blob: d8181ad8f5b958abf403c207991fbaf7e3d060e7 [file] [log] [blame]
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
#ifndef V8_CODEGEN_MIPS_ASSEMBLER_MIPS_INL_H_
#define V8_CODEGEN_MIPS_ASSEMBLER_MIPS_INL_H_
#include "src/codegen/mips/assembler-mips.h"
#include "src/codegen/assembler.h"
#include "src/debug/debug.h"
#include "src/objects/objects-inl.h"
namespace v8 {
namespace internal {
bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); }
bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(MIPS_SIMD); }
// -----------------------------------------------------------------------------
// Operand and MemOperand.
bool Operand::is_reg() const { return rm_.is_valid(); }
int32_t Operand::immediate() const {
DCHECK(!is_reg());
DCHECK(!IsHeapObjectRequest());
return value_.immediate;
}
// -----------------------------------------------------------------------------
// RelocInfo.
void RelocInfo::apply(intptr_t delta) {
if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
// Absolute code pointer inside code object moves with the code object.
Assembler::RelocateInternalReference(rmode_, pc_, delta);
} else if (IsRelativeCodeTarget(rmode_)) {
Assembler::RelocateRelativeReference(rmode_, pc_, delta);
}
}
Address RelocInfo::target_address() {
DCHECK(IsCodeTargetMode(rmode_) || IsRuntimeEntry(rmode_) ||
IsWasmCall(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
Address RelocInfo::target_address_address() {
DCHECK(HasTargetAddressAddress());
// Read the address of the word containing the target_address in an
// instruction stream.
// The only architecture-independent user of this function is the serializer.
// The serializer uses it to find out how many raw bytes of instruction to
// output before the next target.
// For an instruction like LUI/ORI where the target bits are mixed into the
// instruction bits, the size of the target will be zero, indicating that the
// serializer should not step forward in memory after a target is resolved
// and written. In this case the target_address_address function should
// return the end of the instructions to be patched, allowing the
// deserializer to deserialize the instructions as raw bytes and put them in
// place, ready to be patched with the target. After jump optimization,
// that is the address of the instruction that follows J/JAL/JR/JALR
// instruction.
if (IsMipsArchVariant(kMips32r6)) {
// On R6 we don't move to the end of the instructions to be patched, but one
// instruction before, because if these instructions are at the end of the
// code object it can cause errors in the deserializer.
return pc_ + (Assembler::kInstructionsFor32BitConstant - 1) * kInstrSize;
} else {
return pc_ + Assembler::kInstructionsFor32BitConstant * kInstrSize;
}
}
Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); }
int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
void Assembler::deserialization_set_special_target_at(
Address instruction_payload, Code code, Address target) {
set_target_address_at(instruction_payload,
!code.is_null() ? code.constant_pool() : kNullAddress,
target);
}
int Assembler::deserialization_special_target_size(
Address instruction_payload) {
return kSpecialTargetSize;
}
void Assembler::set_target_internal_reference_encoded_at(Address pc,
Address target) {
Instr instr1 = Assembler::instr_at(pc + 0 * kInstrSize);
Instr instr2 = Assembler::instr_at(pc + 1 * kInstrSize);
DCHECK(Assembler::IsLui(instr1));
DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
instr1 &= ~kImm16Mask;
instr2 &= ~kImm16Mask;
int32_t imm = static_cast<int32_t>(target);
DCHECK_EQ(imm & 3, 0);
if (Assembler::IsJicOrJialc(instr2)) {
// Encoded internal references are lui/jic load of 32-bit absolute address.
uint32_t lui_offset_u, jic_offset_u;
Assembler::UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u);
Assembler::instr_at_put(pc + 0 * kInstrSize, instr1 | lui_offset_u);
Assembler::instr_at_put(pc + 1 * kInstrSize, instr2 | jic_offset_u);
} else {
// Encoded internal references are lui/ori load of 32-bit absolute address.
PatchLuiOriImmediate(pc, imm, instr1, 0 * kInstrSize, instr2,
1 * kInstrSize);
}
// Currently used only by deserializer, and all code will be flushed
// after complete deserialization, no need to flush on each reference.
