| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <limits.h> // For LONG_MIN, LONG_MAX. |
| |
| #if V8_TARGET_ARCH_ARM |
| |
| #include "src/base/bits.h" |
| #include "src/base/division-by-constant.h" |
| #include "src/base/utils/random-number-generator.h" |
| #include "src/codegen/assembler-inl.h" |
| #include "src/codegen/callable.h" |
| #include "src/codegen/code-factory.h" |
| #include "src/codegen/external-reference-table.h" |
| #include "src/codegen/macro-assembler.h" |
| #include "src/codegen/register-configuration.h" |
| #include "src/debug/debug.h" |
| #include "src/execution/frames-inl.h" |
| #include "src/heap/heap-inl.h" // For MemoryChunk. |
| #include "src/init/bootstrapper.h" |
| #include "src/logging/counters.h" |
| #include "src/numbers/double.h" |
| #include "src/objects/objects-inl.h" |
| #include "src/runtime/runtime.h" |
| #include "src/snapshot/embedded/embedded-data.h" |
| #include "src/snapshot/snapshot.h" |
| #include "src/wasm/wasm-code-manager.h" |
| |
| // Satisfy cpplint check, but don't include platform-specific header. It is |
| // included recursively via macro-assembler.h. |
| #if 0 |
| #include "src/codegen/arm/macro-assembler-arm.h" |
| #endif |
| |
| namespace v8 { |
| namespace internal { |
| |
| int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, |
| Register exclusion1, |
| Register exclusion2, |
| Register exclusion3) const { |
| int bytes = 0; |
| RegList exclusions = 0; |
| if (exclusion1 != no_reg) { |
| exclusions |= exclusion1.bit(); |
| if (exclusion2 != no_reg) { |
| exclusions |= exclusion2.bit(); |
| if (exclusion3 != no_reg) { |
| exclusions |= exclusion3.bit(); |
| } |
| } |
| } |
| |
| RegList list = (kCallerSaved | lr.bit()) & ~exclusions; |
| |
| bytes += NumRegs(list) * kPointerSize; |
| |
| if (fp_mode == kSaveFPRegs) { |
| bytes += DwVfpRegister::NumRegisters() * DwVfpRegister::kSizeInBytes; |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| int bytes = 0; |
| RegList exclusions = 0; |
| if (exclusion1 != no_reg) { |
| exclusions |= exclusion1.bit(); |
| if (exclusion2 != no_reg) { |
| exclusions |= exclusion2.bit(); |
| if (exclusion3 != no_reg) { |
| exclusions |= exclusion3.bit(); |
| } |
| } |
| } |
| |
| RegList list = (kCallerSaved | lr.bit()) & ~exclusions; |
| stm(db_w, sp, list); |
| |
| bytes += NumRegs(list) * kPointerSize; |
| |
| if (fp_mode == kSaveFPRegs) { |
| SaveFPRegs(sp, lr); |
| bytes += DwVfpRegister::NumRegisters() * DwVfpRegister::kSizeInBytes; |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| int bytes = 0; |
| if (fp_mode == kSaveFPRegs) { |
| RestoreFPRegs(sp, lr); |
| bytes += DwVfpRegister::NumRegisters() * DwVfpRegister::kSizeInBytes; |
| } |
| |
| RegList exclusions = 0; |
| if (exclusion1 != no_reg) { |
| exclusions |= exclusion1.bit(); |
| if (exclusion2 != no_reg) { |
| exclusions |= exclusion2.bit(); |
| if (exclusion3 != no_reg) { |
| exclusions |= exclusion3.bit(); |
| } |
| } |
| } |
| |
| RegList list = (kCallerSaved | lr.bit()) & ~exclusions; |
| ldm(ia_w, sp, list); |
| |
| bytes += NumRegs(list) * kPointerSize; |
| |
| return bytes; |
| } |
| |
| void TurboAssembler::LoadFromConstantsTable(Register destination, |
| int constant_index) { |
| DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable)); |
| |
| // The ldr call below could end up clobbering ip when the offset does not fit |
| // into 12 bits (and thus needs to be loaded from the constant pool). In that |
| // case, we need to be extra-careful and temporarily use another register as |
| // the target. |
| |
| const uint32_t offset = |
| FixedArray::kHeaderSize + constant_index * kPointerSize - kHeapObjectTag; |
| const bool could_clobber_ip = !is_uint12(offset); |
| |
| Register reg = destination; |
| if (could_clobber_ip) { |
| Push(r7); |
| reg = r7; |
| } |
| |
| LoadRoot(reg, RootIndex::kBuiltinsConstantsTable); |
| ldr(destination, MemOperand(reg, offset)); |
| |
| if (could_clobber_ip) { |
| DCHECK_EQ(reg, r7); |
| Pop(r7); |
| } |
| } |
| |
| void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) { |
| ldr(destination, MemOperand(kRootRegister, offset)); |
| } |
| |
| void TurboAssembler::LoadRootRegisterOffset(Register destination, |
| intptr_t offset) { |
| if (offset == 0) { |
| Move(destination, kRootRegister); |
| } else { |
| add(destination, kRootRegister, Operand(offset)); |
| } |
| } |
| |
| void TurboAssembler::Jump(Register target, Condition cond) { bx(target, cond); } |
| |
| void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, |
| Condition cond) { |
| mov(pc, Operand(target, rmode), LeaveCC, cond); |
| } |
| |
| void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, |
| Condition cond) { |
| DCHECK(!RelocInfo::IsCodeTarget(rmode)); |
| Jump(static_cast<intptr_t>(target), rmode, cond); |
| } |
| |
| void TurboAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, |
| Condition cond) { |
| DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| DCHECK_IMPLIES(options().isolate_independent_code, |
| Builtins::IsIsolateIndependentBuiltin(*code)); |
| DCHECK_IMPLIES(options().use_pc_relative_calls_and_jumps, |
| Builtins::IsIsolateIndependentBuiltin(*code)); |
| |
| int builtin_index = Builtins::kNoBuiltinId; |
| bool target_is_isolate_independent_builtin = |
| isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) && |
| Builtins::IsIsolateIndependent(builtin_index); |
| |
| if (options().use_pc_relative_calls_and_jumps && |
| target_is_isolate_independent_builtin) { |
| int32_t code_target_index = AddCodeTarget(code); |
| b(code_target_index * kInstrSize, cond, RelocInfo::RELATIVE_CODE_TARGET); |
| return; |
| } else if (root_array_available_ && options().isolate_independent_code) { |
| // This branch is taken only for specific cctests, where we force isolate |
| // creation at runtime. At this point, Code space isn't restricted to a |
| // size s.t. pc-relative calls may be used. |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| int offset = code->builtin_index() * kSystemPointerSize + |
| IsolateData::builtin_entry_table_offset(); |
| ldr(scratch, MemOperand(kRootRegister, offset)); |
| Jump(scratch, cond); |
| return; |
| } else if (options().inline_offheap_trampolines && |
| target_is_isolate_independent_builtin) { |
| // Inline the trampoline. |
| RecordCommentForOffHeapTrampoline(builtin_index); |
| EmbeddedData d = EmbeddedData::FromBlob(); |
| Address entry = d.InstructionStartOfBuiltin(builtin_index); |
| // Use ip directly instead of using UseScratchRegisterScope, as we do not |
| // preserve scratch registers across calls. |
| mov(ip, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); |
| Jump(ip, cond); |
| return; |
| } |
| |
| // 'code' is always generated ARM code, never THUMB code |
| Jump(static_cast<intptr_t>(code.address()), rmode, cond); |
| } |
| |
| void TurboAssembler::Call(Register target, Condition cond) { |
| // Block constant pool for the call instruction sequence. |
| BlockConstPoolScope block_const_pool(this); |
| blx(target, cond); |
| } |
| |
| void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond, |
| TargetAddressStorageMode mode, |
| bool check_constant_pool) { |
| // Check if we have to emit the constant pool before we block it. |
| if (check_constant_pool) MaybeCheckConstPool(); |
| // Block constant pool for the call instruction sequence. |
| BlockConstPoolScope block_const_pool(this); |
| |
| bool old_predictable_code_size = predictable_code_size(); |
| if (mode == NEVER_INLINE_TARGET_ADDRESS) { |
| set_predictable_code_size(true); |
| } |
| |
| // Use ip directly instead of using UseScratchRegisterScope, as we do not |
| // preserve scratch registers across calls. |
| |
| // Call sequence on V7 or later may be : |
| // movw ip, #... @ call address low 16 |
| // movt ip, #... @ call address high 16 |
| // blx ip |
| // @ return address |
| // Or for pre-V7 or values that may be back-patched |
| // to avoid ICache flushes: |
| // ldr ip, [pc, #...] @ call address |
| // blx ip |
| // @ return address |
| |
| mov(ip, Operand(target, rmode)); |
| blx(ip, cond); |
| |
| if (mode == NEVER_INLINE_TARGET_ADDRESS) { |
| set_predictable_code_size(old_predictable_code_size); |
| } |
| } |
| |
| void TurboAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, |
| Condition cond, TargetAddressStorageMode mode, |
| bool check_constant_pool) { |
| DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| DCHECK_IMPLIES(options().isolate_independent_code, |
| Builtins::IsIsolateIndependentBuiltin(*code)); |
| DCHECK_IMPLIES(options().use_pc_relative_calls_and_jumps, |
| Builtins::IsIsolateIndependentBuiltin(*code)); |
| |
| int builtin_index = Builtins::kNoBuiltinId; |
| bool target_is_isolate_independent_builtin = |
| isolate()->builtins()->IsBuiltinHandle(code, &builtin_index) && |
| Builtins::IsIsolateIndependent(builtin_index); |
| |
| if (target_is_isolate_independent_builtin && |
| options().use_pc_relative_calls_and_jumps) { |
| int32_t code_target_index = AddCodeTarget(code); |
| bl(code_target_index * kInstrSize, cond, RelocInfo::RELATIVE_CODE_TARGET); |
| return; |
| } else if (root_array_available_ && options().isolate_independent_code) { |
| // This branch is taken only for specific cctests, where we force isolate |
| // creation at runtime. At this point, Code space isn't restricted to a |
| // size s.t. pc-relative calls may be used. |
| int offset = code->builtin_index() * kSystemPointerSize + |
| IsolateData::builtin_entry_table_offset(); |
| ldr(ip, MemOperand(kRootRegister, offset)); |
| Call(ip, cond); |
| return; |
| } else if (target_is_isolate_independent_builtin && |
| options().inline_offheap_trampolines) { |
| // Inline the trampoline. |
| RecordCommentForOffHeapTrampoline(builtin_index); |
| EmbeddedData d = EmbeddedData::FromBlob(); |
| Address entry = d.InstructionStartOfBuiltin(builtin_index); |
| // Use ip directly instead of using UseScratchRegisterScope, as we do not |
| // preserve scratch registers across calls. |
| mov(ip, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); |
| Call(ip, cond); |
| return; |
| } |
| |
| // 'code' is always generated ARM code, never THUMB code |
| Call(code.address(), rmode, cond, mode); |
| } |
| |
| void TurboAssembler::LoadEntryFromBuiltinIndex(Register builtin_index) { |
| STATIC_ASSERT(kSystemPointerSize == 4); |
| STATIC_ASSERT(kSmiShiftSize == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kSmiTag == 0); |
