DDI 0406C.b, A8-922. |
| // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) | |
| // first(15-12) | 1011(11-8) | (count * 2) |
| DCHECK_LE(first.code(), last.code()); |
| DCHECK(VfpRegisterIsAvailable(last)); |
| DCHECK(am == ia || am == ia_w || am == db_w); |
| DCHECK(base != pc); |
| |
| int sd, d; |
| first.split_code(&sd, &d); |
| int count = last.code() - first.code() + 1; |
| DCHECK_LE(count, 16); |
| emit(cond | B27 | B26 | am | d * B22 | B20 | base.code() * B16 | sd * B12 | |
| 0xB * B8 | count * 2); |
| } |
| |
| void Assembler::vstm(BlockAddrMode am, Register base, DwVfpRegister first, |
| DwVfpRegister last, Condi
|