}
void Assembler::deserialization_set_target_internal_reference_at(
Address pc, Address target, RelocInfo::Mode mode) {
if (RelocInfo::IsInternalReferenceEncoded(mode)) {
DCHECK(IsLui(instr_at(pc)));
set_target_internal_reference_encoded_at(pc, target);
} else {
DCHECK(RelocInfo::IsInternalReference(mode));
Memory<Address>(pc) = target;
}
}
HeapObject RelocInfo::target_object() {
DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_));
return HeapObject::cast(
Object(Assembler::target_address_at(pc_, constant_pool_)));
}
HeapObject RelocInfo::target_object_no_host(Isolate* isolate) {
return target_object();
}
Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
if (IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_)) {
return Handle<HeapObject>(reinterpret_cast<Address*>(
Assembler::target_address_at(pc_, constant_pool_)));
}
DCHECK(IsRelativeCodeTarget(rmode_));
return origin->relative_code_target_object_handle_at(pc_);
}
void RelocInfo::set_target_object(Heap* heap, HeapObject target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_));
Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(),
icache_flush_mode);
if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null()) {
WriteBarrierForCode(host(), this, target);
}
}
Address RelocInfo::target_external_reference() {
DCHECK(IsExternalReference(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
void RelocInfo::set_target_external_reference(
Address target, ICacheFlushMode icache_flush_mode) {
DCHECK(IsExternalReference(rmode_));
Assembler::set_target_address_at(pc_, constant_pool_, target,
icache_flush_mode);
}
Address RelocInfo::target_internal_reference() {
if (IsInternalReference(rmode_)) {
return Memory<Address>(pc_);
} else {
// Encoded internal references are lui/ori or lui/jic load of 32-bit
// absolute address.
DCHECK(IsInternalReferenceEncoded(rmode_));
Instr instr1 = Assembler::instr_at(pc_ + 0 * kInstrSize);
Instr instr2 = Assembler::instr_at(pc_ + 1 * kInstrSize);
DCHECK(Assembler::IsLui(instr1));
DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
if (Assembler::IsJicOrJialc(instr2)) {
return static_cast<Address>(
Assembler::CreateTargetAddress(instr1, instr2));
}
return static_cast<Address>(Assembler::GetLuiOriImmediate(instr1, instr2));
}
}
Address RelocInfo::target_internal_reference_address() {
DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
return pc_;
}
Address RelocInfo::target_runtime_entry(Assembler* origin) {
DCHECK(IsRuntimeEntry(rmode_));
return target_address();
}
void RelocInfo::set_target_runtime_entry(Address target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsRuntimeEntry(rmode_));
if (target_address() != target)
set_target_address(target, write_barrier_mode, icache_flush_mode);
}
Address RelocInfo::target_off_heap_target() {
DCHECK(IsOffHeapTarget(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
void RelocInfo::WipeOut() {
DCHECK(IsFullEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
IsOffHeapTarget(rmode_));
if (IsInternalReference(rmode_)) {
Memory<Address>(pc_) = kNullAddress;
} else if (IsInternalReferenceEncoded(rmode_)) {
Assembler::set_target_internal_reference_encoded_at(pc_, kNullAddress);
} else {
Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
}
}
Handle<Code> Assembler::relative_code_target_object_handle_at(
Address pc) const {
Instr instr1 = instr_at(pc);
Instr instr2 = instr_at(pc + kInstrSize);
DCHECK(IsLui(instr1));
DCHECK(IsOri(instr2) || IsNal(instr2));
DCHECK(IsNal(instr2) || IsNal(instr_at(pc - kInstrSize)));
if (IsNal(instr2)) {
instr2 = instr_at(pc + 2 * kInstrSize);
}
// Interpret 2 instructions generated by li (lui/ori).
int code_target_index = GetLuiOriImmediate(instr1, instr2);
return GetCodeTarget(code_target_index);
}
// -----------------------------------------------------------------------------
// Assembler.
void Assembler::CheckBuffer() {
if (buffer_space() <= kGap) {
GrowBuffer();
}
}
void Assembler::CheckForEmitInForbiddenSlot() {
if (!is_buffer_growth_blocked()) {
CheckBuffer();
}
if (IsPrevInstrCompactBranch()) {
// Nop instruction to precede a CTI in forbidden slot:
Instr nop = SPECIAL | SLL;
*reinterpret_cast<Instr*>(pc_) = nop;
pc_ += kInstrSize;
ClearCompactBranchState();
}
}
void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
if (IsPrevInstrCompactBranch()) {
if (Instruction::IsForbiddenAfterBranchInstr(x)) {
// Nop instruction to precede a CTI in forbidden slot:
Instr nop = SPECIAL | SLL;
*reinterpret_cast<Instr*>(pc_) = nop;
pc_ += kInstrSize;
}
ClearCompactBranchState();
}
*reinterpret_cast<Instr*>(pc_) = x;
pc_ += kInstrSize;
if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
EmittedCompactBranchInstruction();
}
CheckTrampolinePoolQuick();
}
template <>
inline void Assembler::EmitHelper(uint8_t x);
template <typename T>
void Assembler::EmitHelper(T x) {
*reinterpret_cast<T*>(pc_) = x;
pc_ += sizeof(x);
CheckTrampolinePoolQuick();
}
template <>
void Assembler::EmitHelper(uint8_t x) {
*reinterpret_cast<uint8_t*>(pc_) = x;
pc_ += sizeof(x);
if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
CheckTrampolinePoolQuick();
}
}
void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
if (!is_buffer_growth_blocked()) {
CheckBuffer();
}
EmitHelper(x, is_compact_branch);
}
EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_MIPS_ASSEMBLER_MIPS_INL_H_