| |
| // The builtin_index register contains the builtin index as a Smi. |
| // Untagging is folded into the indexing operand below. |
| mov(builtin_index, |
| Operand(builtin_index, LSL, kSystemPointerSizeLog2 - kSmiTagSize)); |
| add(builtin_index, builtin_index, |
| Operand(IsolateData::builtin_entry_table_offset())); |
| ldr(builtin_index, MemOperand(kRootRegister, builtin_index)); |
| } |
| |
| void TurboAssembler::CallBuiltinByIndex(Register builtin_index) { |
| LoadEntryFromBuiltinIndex(builtin_index); |
| Call(builtin_index); |
| } |
| |
| void TurboAssembler::LoadCodeObjectEntry(Register destination, |
| Register code_object) { |
| // Code objects are called differently depending on whether we are generating |
| // builtin code (which will later be embedded into the binary) or compiling |
| // user JS code at runtime. |
| // * Builtin code runs in --jitless mode and thus must not call into on-heap |
| // Code targets. Instead, we dispatch through the builtins entry table. |
| // * Codegen at runtime does not have this restriction and we can use the |
| // shorter, branchless instruction sequence. The assumption here is that |
| // targets are usually generated code and not builtin Code objects. |
| |
| if (options().isolate_independent_code) { |
| DCHECK(root_array_available()); |
| Label if_code_is_off_heap, out; |
| |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| |
| DCHECK(!AreAliased(destination, scratch)); |
| DCHECK(!AreAliased(code_object, scratch)); |
| |
| // Check whether the Code object is an off-heap trampoline. If so, call its |
| // (off-heap) entry point directly without going through the (on-heap) |
| // trampoline. Otherwise, just call the Code object as always. |
| ldr(scratch, FieldMemOperand(code_object, Code::kFlagsOffset)); |
| tst(scratch, Operand(Code::IsOffHeapTrampoline::kMask)); |
| b(ne, &if_code_is_off_heap); |
| |
| // Not an off-heap trampoline, the entry point is at |
| // Code::raw_instruction_start(). |
| add(destination, code_object, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| jmp(&out); |
| |
| // An off-heap trampoline, the entry point is loaded from the builtin entry |
| // table. |
| bind(&if_code_is_off_heap); |
| ldr(scratch, FieldMemOperand(code_object, Code::kBuiltinIndexOffset)); |
| lsl(destination, scratch, Operand(kSystemPointerSizeLog2)); |
| add(destination, destination, kRootRegister); |
| ldr(destination, |
| MemOperand(destination, IsolateData::builtin_entry_table_offset())); |
| |
| bind(&out); |
| } else { |
| add(destination, code_object, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| } |
| } |
| |
| void TurboAssembler::CallCodeObject(Register code_object) { |
| LoadCodeObjectEntry(code_object, code_object); |
| Call(code_object); |
| } |
| |
| void TurboAssembler::JumpCodeObject(Register code_object) { |
| LoadCodeObjectEntry(code_object, code_object); |
| Jump(code_object); |
| } |
| |
| void TurboAssembler::StoreReturnAddressAndCall(Register target) { |
| // This generates the final instruction sequence for calls to C functions |
| // once an exit frame has been constructed. |
| // |
| // Note that this assumes the caller code (i.e. the Code object currently |
| // being generated) is immovable or that the callee function cannot trigger |
| // GC, since the callee function will return to it. |
| |
| // Compute the return address in lr to return to after the jump below. The pc |
| // is already at '+ 8' from the current instruction; but return is after three |
| // instructions, so add another 4 to pc to get the return address. |
| Assembler::BlockConstPoolScope block_const_pool(this); |
| add(lr, pc, Operand(4)); |
| str(lr, MemOperand(sp)); |
| Call(target); |
| } |
| |
| void TurboAssembler::Ret(Condition cond) { bx(lr, cond); } |
| |
| void TurboAssembler::Drop(int count, Condition cond) { |
| if (count > 0) { |
| add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond); |
| } |
| } |
| |
| void TurboAssembler::Drop(Register count, Condition cond) { |
| add(sp, sp, Operand(count, LSL, kPointerSizeLog2), LeaveCC, cond); |
| } |
| |
| void TurboAssembler::Ret(int drop, Condition cond) { |
| Drop(drop, cond); |
| Ret(cond); |
| } |
| |
| void TurboAssembler::Call(Label* target) { bl(target); } |
| |
| void TurboAssembler::Push(Handle<HeapObject> handle) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| mov(scratch, Operand(handle)); |
| push(scratch); |
| } |
| |
| void TurboAssembler::Push(Smi smi) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| mov(scratch, Operand(smi)); |
| push(scratch); |
| } |
| |
| void TurboAssembler::Move(Register dst, Smi smi) { mov(dst, Operand(smi)); } |
| |
| void TurboAssembler::Move(Register dst, Handle<HeapObject> value) { |
| if (FLAG_embedded_builtins) { |
| if (root_array_available_ && options().isolate_independent_code) { |
| IndirectLoadConstant(dst, value); |
| return; |
| } |
| } |
| mov(dst, Operand(value)); |
| } |
| |
| void TurboAssembler::Move(Register dst, ExternalReference reference) { |
| if (FLAG_embedded_builtins) { |
| if (root_array_available_ && options().isolate_independent_code) { |
| IndirectLoadExternalReference(dst, reference); |
| return; |
| } |
| } |
| mov(dst, Operand(reference)); |
| } |
| |
| void TurboAssembler::Move(Register dst, Register src, Condition cond) { |
| if (dst != src) { |
| mov(dst, src, LeaveCC, cond); |
| } |
| } |
| |
| void TurboAssembler::Move(SwVfpRegister dst, SwVfpRegister src, |
| Condition cond) { |
| if (dst != src) { |
| vmov(dst, src, cond); |
| } |
| } |
| |
| void TurboAssembler::Move(DwVfpRegister dst, DwVfpRegister src, |
| Condition cond) { |
| if (dst != src) { |
| vmov(dst, src, cond); |
| } |
| } |
| |
| void TurboAssembler::Move(QwNeonRegister dst, QwNeonRegister src) { |
| if (dst != src) { |
| vmov(dst, src); |
| } |
| } |
| |
| void TurboAssembler::MovePair(Register dst0, Register src0, Register dst1, |
| Register src1) { |
| DCHECK_NE(dst0, dst1); |
| if (dst0 != src1) { |
| Move(dst0, src0); |
| Move(dst1, src1); |
| } else if (dst1 != src0) { |
| // Swap the order of the moves to resolve the overlap. |
| Move(dst1, src1); |
| Move(dst0, src0); |
| } else { |
| // Worse case scenario, this is a swap. |
| Swap(dst0, src0); |
| } |
| } |
| |
| void TurboAssembler::Swap(Register srcdst0, Register srcdst1) { |
| DCHECK(srcdst0 != srcdst1); |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| mov(scratch, srcdst0); |
| mov(srcdst0, srcdst1); |
| mov(srcdst1, scratch); |
| } |
| |
| void TurboAssembler::Swap(DwVfpRegister srcdst0, DwVfpRegister srcdst1) { |
| DCHECK(srcdst0 != srcdst1); |
| DCHECK(VfpRegisterIsAvailable(srcdst0)); |
| DCHECK(VfpRegisterIsAvailable(srcdst1)); |
| |
| if (CpuFeatures::IsSupported(NEON)) { |
| vswp(srcdst0, srcdst1); |
| } else { |
| UseScratchRegisterScope temps(this); |
| DwVfpRegister scratch = temps.AcquireD(); |
| vmov(scratch, srcdst0); |
| vmov(srcdst0, srcdst1); |
| vmov(srcdst1, scratch); |
| } |
| } |
| |
| void TurboAssembler::Swap(QwNeonRegister srcdst0, QwNeonRegister srcdst1) { |
| DCHECK(srcdst0 != srcdst1); |
| vswp(srcdst0, srcdst1); |
| } |
| |
| void MacroAssembler::Mls(Register dst, Register src1, Register src2, |
| Register srcA, Condition cond) { |
| if (CpuFeatures::IsSupported(ARMv7)) { |
| CpuFeatureScope scope(this, ARMv7); |
| mls(dst, src1, src2, srcA, cond); |
| } else { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| DCHECK(srcA != scratch); |
| mul(scratch, src1, src2, LeaveCC, cond); |
| sub(dst, srcA, scratch, LeaveCC, cond); |
| } |
| } |
| |
| void MacroAssembler::And(Register dst, Register src1, const Operand& src2, |
| Condition cond) { |
| if (!src2.IsRegister() && !src2.MustOutputRelocInfo(this) && |
| src2.immediate() == 0) { |
| mov(dst, Operand::Zero(), LeaveCC, cond); |
| } else if (!(src2.InstructionsRequired(this) == 1) && |
| !src2.MustOutputRelocInfo(this) && |
| CpuFeatures::IsSupported(ARMv7) && |
| base::bits::IsPowerOfTwo(src2.immediate() + 1)) { |
| CpuFeatureScope scope(this, ARMv7); |
| ubfx(dst, src1, 0, |
| WhichPowerOf2(static_cast<uint32_t>(src2.immediate()) + 1), cond); |
| } else { |
| and_(dst, src1, src2, LeaveCC, cond); |
| } |
| } |
| |
| void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width, |
| Condition cond) { |
| DCHECK_LT(lsb, 32); |
| if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { |
| int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); |
| and_(dst, src1, Operand(mask), LeaveCC, cond); |
| if (lsb != 0) { |
| mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond); |
| } |
| } else { |
| CpuFeatureScope scope(this, ARMv7); |
| ubfx(dst, src1, lsb, width, cond); |
| } |
| } |
| |
| void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width, |
| Condition cond) { |
| DCHECK_LT(lsb, 32); |
| if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { |
| int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); |
| and_(dst, src1, Operand(mask), LeaveCC, cond); |
| int shift_up = 32 - lsb - width; |
| int shift_down = lsb + shift_up; |
| if (shift_up != 0) { |
| mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond); |
| } |
| if (shift_down != 0) { |
| mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond); |
| } |
| } else { |
| CpuFeatureScope scope(this, ARMv7); |
| sbfx(dst, src1, lsb, width, cond); |
| } |
| } |
| |
| void TurboAssembler::Bfc(Register dst, Register src, int lsb, int width, |
| Condition cond) { |
| DCHECK_LT(lsb, 32); |
| if (!CpuFeatures::IsSupported(ARMv7) || predictable_code_size()) { |
| int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); |
| bic(dst, src, Operand(mask)); |
| } else { |
| CpuFeatureScope scope(this, ARMv7); |
| Move(dst, src, cond); |
| bfc(dst, lsb, width, cond); |
| } |
| } |
| |
| void TurboAssembler::LoadRoot(Register destination, RootIndex index, |
| Condition cond) { |
| ldr(destination, |
| MemOperand(kRootRegister, RootRegisterOffsetForRootIndex(index)), cond); |
| } |
| |
| void MacroAssembler::RecordWriteField(Register object, int offset, |
| Register value, |
| LinkRegisterStatus lr_status, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis. |
| Label done; |
| |
| // Skip barrier if writing a smi. |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done); |
| } |
| |
| // Although the object register is tagged, the offset is relative to the start |
| // of the object, so so offset must be a multiple of kPointerSize. |
| DCHECK(IsAligned(offset, kPointerSize)); |
| |
| if (emit_debug_code()) { |
| Label ok; |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| add(scratch, object, Operand(offset - kHeapObjectTag)); |
| tst(scratch, Operand(kPointerSize - 1)); |
| b(eq, &ok); |
| stop(); |
| bind(&ok); |
| } |
| |
| RecordWrite(object, Operand(offset - kHeapObjectTag), value, lr_status, |
| save_fp, remembered_set_action, OMIT_SMI_CHECK); |
| |
| bind(&done); |
| } |
| |
| void TurboAssembler::SaveRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| RegList regs = 0; |
| for (int i = 0; i < Register::kNumRegisters; ++i) { |
| if ((registers >> i) & 1u) { |
| regs |= Register::from_code(i).bit(); |
| } |
| } |
| |
| stm(db_w, sp, regs); |
| } |
| |
| void TurboAssembler::RestoreRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| RegList regs = 0; |
| for (int i = 0; i < Register::kNumRegisters; ++i) { |
| if ((registers >> i) & 1u) { |
| regs |= Register::from_code(i).bit(); |
| } |
| } |
| ldm(ia_w, sp, regs); |
| } |
| |
| void TurboAssembler::CallEphemeronKeyBarrier(Register object, Operand offset, |
| SaveFPRegsMode fp_mode) { |
| EphemeronKeyBarrierDescriptor descriptor; |
| RegList registers = descriptor.allocatable_registers(); |
| |
| SaveRegisters(registers); |
| |
| Register object_parameter( |
| descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kObject)); |
| Register slot_parameter(descriptor.GetRegisterParameter( |
| EphemeronKeyBarrierDescriptor::kSlotAddress)); |
| Register fp_mode_parameter( |
| descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kFPMode)); |
| |
| MoveObjectAndSlot(object_parameter, slot_parameter, object, offset); |
| Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); |
| Call(isolate()->builtins()->builtin_handle(Builtins::kEphemeronKeyBarrier), |
| RelocInfo::CODE_TARGET); |
| RestoreRegisters(registers); |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Operand offset, RememberedSetAction remembered_set_action, |
| SaveFPRegsMode fp_mode) { |
| CallRecordWriteStub( |
| object, offset, remembered_set_action, fp_mode, |
| isolate()->builtins()->builtin_handle(Builtins::kRecordWrite), |
| kNullAddress); |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Operand offset, RememberedSetAction remembered_set_action, |
| SaveFPRegsMode fp_mode, Address wasm_target) { |
| CallRecordWriteStub(object, offset, remembered_set_action, fp_mode, |
| Handle<Code>::null(), wasm_target); |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Operand offset, RememberedSetAction remembered_set_action, |
| SaveFPRegsMode fp_mode, Handle<Code> code_target, Address wasm_target) { |
| DCHECK_NE(code_target.is_null(), wasm_target == kNullAddress); |
| // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode, |
| // i.e. always emit remember set and save FP registers in RecordWriteStub. If |
| // large performance regression is observed, we should use these values to |
| // avoid unnecessary work. |
| |
| RecordWriteDescriptor descriptor; |
| RegList registers = descriptor.allocatable_registers(); |
| |
| SaveRegisters(registers); |
| |
| Register object_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kObject)); |
| Register slot_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kSlot)); |
| Register remembered_set_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kRememberedSet)); |
| Register fp_mode_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kFPMode)); |
| |
| MoveObjectAndSlot(object_parameter, slot_parameter, object, offset); |
| |
| Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action)); |
| Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); |
| if (code_target.is_null()) { |
| Call(wasm_target, RelocInfo::WASM_STUB_CALL); |
| } else { |
| Call(code_target, RelocInfo::CODE_TARGET); |
| } |
| |
| RestoreRegisters(registers); |
| } |
| |
| void TurboAssembler::MoveObjectAndSlot(Register dst_object, Register dst_slot, |
| Register object, Operand offset) { |
| DCHECK_NE(dst_object, dst_slot); |
| DCHECK(offset.IsRegister() || offset.IsImmediate()); |
| // If `offset` is a register, it cannot overlap with `object`. |
| DCHECK_IMPLIES(offset.IsRegister(), offset.rm() != object); |
| |
| // If the slot register does not overlap with the object register, we can |
| // overwrite it. |
| if (dst_slot != object) { |
| add(dst_slot, object, offset); |
| Move(dst_object, object); |
| return; |
| } |
| |
| DCHECK_EQ(dst_slot, object); |
| |
| // If the destination object register does not overlap with the offset |
| // register, we can overwrite it. |
| if (!offset.IsRegister() || (offset.rm() != dst_object)) { |
| Move(dst_object, dst_slot); |
| add(dst_slot, dst_slot, offset); |
| return; |
| } |
| |
| DCHECK_EQ(dst_object, offset.rm()); |
| |
| // We only have `dst_slot` and `dst_object` left as distinct registers so we |
| // have to swap them. We write this as a add+sub sequence to avoid using a |
| // scratch register. |
| add(dst_slot, dst_slot, dst_object); |
| sub(dst_object, dst_slot, dst_object); |
| } |
| |
| // The register 'object' contains a heap object pointer. The heap object tag is |
| // shifted away. A scratch register also needs to be available. |
| void MacroAssembler::RecordWrite(Register object, Operand offset, |
| Register value, LinkRegisterStatus lr_status, |
| SaveFPRegsMode fp_mode, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| DCHECK_NE(object, value); |
| if (emit_debug_code()) { |
| { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| add(scratch, object, offset); |
| ldr(scratch, MemOperand(scratch)); |
| cmp(scratch, value); |
| } |
| Check(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite); |
| } |
| |
| if (remembered_set_action == OMIT_REMEMBERED_SET && |
| !FLAG_incremental_marking) { |
| return; |
| } |
| |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of smis and stores into the young generation. |
| Label done; |
| |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done); |
| } |
| |
| CheckPageFlag(value, MemoryChunk::kPointersToHereAreInterestingMask, eq, |
| &done); |
| CheckPageFlag(object, MemoryChunk::kPointersFromHereAreInterestingMask, eq, |
| &done); |
| |
| // Record the actual write. |
| if (lr_status == kLRHasNotBeenSaved) { |
| push(lr); |
| } |
| CallRecordWriteStub(object, offset, remembered_set_action, fp_mode); |
| if (lr_status == kLRHasNotBeenSaved) { |
| pop(lr); |
| } |
| |
| bind(&done); |
| } |
| |
| void TurboAssembler::PushCommonFrame(Register marker_reg) { |
| if (marker_reg.is_valid()) { |
| if (marker_reg.code() > fp.code()) { |
| stm(db_w, sp, fp.bit() | lr.bit()); |
| mov(fp, Operand(sp)); |
| Push(marker_reg); |
| } else { |
| stm(db_w, sp, marker_reg.bit() | fp.bit() | lr.bit()); |
| add(fp, sp, Operand(kPointerSize)); |
| } |
| } else { |
| stm(db_w, sp, fp.bit() | lr.bit()); |
| mov(fp, sp); |
| } |
| } |
| |
| void TurboAssembler::PushStandardFrame(Register function_reg) { |
| DCHECK(!function_reg.is_valid() || function_reg.code() < cp.code()); |
| stm(db_w, sp, |
| (function_reg.is_valid() ? function_reg.bit() : 0) | cp.bit() | fp.bit() | |
| lr.bit()); |
| int offset = -StandardFrameConstants::kContextOffset; |
| offset += function_reg.is_valid() ? kPointerSize : 0; |
| add(fp, sp, Operand(offset)); |
| } |
| |
| int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { |
| // The registers are pushed starting with the highest encoding, |
| // which means that lowest encodings are closest to the stack pointer. |
| DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters); |
| return reg_code; |
| } |
| |
| void TurboAssembler::VFPCanonicalizeNaN(const DwVfpRegister dst, |
| const DwVfpRegister src, |
| const Condition cond) { |
| // Subtracting 0.0 preserves all inputs except for signalling NaNs, which |
| // become quiet NaNs. We use vsub rather than vadd because vsub preserves -0.0 |
| // inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0. |
| vsub(dst, src, kDoubleRegZero, cond); |
| } |
| |
| void TurboAssembler::VFPCompareAndSetFlags(const SwVfpRegister src1, |
| const SwVfpRegister src2, |
| const Condition cond) { |
| // Compare and move FPSCR flags to the normal condition flags. |
| VFPCompareAndLoadFlags(src1, src2, pc, cond); |
| } |
| |
| void TurboAssembler::VFPCompareAndSetFlags(const SwVfpRegister src1, |
| const float src2, |
| const Condition cond) { |
| // Compare and move FPSCR flags to the normal condition flags. |
| VFPCompareAndLoadFlags(src1, src2, pc, cond); |
| } |
| |
| void TurboAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1, |
| const DwVfpRegister src2, |
| const Condition cond) { |
| // Compare and move FPSCR flags to the normal condition flags. |
| VFPCompareAndLoadFlags(src1, src2, pc, cond); |
| } |
| |
| void TurboAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1, |
| const double src2, |
| const Condition cond) { |
| // Compare and move FPSCR flags to the normal condition flags. |
| VFPCompareAndLoadFlags(src1, src2, pc, cond); |
| } |
| |
| void TurboAssembler::VFPCompareAndLoadFlags(const SwVfpRegister src1, |
| const SwVfpRegister src2, |
| const Register fpscr_flags, |
| const Condition cond) { |
| // Compare and load FPSCR. |
| vcmp(src1, src2, cond); |
| vmrs(fpscr_flags, cond); |
| } |
| |
| void TurboAssembler::VFPCompareAndLoadFlags(const SwVfpRegister src1, |
| const float src2, |
| const Register fpscr_flags, |
| const Condition cond) { |
| // Compare and load FPSCR. |
| vcmp(src1, src2, cond); |
| vmrs(fpscr_flags, cond); |
| } |
| |
| void TurboAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1, |
| const DwVfpRegister src2, |
| const Register fpscr_flags, |
| const Condition cond) { |
| // Compare and load FPSCR. |
| vcmp(src1, src2, cond); |
| vmrs(fpscr_flags, cond); |
| } |
| |
| void TurboAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1, |
| const double src2, |
| const Register fpscr_flags, |
| const Condition cond) { |
| // Compare and load FPSCR. |
| vcmp(src1, src2, cond); |
| vmrs(fpscr_flags, cond); |
| } |
| |
| void TurboAssembler::VmovHigh(Register dst, DwVfpRegister src) { |
| if (src.code() < 16) { |
| const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code()); |
| vmov(dst, loc.high()); |
| } else { |
| vmov(NeonS32, dst, src, 1); |
| } |
| } |
| |
| void TurboAssembler::VmovHigh(DwVfpRegister dst, Register src) { |
| if (dst.code() < 16) { |
| const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code()); |
| vmov(loc.high(), src); |
| } else { |
| vmov(NeonS32, dst, 1, src); |
| } |
| } |
| |
| void TurboAssembler::VmovLow(Register dst, DwVfpRegister src) { |
| if (src.code() < 16) { |
| const LowDwVfpRegister loc = LowDwVfpRegister::from_code(src.code()); |
| vmov(dst, loc.low()); |
| } else { |
| vmov(NeonS32, dst, src, 0); |
| } |
| } |
| |
| void TurboAssembler::VmovLow(DwVfpRegister dst, Register src) { |
| if (dst.code() < 16) { |
| const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code()); |
| vmov(loc.low(), src); |
| } else { |
| vmov(NeonS32, dst, 0, src); |
| } |
| } |
| |
| void TurboAssembler::VmovExtended(Register dst, int src_code) { |
| DCHECK_LE(SwVfpRegister::kNumRegisters, src_code); |
| DCHECK_GT(SwVfpRegister::kNumRegisters * 2, src_code); |
| if (src_code & 0x1) { |
| VmovHigh(dst, DwVfpRegister::from_code(src_code / 2)); |
| } else { |
| VmovLow(dst, DwVfpRegister::from_code(src_code / 2)); |
| } |
| } |
| |
| void TurboAssembler::VmovExtended(int dst_code, Register src) { |
| DCHECK_LE(SwVfpRegister::kNumRegisters, dst_code); |
| DCHECK_GT(SwVfpRegister::kNumRegisters * 2, dst_code); |
| if (dst_code & 0x1) { |
| VmovHigh(DwVfpRegister::from_code(dst_code / 2), src); |
| } else { |
| VmovLow(DwVfpRegister::from_code(dst_code / 2), src); |
| } |
| } |
| |
| void TurboAssembler::VmovExtended(int dst_code, int src_code) { |
| if (src_code == dst_code) return; |
| |
| if (src_code < SwVfpRegister::kNumRegisters && |
| dst_code < SwVfpRegister::kNumRegisters) { |
| // src and dst are both s-registers. |
| vmov(SwVfpRegister::from_code(dst_code), |
| SwVfpRegister::from_code(src_code)); |
| return; |
| } |
| DwVfpRegister dst_d_reg = DwVfpRegister::from_code(dst_code / 2); |
| DwVfpRegister src_d_reg = DwVfpRegister::from_code(src_code / 2); |
| int dst_offset = dst_code & 1; |
| int src_offset = src_code & 1; |
| if (CpuFeatures::IsSupported(NEON)) { |
| UseScratchRegisterScope temps(this); |
| DwVfpRegister scratch = temps.AcquireD(); |
| // On Neon we can shift and insert from d-registers. |
| if (src_offset == dst_offset) { |
| // Offsets are the same, use vdup to copy the source to the opposite lane. |
| vdup(Neon32, scratch, src_d_reg, src_offset); |
| // Here we are extending the lifetime of scratch. |
| src_d_reg = scratch; |
| src_offset = dst_offset ^ 1; |
| } |
| if (dst_offset) { |
| if (dst_d_reg == src_d_reg) { |
| vdup(Neon32, dst_d_reg, src_d_reg, 0); |
| } else { |
| vsli(Neon64, dst_d_reg, src_d_reg, 32); |
| } |
| } else { |
| if (dst_d_reg == src_d_reg) { |
| vdup(Neon32, dst_d_reg, src_d_reg, 1); |
| } else { |
| vsri(Neon64, dst_d_reg, src_d_reg, 32); |
| } |
| } |
| return; |
| } |
| |
| // Without Neon, use the scratch registers to move src and/or dst into |
| // s-registers. |
| UseScratchRegisterScope temps(this); |
| LowDwVfpRegister d_scratch = temps.AcquireLowD(); |
| LowDwVfpRegister d_scratch2 = temps.AcquireLowD(); |
| int s_scratch_code = d_scratch.low().code(); |
| int s_scratch_code2 = d_scratch2.low().code(); |
| if (src_code < SwVfpRegister::kNumRegisters) { |
| // src is an s-register, dst is not. |
| vmov(d_scratch, dst_d_reg); |
| vmov(SwVfpRegister::from_code(s_scratch_code + dst_offset), |
| SwVfpRegister::from_code(src_code)); |
| vmov(dst_d_reg, d_scratch); |
| } else if (dst_code < SwVfpRegister::kNumRegisters) { |
| // dst is an s-register, src is not. |
| vmov(d_scratch, src_d_reg); |
| vmov(SwVfpRegister::from_code(dst_code), |
| SwVfpRegister::from_code(s_scratch_code + src_offset)); |
| } else { |
| // Neither src or dst are s-registers. Both scratch double registers are |
| // available when there are 32 VFP registers. |
| vmov(d_scratch, src_d_reg); |
| vmov(d_scratch2, dst_d_reg); |
| vmov(SwVfpRegister::from_code(s_scratch_code + dst_offset), |
| SwVfpRegister::from_code(s_scratch_code2 + src_offset)); |
| vmov(dst_d_reg, d_scratch2); |
| } |
| } |
| |
| void TurboAssembler::VmovExtended(int dst_code, const MemOperand& src) { |
| if (dst_code < SwVfpRegister::kNumRegisters) { |
| vldr(SwVfpRegister::from_code(dst_code), src); |
| } else { |
| UseScratchRegisterScope temps(this); |
| LowDwVfpRegister scratch = temps.AcquireLowD(); |
| // TODO(bbudge) If Neon supported, use load single lane form of vld1. |
| int dst_s_code = scratch.low().code() + (dst_code & 1); |
| vmov(scratch, DwVfpRegister::from_code(dst_code / 2)); |
| vldr(SwVfpRegister::from_code(dst_s_code), src); |
| vmov(DwVfpRegister::from_code(dst_code / 2), scratch); |
| } |
| } |
| |
| void TurboAssembler::VmovExtended(const MemOperand& dst, int src_code) { |
| if (src_code < SwVfpRegister::kNumRegisters) { |
| vstr(SwVfpRegister::from_code(src_code), dst); |
| } else { |
| // TODO(bbudge) If Neon supported, use store single lane form of vst1. |
| UseScratchRegisterScope temps(this); |
| LowDwVfpRegister scratch = temps.AcquireLowD(); |
| int src_s_code = scratch.low().code() + (src_code & 1); |
| vmov(scratch, DwVfpRegister::from_code(src_code / 2)); |
| vstr(SwVfpRegister::from_code(src_s_code), dst); |
| } |
| } |
| |
| void TurboAssembler::ExtractLane(Register dst, QwNeonRegister src, |
| NeonDataType dt, int lane) { |
| int size = NeonSz(dt); // 0, 1, 2 |
| int byte = lane << size; |
| int double_word = byte >> kDoubleSizeLog2; |
| int double_byte = byte & (kDoubleSize - 1); |
| int double_lane = double_byte >> size; |
| DwVfpRegister double_source = |
| DwVfpRegister::from_code(src.code() * 2 + double_word); |
| vmov(dt, dst, double_source, double_lane); |
| } |
| |
| void TurboAssembler::ExtractLane(Register dst, DwVfpRegister src, |
| NeonDataType dt, int lane) { |
| int size = NeonSz(dt); // 0, 1, 2 |
| int byte = lane << size; |
| int double_byte = byte & (kDoubleSize - 1); |
| int double_lane = double_byte >> size; |
| vmov(dt, dst, src, double_lane); |
| } |
| |
| void TurboAssembler::ExtractLane(SwVfpRegister dst, QwNeonRegister src, |
| int lane) { |
| int s_code = src.code() * 4 + lane; |
| VmovExtended(dst.code(), s_code); |
| } |
| |
| void TurboAssembler::ReplaceLane(QwNeonRegister dst, QwNeonRegister src, |
| Register src_lane, NeonDataType dt, int lane) { |
| Move(dst, src); |
| int size = NeonSz(dt); // 0, 1, 2 |
| int byte = lane << size; |
| int double_word = byte >> kDoubleSizeLog2; |
| int double_byte = byte & (kDoubleSize - 1); |
| int double_lane = double_byte >> size; |
| DwVfpRegister double_dst = |
| DwVfpRegister::from_code(dst.code() * 2 + double_word); |
| vmov(dt, double_dst, double_lane, src_lane); |
| } |
| |
| void TurboAssembler::ReplaceLane(QwNeonRegister dst, QwNeonRegister src, |
| SwVfpRegister src_lane, int lane) { |
| Move(dst, src); |
| int s_code = dst.code() * 4 + lane; |
| VmovExtended(s_code, src_lane.code()); |
| } |
| |
| void TurboAssembler::LslPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| Register shift) { |
| DCHECK(!AreAliased(dst_high, src_low)); |
| DCHECK(!AreAliased(dst_high, shift)); |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| |
| Label less_than_32; |
| Label done; |
| rsb(scratch, shift, Operand(32), SetCC); |
| b(gt, &less_than_32); |
| // If shift >= 32 |
| and_(scratch, shift, Operand(0x1F)); |
| lsl(dst_high, src_low, Operand(scratch)); |
| mov(dst_low, Operand(0)); |
| jmp(&done); |
| bind(&less_than_32); |
| // If shift < 32 |
| lsl(dst_high, src_high, Operand(shift)); |
| orr(dst_high, dst_high, Operand(src_low, LSR, scratch)); |
| lsl(dst_low, src_low, Operand(shift)); |
| bind(&done); |
| } |
| |
| void TurboAssembler::LslPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| uint32_t shift) { |
| DCHECK(!AreAliased(dst_high, src_low)); |
| |
| if (shift == 0) { |
| Move(dst_high, src_high); |
| Move(dst_low, src_low); |
| } else if (shift == 32) { |
| Move(dst_high, src_low); |
| Move(dst_low, Operand(0)); |
| } else if (shift >= 32) { |
| shift &= 0x1F; |
| lsl(dst_high, src_low, Operand(shift)); |
| mov(dst_low, Operand(0)); |
| } else { |
| lsl(dst_high, src_high, Operand(shift)); |
| orr(dst_high, dst_high, Operand(src_low, LSR, 32 - shift)); |
| lsl(dst_low, src_low, Operand(shift)); |
| } |
| } |
| |
| void TurboAssembler::LsrPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| Register shift) { |
| DCHECK(!AreAliased(dst_low, src_high)); |
| DCHECK(!AreAliased(dst_low, shift)); |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| |
| Label less_than_32; |
| Label done; |
| rsb(scratch, shift, Operand(32), SetCC); |
| b(gt, &less_than_32); |
| // If shift >= 32 |
| and_(scratch, shift, Operand(0x1F)); |
| lsr(dst_low, src_high, Operand(scratch)); |
| mov(dst_high, Operand(0)); |
| jmp(&done); |
| bind(&less_than_32); |
| // If shift < 32 |
| |
| lsr(dst_low, src_low, Operand(shift)); |
| orr(dst_low, dst_low, Operand(src_high, LSL, scratch)); |
| lsr(dst_high, src_high, Operand(shift)); |
| bind(&done); |
| } |
| |
| void TurboAssembler::LsrPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| uint32_t shift) { |
| DCHECK(!AreAliased(dst_low, src_high)); |
| |
| if (shift == 32) { |
| mov(dst_low, src_high); |
| mov(dst_high, Operand(0)); |
| } else if (shift > 32) { |
| shift &= 0x1F; |
| lsr(dst_low, src_high, Operand(shift)); |
| mov(dst_high, Operand(0)); |
| } else if (shift == 0) { |
| Move(dst_low, src_low); |
| Move(dst_high, src_high); |
| } else { |
| lsr(dst_low, src_low, Operand(shift)); |
| orr(dst_low, dst_low, Operand(src_high, LSL, 32 - shift)); |
| lsr(dst_high, src_high, Operand(shift)); |
| } |
| } |
| |
| void TurboAssembler::AsrPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| Register shift) { |
| DCHECK(!AreAliased(dst_low, src_high)); |
| DCHECK(!AreAliased(dst_low, shift)); |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| |
| Label less_than_32; |
| Label done; |
| rsb(scratch, shift, Operand(32), SetCC); |
| b(gt, &less_than_32); |
| // If shift >= 32 |
| and_(scratch, shift, Operand(0x1F)); |
| asr(dst_low, src_high, Operand(scratch)); |
| asr(dst_high, src_high, Operand(31)); |
| jmp(&done); |
| bind(&less_than_32); |
| // If shift < 32 |
| lsr(dst_low, src_low, Operand(shift)); |
| orr(dst_low, dst_low, Operand(src_high, LSL, scratch)); |
| asr(dst_high, src_high, Operand(shift)); |
| bind(&done); |
| } |
| |
| void TurboAssembler::AsrPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| uint32_t shift) { |
| DCHECK(!AreAliased(dst_low, src_high)); |
| |
| if (shift == 32) { |
| mov(dst_low, src_high); |
| asr(dst_high, src_high, Operand(31)); |
| } else if (shift > 32) { |
| shift &= 0x1F; |
| asr(dst_low, src_high, Operand(shift)); |
| asr(dst_high, src_high, Operand(31)); |
| } else if (shift == 0) { |
| Move(dst_low, src_low); |
| Move(dst_high, src_high); |
| } else { |
| lsr(dst_low, src_low, Operand(shift)); |
| orr(dst_low, dst_low, Operand(src_high, LSL, 32 - shift)); |
| asr(dst_high, src_high, Operand(shift)); |
| } |
| } |
| |
| void TurboAssembler::StubPrologue(StackFrame::Type type) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| mov(scratch, Operand(StackFrame::TypeToMarker(type))); |
| PushCommonFrame(scratch); |
| } |
| |
| void TurboAssembler::Prologue() { PushStandardFrame(r1); } |
| |
| void TurboAssembler::EnterFrame(StackFrame::Type type, |
| bool load_constant_pool_pointer_reg) { |
| // r0-r3: preserved |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| mov(scratch, Operand(StackFrame::TypeToMarker(type))); |
| PushCommonFrame(scratch); |
| } |
| |
| int TurboAssembler::LeaveFrame(StackFrame::Type type) { |
| // r0: preserved |
| // r1: preserved |
| // r2: preserved |
| |
| // Drop the execution stack down to the frame pointer and restore |
| // the caller frame pointer and return address. |
| mov(sp, fp); |
| int frame_ends = pc_offset(); |
| ldm(ia_w, sp, fp.bit() | lr.bit()); |
| return frame_ends; |
| } |
| |
| #ifdef V8_OS_WIN |
| void TurboAssembler::AllocateStackSpace(Register bytes_scratch) { |
| // "Functions that allocate 4 KB or more on the stack must ensure that each |
| // page prior to the final page is touched in order." Source: |
| // https://docs.microsoft.com/en-us/cpp/build/overview-of-arm-abi-conventions?view=vs-2019#stack |
| UseScratchRegisterScope temps(this); |
| DwVfpRegister scratch = temps.AcquireD(); |
| Label check_offset; |
| Label touch_next_page; |
| jmp(&check_offset); |
| bind(&touch_next_page); |
| sub(sp, sp, Operand(kStackPageSize)); |
| // Just to touch the page, before we increment further. |
| vldr(scratch, MemOperand(sp)); |
| sub(bytes_scratch, bytes_scratch, Operand(kStackPageSize)); |
| |
| bind(&check_offset); |
| cmp(bytes_scratch, Operand(kStackPageSize)); |
| b(gt, &touch_next_page); |
| |
| sub(sp, sp, bytes_scratch); |
| } |
| |
| void TurboAssembler::AllocateStackSpace(int bytes) { |
| UseScratchRegisterScope temps(this); |
| DwVfpRegister scratch = no_dreg; |
| while (bytes > kStackPageSize) { |
| if (scratch == no_dreg) { |
| scratch = temps.AcquireD(); |
| } |
| sub(sp, sp, Operand(kStackPageSize)); |
| vldr(scratch, MemOperand(sp)); |
| bytes -= kStackPageSize; |
| } |
| sub(sp, sp, Operand(bytes)); |
| } |
| #endif |
| |
| void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space, |
| StackFrame::Type frame_type) { |
| DCHECK(frame_type == StackFrame::EXIT || |
| frame_type == StackFrame::BUILTIN_EXIT); |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| |
| // Set up the frame structure on the stack. |
| DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement); |
| DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset); |
| DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset); |
| mov(scratch, Operand(StackFrame::TypeToMarker(frame_type))); |
| PushCommonFrame(scratch); |
| // Reserve room for saved entry sp. |
| sub(sp, fp, Operand(ExitFrameConstants::kFixedFrameSizeFromFp)); |
| if (emit_debug_code()) { |
| mov(scratch, Operand::Zero()); |
| str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
| } |
| |
| // Save the frame pointer and the context in top. |
| Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, |
| isolate())); |
| str(fp, MemOperand(scratch)); |
| Move(scratch, |
| ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); |
| str(cp, MemOperand(scratch)); |
| |
| // Optionally save all double registers. |
| if (save_doubles) { |
| SaveFPRegs(sp, scratch); |
| // Note that d0 will be accessible at |
| // fp - ExitFrameConstants::kFrameSize - |
| // DwVfpRegister::kNumRegisters * kDoubleSize, |
| // since the sp slot and code slot were pushed after the fp. |
| } |
| |
| // Reserve place for the return address and stack space and align the frame |
| // preparing for calling the runtime function. |
| const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); |
| AllocateStackSpace((stack_space + 1) * kPointerSize); |
| if (frame_alignment > 0) { |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| and_(sp, sp, Operand(-frame_alignment)); |
| } |
| |
| // Set the exit frame sp value to point just before the return address |
| // location. |
| add(scratch, sp, Operand(kPointerSize)); |
| str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
| } |
| |
| int TurboAssembler::ActivationFrameAlignment() { |
| #if V8_HOST_ARCH_ARM |
| // Running on the real platform. Use the alignment as mandated by the local |
| // environment. |
| // Note: This will break if we ever start generating snapshots on one ARM |
| // platform for another ARM platform with a different alignment. |
| return base::OS::ActivationFrameAlignment(); |
| #else // V8_HOST_ARCH_ARM |
| // If we are using the simulator then we should always align to the expected |
| // alignment. As the simulator is used to generate snapshots we do not know |
| // if the target platform will need alignment, so this is controlled from a |
| // flag. |
| return FLAG_sim_stack_alignment; |
| #endif // V8_HOST_ARCH_ARM |
| } |
| |
| void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, |
| bool argument_count_is_length) { |
| ConstantPoolUnavailableScope constant_pool_unavailable(this); |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| |
| // Optionally restore all double registers. |
| if (save_doubles) { |
| // Calculate the stack location of the saved doubles and restore them. |
| const int offset = ExitFrameConstants::kFixedFrameSizeFromFp; |
| sub(r3, fp, Operand(offset + DwVfpRegister::kNumRegisters * kDoubleSize)); |
| RestoreFPRegs(r3, scratch); |
| } |
| |
| // Clear top frame. |
| mov(r3, Operand::Zero()); |
| Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, |
| isolate())); |
| str(r3, MemOperand(scratch)); |
| |
| // Restore current context from top and clear it in debug mode. |
| Move(scratch, |
| ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); |
| ldr(cp, MemOperand(scratch)); |
| #ifdef DEBUG |
| mov(r3, Operand(Context::kInvalidContext)); |
| Move(scratch, |
| ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); |
| str(r3, MemOperand(scratch)); |
| #endif |
| |
| // Tear down the exit frame, pop the arguments, and return. |
| mov(sp, Operand(fp)); |
| ldm(ia_w, sp, fp.bit() | lr.bit()); |
| if (argument_count.is_valid()) { |
| if (argument_count_is_length) { |
| add(sp, sp, argument_count); |
| } else { |
| add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2)); |
| } |
| } |
| } |
| |
| void TurboAssembler::MovFromFloatResult(const DwVfpRegister dst) { |
| if (use_eabi_hardfloat()) { |
| Move(dst, d0); |
| } else { |
| vmov(dst, r0, r1); |
| } |
| } |
| |
| // On ARM this is just a synonym to make the purpose clear. |
| void TurboAssembler::MovFromFloatParameter(DwVfpRegister dst) { |
| MovFromFloatResult(dst); |
| } |
| |
| void TurboAssembler::PrepareForTailCall(const ParameterCount& callee_args_count, |
| Register caller_args_count_reg, |
| Register scratch0, Register scratch1) { |
| #if DEBUG |
| if (callee_args_count.is_reg()) { |
| DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0, |
| scratch1)); |
| } else { |
| DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1)); |
| } |
| #endif |
| |
| // Calculate the end of destination area where we will put the arguments |
| // after we drop current frame. We add kPointerSize to count the receiver |
| // argument which is not included into formal parameters count. |
| Register dst_reg = scratch0; |
| add(dst_reg, fp, Operand(caller_args_count_reg, LSL, kPointerSizeLog2)); |
| add(dst_reg, dst_reg, |
| Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize)); |
| |
| Register src_reg = caller_args_count_reg; |
| // Calculate the end of source area. +kPointerSize is for the receiver. |
| if (callee_args_count.is_reg()) { |
| add(src_reg, sp, Operand(callee_args_count.reg(), LSL, kPointerSizeLog2)); |
| add(src_reg, src_reg, Operand(kPointerSize)); |
| } else { |
| add(src_reg, sp, |
| Operand((callee_args_count.immediate() + 1) * kPointerSize)); |
| } |
| |
| if (FLAG_debug_code) { |
| cmp(src_reg, dst_reg); |
| Check(lo, AbortReason::kStackAccessBelowStackPointer); |
| } |
| |
| // Restore caller's frame pointer and return address now as they will be |
| // overwritten by the copying loop. |
| ldr(lr, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); |
| ldr(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| |
| // Now copy callee arguments to the caller frame going backwards to avoid |
| // callee arguments corruption (source and destination areas could overlap). |
| |
| // Both src_reg and dst_reg are pointing to the word after the one to copy, |
| // so they must be pre-decremented in the loop. |
| Register tmp_reg = scratch1; |
| Label loop, entry; |
| b(&entry); |
| bind(&loop); |
| ldr(tmp_reg, MemOperand(src_reg, -kPointerSize, PreIndex)); |
| str(tmp_reg, MemOperand(dst_reg, -kPointerSize, PreIndex)); |
| bind(&entry); |
| cmp(sp, src_reg); |
| b(ne, &loop); |
| |
| // Leave current frame. |
| mov(sp, dst_reg); |
| } |
| |
| void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, Label* done, |
| bool* definitely_mismatches, |
| InvokeFlag flag) { |
| bool definitely_matches = false; |
| *definitely_mismatches = false; |
| Label regular_invoke; |
| |
| // Check whether the expected and actual arguments count match. If not, |
| // setup registers according to contract with ArgumentsAdaptorTrampoline: |
| // r0: actual arguments count |
| // r1: function (passed through to callee) |
| // r2: expected arguments count |
| |
| // The code below is made a lot easier because the calling code already sets |
| // up actual and expected registers according to the contract if values are |
| // passed in registers. |
| DCHECK(actual.is_immediate() || actual.reg() == r0); |
| DCHECK(expected.is_immediate() || expected.reg() == r2); |
| |
| if (expected.is_immediate()) { |
| DCHECK(actual.is_immediate()); |
| mov(r0, Operand(actual.immediate())); |
| if (expected.immediate() == actual.immediate()) { |
| definitely_matches = true; |
| } else { |
| const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; |
| if (expected.immediate() == sentinel) { |
| // Don't worry about adapting arguments for builtins that |
| // don't want that done. Skip adaption code by making it look |
| // like we have a match between expected and actual number of |
| // arguments. |
| definitely_matches = true; |
| } else { |
| *definitely_mismatches = true; |
| mov(r2, Operand(expected.immediate())); |
| } |
| } |
| } else { |
| if (actual.is_immediate()) { |
| mov(r0, Operand(actual.immediate())); |
| cmp(expected.reg(), Operand(actual.immediate())); |
| b(eq, ®ular_invoke); |
| } else { |
| cmp(expected.reg(), Operand(actual.reg())); |
| b(eq, ®ular_invoke); |
| } |
| } |
| |
| if (!definitely_matches) { |
| Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); |
| if (flag == CALL_FUNCTION) { |
| Call(adaptor); |
| if (!*definitely_mismatches) { |
| b(done); |
| } |
| } else { |
| Jump(adaptor, RelocInfo::CODE_TARGET); |
| } |
| bind(®ular_invoke); |
| } |
| } |
| |
| void MacroAssembler::CheckDebugHook(Register fun, Register new_target, |
| const ParameterCount& expected, |
| const ParameterCount& actual) { |
| Label skip_hook; |
| |
| ExternalReference debug_hook_active = |
| ExternalReference::debug_hook_on_function_call_address(isolate()); |
| Move(r4, debug_hook_active); |
| ldrsb(r4, MemOperand(r4)); |
| cmp(r4, Operand(0)); |
| b(eq, &skip_hook); |
| |
| { |
| // Load receiver to pass it later to DebugOnFunctionCall hook. |
| if (actual.is_reg()) { |
| mov(r4, actual.reg()); |
| } else { |
| mov(r4, Operand(actual.immediate())); |
| } |
| ldr(r4, MemOperand(sp, r4, LSL, kPointerSizeLog2)); |
| FrameScope frame(this, |
| has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); |
| if (expected.is_reg()) { |
| SmiTag(expected.reg()); |
| Push(expected.reg()); |
| } |
| if (actual.is_reg()) { |
| SmiTag(actual.reg()); |
| Push(actual.reg()); |
| } |
| if (new_target.is_valid()) { |
| Push(new_target); |
| } |
| Push(fun); |
| Push(fun); |
| Push(r4); |
| CallRuntime(Runtime::kDebugOnFunctionCall); |
| Pop(fun); |
| if (new_target.is_valid()) { |
| Pop(new_target); |
| } |
| if (actual.is_reg()) { |
| Pop(actual.reg()); |
| SmiUntag(actual.reg()); |
| } |
| if (expected.is_reg()) { |
| Pop(expected.reg()); |
| SmiUntag(expected.reg()); |
| } |
| } |
| bind(&skip_hook); |
| } |
| |
| void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| DCHECK(function == r1); |
| DCHECK_IMPLIES(new_target.is_valid(), new_target == r3); |
| |
| // On function call, call into the debugger if necessary. |
| CheckDebugHook(function, new_target, expected, actual); |
| |
| // Clear the new.target register if not given. |
| if (!new_target.is_valid()) { |
| LoadRoot(r3, RootIndex::kUndefinedValue); |
| } |
| |
| Label done; |
| bool definitely_mismatches = false; |
| InvokePrologue(expected, actual, &done, &definitely_mismatches, flag); |
| if (!definitely_mismatches) { |
| // We call indirectly through the code field in the function to |
| // allow recompilation to take effect without changing any of the |
| // call sites. |
| Register code = kJavaScriptCallCodeStartRegister; |
| ldr(code, FieldMemOperand(function, JSFunction::kCodeOffset)); |
| if (flag == CALL_FUNCTION) { |
| CallCodeObject(code); |
| } else { |
| DCHECK(flag == JUMP_FUNCTION); |
| JumpCodeObject(code); |
| } |
| |
| // Continue here if InvokePrologue does handle the invocation due to |
| // mismatched parameter counts. |
| bind(&done); |
| } |
| } |
| |
| void MacroAssembler::InvokeFunction(Register fun, Register new_target, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| |
| // Contract with called JS functions requires that function is passed in r1. |
| DCHECK(fun == r1); |
| |
| Register expected_reg = r2; |
| Register temp_reg = r4; |
| |
| ldr(temp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); |
| ldrh(expected_reg, |
| FieldMemOperand(temp_reg, |
| SharedFunctionInfo::kFormalParameterCountOffset)); |
| |
| ParameterCount expected(expected_reg); |
| InvokeFunctionCode(fun, new_target, expected, actual, flag); |
| } |
| |
| void MacroAssembler::InvokeFunction(Register function, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| |
| // Contract with called JS functions requires that function is passed in r1. |
| DCHECK(function == r1); |
| |
| // Get the function and setup the context. |
| ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); |
| |
| InvokeFunctionCode(r1, no_reg, expected, actual, flag); |
| } |
| |
| void MacroAssembler::MaybeDropFrames() { |
| // Check whether we need to drop frames to restart a function on the stack. |
| ExternalReference restart_fp = |
| ExternalReference::debug_restart_fp_address(isolate()); |
| Move(r1, restart_fp); |
| ldr(r1, MemOperand(r1)); |
| tst(r1, r1); |
| Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET, |
| ne); |
| } |
| |
| void MacroAssembler::PushStackHandler() { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); |
| |
| Push(Smi::zero()); // Padding. |
| // Link the current handler as the next handler. |
| Move(r6, |
| ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); |
| ldr(r5, MemOperand(r6)); |
| push(r5); |
| // Set this new handler as the current one. |
| str(sp, MemOperand(r6)); |
| } |
| |
| void MacroAssembler::PopStackHandler() { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| pop(r1); |
| Move(scratch, |
| ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); |
| str(r1, MemOperand(scratch)); |
| add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); |
| } |
| |
| void MacroAssembler::CompareObjectType(Register object, Register map, |
| Register type_reg, InstanceType type) { |
| UseScratchRegisterScope temps(this); |
| const Register temp = type_reg == no_reg ? temps.Acquire() : type_reg; |
| |
| ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
| CompareInstanceType(map, temp, type); |
| } |
| |
| void MacroAssembler::CompareInstanceType(Register map, Register type_reg, |
| InstanceType type) { |
| ldrh(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| cmp(type_reg, Operand(type)); |
| } |
| |
| void MacroAssembler::CompareRoot(Register obj, RootIndex index) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| DCHECK(obj != scratch); |
| LoadRoot(scratch, index); |
| cmp(obj, scratch); |
| } |
| |
| void MacroAssembler::JumpIfIsInRange(Register value, unsigned lower_limit, |
| unsigned higher_limit, |
| Label* on_in_range) { |
| if (lower_limit != 0) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| sub(scratch, value, Operand(lower_limit)); |
| cmp(scratch, Operand(higher_limit - lower_limit)); |
| } else { |
| cmp(value, Operand(higher_limit)); |
| } |
| b(ls, on_in_range); |
| } |
| |
| void TurboAssembler::TryInlineTruncateDoubleToI(Register result, |
| DwVfpRegister double_input, |
| Label* done) { |
| UseScratchRegisterScope temps(this); |
| SwVfpRegister single_scratch = SwVfpRegister::no_reg(); |
| if (temps.CanAcquireVfp<SwVfpRegister>()) { |
| single_scratch = temps.AcquireS(); |
| } else { |
| // Re-use the input as a scratch register. However, we can only do this if |
| // the input register is d0-d15 as there are no s32+ registers. |
| DCHECK_LT(double_input.code(), LowDwVfpRegister::kNumRegisters); |
| LowDwVfpRegister double_scratch = |
| LowDwVfpRegister::from_code(double_input.code()); |
| single_scratch = double_scratch.low(); |
| } |
| vcvt_s32_f64(single_scratch, double_input); |
| vmov(result, single_scratch); |
| |
| Register scratch = temps.Acquire(); |
| // If result is not saturated (0x7FFFFFFF or 0x80000000), we are done. |
| sub(scratch, result, Operand(1)); |
| cmp(scratch, Operand(0x7FFFFFFE)); |
| b(lt, done); |
| } |
| |
| void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone, |
| Register result, |
| DwVfpRegister double_input, |
| StubCallMode stub_mode) { |
| Label done; |
| |
| TryInlineTruncateDoubleToI(result, double_input, &done); |
| |
| // If we fell through then inline version didn't succeed - call stub instead. |
| push(lr); |
| AllocateStackSpace(kDoubleSize); // Put input on stack. |
| vstr(double_input, MemOperand(sp, 0)); |
| |
| if (stub_mode == StubCallMode::kCallWasmRuntimeStub) { |
| Call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL); |
| } else { |
| Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET); |
| } |
| ldr(result, MemOperand(sp, 0)); |
| |
| add(sp, sp, Operand(kDoubleSize)); |
| pop(lr); |
| |
| bind(&done); |
| } |
| |
| void TurboAssembler::CallRuntimeWithCEntry(Runtime::FunctionId fid, |
| Register centry) { |
| const Runtime::Function* f = Runtime::FunctionForId(fid); |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| mov(r0, Operand(f->nargs)); |
| Move(r1, ExternalReference::Create(f)); |
| DCHECK(!AreAliased(centry, r0, r1)); |
| CallCodeObject(centry); |
| } |
| |
| void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, |
| SaveFPRegsMode save_doubles) { |
| // All parameters are on the stack. r0 has the return value after call. |
| |
| // If the expected number of arguments of the runtime function is |
| // constant, we check that the actual number of arguments match the |
| // expectation. |
| CHECK(f->nargs < 0 || f->nargs == num_arguments); |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| mov(r0, Operand(num_arguments)); |
| Move(r1, ExternalReference::Create(f)); |
| Handle<Code> code = |
| CodeFactory::CEntry(isolate(), f->result_size, save_doubles); |
| Call(code, RelocInfo::CODE_TARGET); |
| } |
| |
| void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { |
| const Runtime::Function* function = Runtime::FunctionForId(fid); |
| DCHECK_EQ(1, function->result_size); |
| if (function->nargs >= 0) { |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| mov(r0, Operand(function->nargs)); |
| } |
| JumpToExternalReference(ExternalReference::Create(fid)); |
| } |
| |
| void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, |
| bool builtin_exit_frame) { |
| #if defined(__thumb__) |
| // Thumb mode builtin. |
| DCHECK_EQ(builtin.address() & 1, 1); |
| #endif |
| Move(r1, builtin); |
| Handle<Code> code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs, |
| kArgvOnStack, builtin_exit_frame); |
| Jump(code, RelocInfo::CODE_TARGET); |
| } |
| |
| void MacroAssembler::JumpToInstructionStream(Address entry) { |
| mov(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); |
| Jump(kOffHeapTrampolineRegister); |
| } |
| |
| void MacroAssembler::LoadWeakValue(Register out, Register in, |
| Label* target_if_cleared) { |
| cmp(in, Operand(kClearedWeakHeapObjectLower32)); |
| b(eq, target_if_cleared); |
| |
| and_(out, in, Operand(~kWeakHeapObjectMask)); |
| } |
| |
| void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| DCHECK_GT(value, 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Move(scratch2, ExternalReference::Create(counter)); |
| ldr(scratch1, MemOperand(scratch2)); |
| add(scratch1, scratch1, Operand(value)); |
| str(scratch1, MemOperand(scratch2)); |
| } |
| } |
| |
| void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| DCHECK_GT(value, 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Move(scratch2, ExternalReference::Create(counter)); |
| ldr(scratch1, MemOperand(scratch2)); |
| sub(scratch1, scratch1, Operand(value)); |
| str(scratch1, MemOperand(scratch2)); |
| } |
| } |
| |
| void TurboAssembler::Assert(Condition cond, AbortReason reason) { |
| if (emit_debug_code()) Check(cond, reason); |
| } |
| |
| void TurboAssembler::AssertUnreachable(AbortReason reason) { |
| if (emit_debug_code()) Abort(reason); |
| } |
| |
| void TurboAssembler::Check(Condition cond, AbortReason reason) { |
| Label L; |
| b(cond, &L); |
| Abort(reason); |
| // will not return here |
| bind(&L); |
| } |
| |
| void TurboAssembler::Abort(AbortReason reason) { |
| Label abort_start; |
| bind(&abort_start); |
| #ifdef DEBUG |
| const char* msg = GetAbortReason(reason); |
| RecordComment("Abort message: "); |
| RecordComment(msg); |
| #endif |
| |
| // Avoid emitting call to builtin if requested. |
| if (trap_on_abort()) { |
| stop(); |
| return; |
| } |
| |
| if (should_abort_hard()) { |
| // We don't care if we constructed a frame. Just pretend we did. |
| FrameScope assume_frame(this, StackFrame::NONE); |
| Move32BitImmediate(r0, Operand(static_cast<int>(reason))); |
| PrepareCallCFunction(1, 0, r1); |
| Move(r1, ExternalReference::abort_with_reason()); |
| // Use Call directly to avoid any unneeded overhead. The function won't |
| // return anyway. |
| Call(r1); |
| return; |
| } |
| |
| Move(r1, Smi::FromInt(static_cast<int>(reason))); |
| |
| // Disable stub call restrictions to always allow calls to abort. |
| if (!has_frame()) { |
| // We don't actually want to generate a pile of code for this, so just |
| // claim there is a stack frame, without generating one. |
| FrameScope scope(this, StackFrame::NONE); |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } else { |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } |
| // will not return here |
| } |
| |
| void MacroAssembler::LoadGlobalProxy(Register dst) { |
| LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst); |
| } |
| |
| void MacroAssembler::LoadNativeContextSlot(int index, Register dst) { |
| ldr(dst, NativeContextMemOperand()); |
| ldr(dst, ContextMemOperand(dst, index)); |
| } |
| |
| void TurboAssembler::InitializeRootRegister() { |
| ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); |
| mov(kRootRegister, Operand(isolate_root)); |
| } |
| |
| void MacroAssembler::SmiTag(Register reg, SBit s) { |
| add(reg, reg, Operand(reg), s); |
| } |
| |
| void MacroAssembler::SmiTag(Register dst, Register src, SBit s) { |
| add(dst, src, Operand(src), s); |
| } |
| |
| void MacroAssembler::SmiTst(Register value) { |
| tst(value, Operand(kSmiTagMask)); |
| } |
| |
| void TurboAssembler::JumpIfSmi(Register value, Label* smi_label) { |
| tst(value, Operand(kSmiTagMask)); |
| b(eq, smi_label); |
| } |
| |
| void TurboAssembler::JumpIfEqual(Register x, int32_t y, Label* dest) { |
| cmp(x, Operand(y)); |
| b(eq, dest); |
| } |
| |
| void TurboAssembler::JumpIfLessThan(Register x, int32_t y, Label* dest) { |
| cmp(x, Operand(y)); |
| b(lt, dest); |
| } |
| |
| void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label) { |
| tst(value, Operand(kSmiTagMask)); |
| b(ne, not_smi_label); |
| } |
| |
| void MacroAssembler::AssertNotSmi(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| tst(object, Operand(kSmiTagMask)); |
| Check(ne, AbortReason::kOperandIsASmi); |
| } |
| } |
| |
| void MacroAssembler::AssertSmi(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| tst(object, Operand(kSmiTagMask)); |
| Check(eq, AbortReason::kOperandIsNotASmi); |
| } |
| } |
| |
| void MacroAssembler::AssertConstructor(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| tst(object, Operand(kSmiTagMask)); |
| Check(ne, AbortReason::kOperandIsASmiAndNotAConstructor); |
| push(object); |
| ldr(object, FieldMemOperand(object, HeapObject::kMapOffset)); |
| ldrb(object, FieldMemOperand(object, Map::kBitFieldOffset)); |
| tst(object, Operand(Map::IsConstructorBit::kMask)); |
| pop(object); |
| Check(ne, AbortReason::kOperandIsNotAConstructor); |
| } |
| } |
| |
| void MacroAssembler::AssertFunction(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| tst(object, Operand(kSmiTagMask)); |
| Check(ne, AbortReason::kOperandIsASmiAndNotAFunction); |
| push(object); |
| CompareObjectType(object, object, object, JS_FUNCTION_TYPE); |
| pop(object); |
| Check(eq, AbortReason::kOperandIsNotAFunction); |
| } |
| } |
| |
| void MacroAssembler::AssertBoundFunction(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| tst(object, Operand(kSmiTagMask)); |
| Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction); |
| push(object); |
| CompareObjectType(object, object, object, JS_BOUND_FUNCTION_TYPE); |
| pop(object); |
| Check(eq, AbortReason::kOperandIsNotABoundFunction); |
| } |
| } |
| |
| void MacroAssembler::AssertGeneratorObject(Register object) { |
| if (!emit_debug_code()) return; |
| tst(object, Operand(kSmiTagMask)); |
| Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject); |
| |
| // Load map |
| Register map = object; |
| push(object); |
| ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
| |
| // Check if JSGeneratorObject |
| Label do_check; |
| Register instance_type = object; |
| CompareInstanceType(map, instance_type, JS_GENERATOR_OBJECT_TYPE); |
| b(eq, &do_check); |
| |
| // Check if JSAsyncFunctionObject (See MacroAssembler::CompareInstanceType) |
| cmp(instance_type, Operand(JS_ASYNC_FUNCTION_OBJECT_TYPE)); |
| b(eq, &do_check); |
| |
| // Check if JSAsyncGeneratorObject (See MacroAssembler::CompareInstanceType) |
| cmp(instance_type, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE)); |
| |
| bind(&do_check); |
| // Restore generator object to register and perform assertion |
| pop(object); |
| Check(eq, AbortReason::kOperandIsNotAGeneratorObject); |
| } |
| |
| void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, |
| Register scratch) { |
| if (emit_debug_code()) { |
| Label done_checking; |
| AssertNotSmi(object); |
| CompareRoot(object, RootIndex::kUndefinedValue); |
| b(eq, &done_checking); |
| ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
| CompareInstanceType(scratch, scratch, ALLOCATION_SITE_TYPE); |
| Assert(eq, AbortReason::kExpectedUndefinedOrCell); |
| bind(&done_checking); |
| } |
| } |
| |
| void TurboAssembler::CheckFor32DRegs(Register scratch) { |
| Move(scratch, ExternalReference::cpu_features()); |
| ldr(scratch, MemOperand(scratch)); |
| tst(scratch, Operand(1u << VFP32DREGS)); |
| } |
| |
| void TurboAssembler::SaveFPRegs(Register location, Register scratch) { |
| CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported); |
| CheckFor32DRegs(scratch); |
| vstm(db_w, location, d16, d31, ne); |
| sub(location, location, Operand(16 * kDoubleSize), LeaveCC, eq); |
| vstm(db_w, location, d0, d15); |
| } |
| |
| void TurboAssembler::RestoreFPRegs(Register location, Register scratch) { |
| CpuFeatureScope scope(this, VFP32DREGS, CpuFeatureScope::kDontCheckSupported); |
| CheckFor32DRegs(scratch); |
| vldm(ia_w, location, d0, d15); |
| vldm(ia_w, location, d16, d31, ne); |
| add(location, location, Operand(16 * kDoubleSize), LeaveCC, eq); |
| } |
| |
| template <typename T> |
| void TurboAssembler::FloatMaxHelper(T result, T left, T right, |
| Label* out_of_line) { |
| // This trivial case is caught sooner, so that the out-of-line code can be |
| // completely avoided. |
| DCHECK(left != right); |
| |
| if (CpuFeatures::IsSupported(ARMv8)) { |
| CpuFeatureScope scope(this, ARMv8); |
| VFPCompareAndSetFlags(left, right); |
| b(vs, out_of_line); |
| vmaxnm(result, left, right); |
| } else { |
| Label done; |
| VFPCompareAndSetFlags(left, right); |
| b(vs, out_of_line); |
| // Avoid a conditional instruction if the result register is unique. |
| bool aliased_result_reg = result == left || result == right; |
| Move(result, right, aliased_result_reg ? mi : al); |
| Move(result, left, gt); |
| b(ne, &done); |
| // Left and right are equal, but check for +/-0. |
| VFPCompareAndSetFlags(left, 0.0); |
| b(eq, out_of_line); |
| // The arguments are equal and not zero, so it doesn't matter which input we |
| // pick. We have already moved one input into the result (if it didn't |
| // already alias) so there's nothing more to do. |
| bind(&done); |
| } |
| } |
| |
| template <typename T> |
| void TurboAssembler::FloatMaxOutOfLineHelper(T result, T left, T right) { |
| DCHECK(left != right); |
| |
| // ARMv8: At least one of left and right is a NaN. |
| // Anything else: At least one of left and right is a NaN, or both left and |
| // right are zeroes with unknown sign. |
| |
| // If left and right are +/-0, select the one with the most positive sign. |
| // If left or right are NaN, vadd propagates the appropriate one. |
| vadd(result, left, right); |
| } |
| |
| template <typename T> |
| void TurboAssembler::FloatMinHelper(T result, T left, T right, |
| Label* out_of_line) { |
| // This trivial case is caught sooner, so that the out-of-line code can be |
| // completely avoided. |
| DCHECK(left != right); |
| |
| if (CpuFeatures::IsSupported(ARMv8)) { |
| CpuFeatureScope scope(this, ARMv8); |
| VFPCompareAndSetFlags(left, right); |
| b(vs, out_of_line); |
| vminnm(result, left, right); |
| } else { |
| Label done; |
| VFPCompareAndSetFlags(left, right); |
| b(vs, out_of_line); |
| // Avoid a conditional instruction if the result register is unique. |
| bool aliased_result_reg = result == left || result == right; |
| Move(result, left, aliased_result_reg ? mi : al); |
| Move(result, right, gt); |
| b(ne, &done); |
| // Left and right are equal, but check for +/-0. |
| VFPCompareAndSetFlags(left, 0.0); |
| // If the arguments are equal and not zero, it doesn't matter which input we |
| // pick. We have already moved one input into the result (if it didn't |
| // already alias) so there's nothing more to do. |
| b(ne, &done); |
| // At this point, both left and right are either 0 or -0. |
| // We could use a single 'vorr' instruction here if we had NEON support. |
| // The algorithm used is -((-L) + (-R)), which is most efficiently expressed |
| // as -((-L) - R). |
| if (left == result) { |
| DCHECK(right != result); |
| vneg(result, left); |
| vsub(result, result, right); |
| vneg(result, result); |
| } else { |
| DCHECK(left != result); |
| vneg(result, right); |
| vsub(result, result, left); |
| vneg(result, result); |
| } |
| bind(&done); |
| } |
| } |
| |
| template <typename T> |
| void TurboAssembler::FloatMinOutOfLineHelper(T result, T left, T right) { |
| DCHECK(left != right); |
| |
| // At least one of left and right is a NaN. Use vadd to propagate the NaN |
| // appropriately. +/-0 is handled inline. |
| vadd(result, left, right); |
| } |
| |
| void TurboAssembler::FloatMax(SwVfpRegister result, SwVfpRegister left, |
| SwVfpRegister right, Label* out_of_line) { |
| FloatMaxHelper(result, left, right, out_of_line); |
| } |
| |
| void TurboAssembler::FloatMin(SwVfpRegister result, SwVfpRegister left, |
| SwVfpRegister right, Label* out_of_line) { |
| FloatMinHelper(result, left, right, out_of_line); |
| } |
| |
| void TurboAssembler::FloatMax(DwVfpRegister result, DwVfpRegister left, |
| DwVfpRegister right, Label* out_of_line) { |
| FloatMaxHelper(result, left, right, out_of_line); |
| } |
| |
| void TurboAssembler::FloatMin(DwVfpRegister result, DwVfpRegister left, |
| DwVfpRegister right, Label* out_of_line) { |
| FloatMinHelper(result, left, right, out_of_line); |
| } |
| |
| void TurboAssembler::FloatMaxOutOfLine(SwVfpRegister result, SwVfpRegister left, |
| SwVfpRegister right) { |
| FloatMaxOutOfLineHelper(result, left, right); |
| } |
| |
| void TurboAssembler::FloatMinOutOfLine(SwVfpRegister result, SwVfpRegister left, |
| SwVfpRegister right) { |
| FloatMinOutOfLineHelper(result, left, right); |
| } |
| |
| void TurboAssembler::FloatMaxOutOfLine(DwVfpRegister result, DwVfpRegister left, |
| DwVfpRegister right) { |
| FloatMaxOutOfLineHelper(result, left, right); |
| } |
| |
| void TurboAssembler::FloatMinOutOfLine(DwVfpRegister result, DwVfpRegister left, |
| DwVfpRegister right) { |
| FloatMinOutOfLineHelper(result, left, right); |
| } |
| |
| static const int kRegisterPassedArguments = 4; |
| |
| int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments, |
| int num_double_arguments) { |
| int stack_passed_words = 0; |
| if (use_eabi_hardfloat()) { |
| // In the hard floating point calling convention, we can use |
| // all double registers to pass doubles. |
| if (num_double_arguments > DoubleRegister::NumRegisters()) { |
| stack_passed_words += |
| 2 * (num_double_arguments - DoubleRegister::NumRegisters()); |
| } |
| } else { |
| // In the soft floating point calling convention, every double |
| // argument is passed using two registers. |
| num_reg_arguments += 2 * num_double_arguments; |
| } |
| // Up to four simple arguments are passed in registers r0..r3. |
| if (num_reg_arguments > kRegisterPassedArguments) { |
| stack_passed_words += num_reg_arguments - kRegisterPassedArguments; |
| } |
| return stack_passed_words; |
| } |
| |
| void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, |
| int num_double_arguments, |
| Register scratch) { |
| int frame_alignment = ActivationFrameAlignment(); |
| int stack_passed_arguments = |
| CalculateStackPassedWords(num_reg_arguments, num_double_arguments); |
| if (frame_alignment > kPointerSize) { |
| UseScratchRegisterScope temps(this); |
| if (!scratch.is_valid()) scratch = temps.Acquire(); |
| // Make stack end at alignment and make room for num_arguments - 4 words |
| // and the original value of sp. |
| mov(scratch, sp); |
| AllocateStackSpace((stack_passed_arguments + 1) * kPointerSize); |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| and_(sp, sp, Operand(-frame_alignment)); |
| str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); |
| } else if (stack_passed_arguments > 0) { |
| AllocateStackSpace(stack_passed_arguments * kPointerSize); |
| } |
| } |
| |
| void TurboAssembler::MovToFloatParameter(DwVfpRegister src) { |
| DCHECK(src == d0); |
| if (!use_eabi_hardfloat()) { |
| vmov(r0, r1, src); |
| } |
| } |
| |
| // On ARM this is just a synonym to make the purpose clear. |
| void TurboAssembler::MovToFloatResult(DwVfpRegister src) { |
| MovToFloatParameter(src); |
| } |
| |
| void TurboAssembler::MovToFloatParameters(DwVfpRegister src1, |
| DwVfpRegister src2) { |
| DCHECK(src1 == d0); |
| DCHECK(src2 == d1); |
| if (!use_eabi_hardfloat()) { |
| vmov(r0, r1, src1); |
| vmov(r2, r3, src2); |
| } |
| } |
| |
| void TurboAssembler::CallCFunction(ExternalReference function, |
| int num_reg_arguments, |
| int num_double_arguments) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| Move(scratch, function); |
| CallCFunctionHelper(scratch, num_reg_arguments, num_double_arguments); |
| } |
| |
| void TurboAssembler::CallCFunction(Register function, int num_reg_arguments, |
| int num_double_arguments) { |
| CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); |
| } |
| |
| void TurboAssembler::CallCFunction(ExternalReference function, |
| int num_arguments) { |
| CallCFunction(function, num_arguments, 0); |
| } |
| |
| void TurboAssembler::CallCFunction(Register function, int num_arguments) { |
| CallCFunction(function, num_arguments, 0); |
| } |
| |
| void TurboAssembler::CallCFunctionHelper(Register function, |
| int num_reg_arguments, |
| int num_double_arguments) { |
| DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters); |
| DCHECK(has_frame()); |
| // Make sure that the stack is aligned before calling a C function unless |
| // running in the simulator. The simulator has its own alignment check which |
| // provides more information. |
| #if V8_HOST_ARCH_ARM |
| if (emit_debug_code()) { |
| int frame_alignment = base::OS::ActivationFrameAlignment(); |
| int frame_alignment_mask = frame_alignment - 1; |
| if (frame_alignment > kPointerSize) { |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| Label alignment_as_expected; |
| tst(sp, Operand(frame_alignment_mask)); |
| b(eq, &alignment_as_expected); |
| // Don't use Check here, as it will call Runtime_Abort possibly |
| // re-entering here. |
| stop(); |
| bind(&alignment_as_expected); |
| } |
| } |
| #endif |
| |
| // Save the frame pointer and PC so that the stack layout remains iterable, |
| // even without an ExitFrame which normally exists between JS and C frames. |
| if (isolate() != nullptr) { |
| Register scratch = r4; |
| Push(scratch); |
| |
| Move(scratch, ExternalReference::fast_c_call_caller_pc_address(isolate())); |
| str(pc, MemOperand(scratch)); |
| Move(scratch, ExternalReference::fast_c_call_caller_fp_address(isolate())); |
| str(fp, MemOperand(scratch)); |
| Pop(scratch); |
| } |
| |
| // Just call directly. The function called cannot cause a GC, or |
| // allow preemption, so the return address in the link register |
| // stays correct. |
| Call(function); |
| |
| if (isolate() != nullptr) { |
| // We don't unset the PC; the FP is the source of truth. |
| Register scratch1 = r4; |
| Register scratch2 = r5; |
| Push(scratch1); |
| Push(scratch2); |
| Move(scratch1, ExternalReference::fast_c_call_caller_fp_address(isolate())); |
| mov(scratch2, Operand::Zero()); |
| str(scratch2, MemOperand(scratch1)); |
| Pop(scratch2); |
| Pop(scratch1); |
| } |
| |
| int stack_passed_arguments = |
| CalculateStackPassedWords(num_reg_arguments, num_double_arguments); |
| if (ActivationFrameAlignment() > kPointerSize) { |
| ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); |
| } else { |
| add(sp, sp, Operand(stack_passed_arguments * kPointerSize)); |
| } |
| } |
| |
| void TurboAssembler::CheckPageFlag(Register object, int mask, Condition cc, |
| Label* condition_met) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| DCHECK(cc == eq || cc == ne); |
| Bfc(scratch, object, 0, kPageSizeBits); |
| ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); |
| tst(scratch, Operand(mask)); |
| b(cc, condition_met); |
| } |
| |
| Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3, |
| Register reg4, Register reg5, |
| Register reg6) { |
| RegList regs = 0; |
| if (reg1.is_valid()) regs |= reg1.bit(); |
| if (reg2.is_valid()) regs |= reg2.bit(); |
| if (reg3.is_valid()) regs |= reg3.bit(); |
| if (reg4.is_valid()) regs |= reg4.bit(); |
| if (reg5.is_valid()) regs |= reg5.bit(); |
| if (reg6.is_valid()) regs |= reg6.bit(); |
| |
| const RegisterConfiguration* config = RegisterConfiguration::Default(); |
| for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { |
| int code = config->GetAllocatableGeneralCode(i); |
| Register candidate = Register::from_code(code); |
| if (regs & candidate.bit()) continue; |
| return candidate; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::ComputeCodeStartAddress(Register dst) { |
| // We can use the register pc - 8 for the address of the current instruction. |
| sub(dst, pc, Operand(pc_offset() + Instruction::kPcLoadDelta)); |
| } |
| |
| void TurboAssembler::ResetSpeculationPoisonRegister() { |
| mov(kSpeculationPoisonRegister, Operand(-1)); |
| } |
| |
| void TurboAssembler::CallForDeoptimization(Address target, int deopt_id) { |
| NoRootArrayScope no_root_array(this); |
| |
| // Save the deopt id in r10 (we don't need the roots array from now on). |
| DCHECK_LE(deopt_id, 0xFFFF); |
| if (CpuFeatures::IsSupported(ARMv7)) { |
| // On ARMv7, we can use movw (with a maximum immediate of 0xFFFF) |
| movw(r10, deopt_id); |
| } else { |
| // On ARMv6, we might need two instructions. |
| mov(r10, Operand(deopt_id & 0xFF)); // Set the low byte. |
| if (deopt_id >= 0xFF) { |
| orr(r10, r10, Operand(deopt_id & 0xFF00)); // Set the high byte. |
| } |
| } |
| |
| Call(target, RelocInfo::RUNTIME_ENTRY); |
| CheckConstPool(false, false); |
| } |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_ARM |