blob: e9aeb2fb2c57cb539e8eb5c0be14d1ee504051a6 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/backend/gap-resolver.h"
#include <algorithm>
#include <set>
#include "src/base/enum-set.h"
#include "src/codegen/register-configuration.h"
namespace v8 {
namespace internal {
namespace compiler {
namespace {
// Splits a FP move between two location operands into the equivalent series of
// moves between smaller sub-operands, e.g. a double move to two single moves.
// This helps reduce the number of cycles that would normally occur under FP
// aliasing, and makes swaps much easier to implement.
MoveOperands* Split(MoveOperands* move, MachineRepresentation smaller_rep,
ParallelMove* moves) {
DCHECK(!kSimpleFPAliasing);
// Splitting is only possible when the slot size is the same as float size.
DCHECK_EQ(kSystemPointerSize, kFloatSize);
const LocationOperand& src_loc = LocationOperand::cast(move->source());
const LocationOperand& dst_loc = LocationOperand::cast(move->destination());
MachineRepresentation dst_rep = dst_loc.representation();
DCHECK_NE(smaller_rep, dst_rep);
auto src_kind = src_loc.location_kind();
auto dst_kind = dst_loc.location_kind();
int aliases =
1 << (ElementSizeLog2Of(dst_rep) - ElementSizeLog2Of(smaller_rep));
int base = -1;
USE(base);
DCHECK_EQ(aliases, RegisterConfiguration::Default()->GetAliases(
dst_rep, 0, smaller_rep, &base));
int src_index = -1;
int slot_size = (1 << ElementSizeLog2Of(smaller_rep)) / kSystemPointerSize;
int src_step = 1;
if (src_kind == LocationOperand::REGISTER) {
src_index = src_loc.register_code() * aliases;
} else {
src_index = src_loc.index();
// For operands that occupy multiple slots, the index refers to the last
// slot. On little-endian architectures, we start at the high slot and use a
// negative step so that register-to-slot moves are in the correct order.
src_step = -slot_size;
}
int dst_index = -1;
int dst_step = 1;
if (dst_kind == LocationOperand::REGISTER) {
dst_index = dst_loc.register_code() * aliases;
} else {
dst_index = dst_loc.index();
dst_step = -slot_size;
}
// Reuse 'move' for the first fragment. It is not pending.
move->set_source(AllocatedOperand(src_kind, smaller_rep, src_index));
move->set_destination(AllocatedOperand(dst_kind, smaller_rep, dst_index));
// Add the remaining fragment moves.
for (int i = 1; i < aliases; ++i) {
src_index += src_step;
dst_index += dst_step;
moves->AddMove(AllocatedOperand(src_kind, smaller_rep, src_index),
AllocatedOperand(dst_kind, smaller_rep, dst_index));
}
// Return the first fragment.
return move;
}
enum MoveOperandKind : uint8_t { kConstant, kGpReg, kFpReg, kStack };
MoveOperandKind GetKind(const InstructionOperand& move) {
if (move.IsConstant()) return kConstant;
LocationOperand loc_op = LocationOperand::cast(move);
if (loc_op.location_kind() != LocationOperand::REGISTER) return kStack;
return IsFloatingPoint(loc_op.representation()) ? kFpReg : kGpReg;
}
} // namespace
void GapResolver::Resolve(ParallelMove* moves) {
base::EnumSet<MoveOperandKind, uint8_t> source_kinds;
base::EnumSet<MoveOperandKind, uint8_t> destination_kinds;
// Remove redundant moves, collect source kinds and destination kinds to
// detect simple non-overlapping moves, and collect FP move representations if
// aliasing is non-simple.
int fp_reps = 0;
size_t nmoves = moves->size();
for (size_t i = 0; i < nmoves;) {
MoveOperands* move = (*moves)[i];
if (move->IsRedundant()) {
nmoves--;
if (i < nmoves) (*moves)[i] = (*moves)[nmoves];
continue;
}
i++;
source_kinds.Add(GetKind(move->source()));
destination_kinds.Add(GetKind(move->destination()));
if (!kSimpleFPAliasing && move->destination().IsFPRegister()) {
fp_reps |= RepresentationBit(
LocationOperand::cast(move->destination()).representation());
}
}
if (nmoves != moves->size()) moves->resize(nmoves);
if ((source_kinds & destination_kinds).empty() || moves->size() < 2) {
// Fast path for non-conflicting parallel moves.
for (MoveOperands* move : *moves) {
assembler_->AssembleMove(&move->source(), &move->destination());
}
return;
}
if (!kSimpleFPAliasing) {
if (fp_reps && !base::bits::IsPowerOfTwo(fp_reps)) {
// Start with the smallest FP moves, so we never encounter smaller moves
// in the middle of a cycle of larger moves.
if ((fp_reps & RepresentationBit(MachineRepresentation::kFloat32)) != 0) {
split_rep_ = MachineRepresentation::kFloat32;
for (size_t i = 0; i < moves->size(); ++i) {
auto move = (*moves)[i];
if (!move->IsEliminated() && move->destination().IsFloatRegister())
PerformMove(moves, move);
}
}
if ((fp_reps & RepresentationBit(MachineRepresentation::kFloat64)) != 0) {
split_rep_ = MachineRepresentation::kFloat64;
for (size_t i = 0; i < moves->size(); ++i) {
auto move = (*moves)[i];
if (!move->IsEliminated() && move->destination().IsDoubleRegister())
PerformMove(moves, move);
}
}
}
split_rep_ = MachineRepresentation::kSimd128;
}
for (size_t i = 0; i < moves->size(); ++i) {
auto move = (*moves)[i];
if (!move->IsEliminated()) PerformMove(moves, move);
}
}
void GapResolver::PerformMove(ParallelMove* moves, MoveOperands* move) {
// Each call to this function performs a move and deletes it from the move
// graph. We first recursively perform any move blocking this one. We mark a
// move as "pending" on entry to PerformMove in order to detect cycles in the
// move graph. We use operand swaps to resolve cycles, which means that a
// call to PerformMove could change any source operand in the move graph.
DCHECK(!move->IsPending());
DCHECK(!move->IsRedundant());
// Clear this move's destination to indicate a pending move. The actual
// destination is saved on the side.
InstructionOperand source = move->source();
DCHECK(!source.IsInvalid()); // Or else it will look eliminated.
InstructionOperand destination = move->destination();
move->SetPending();
// We may need to split moves between FP locations differently.
const bool is_fp_loc_move =
!kSimpleFPAliasing && destination.IsFPLocationOperand();
// Perform a depth-first traversal of the move graph to resolve dependencies.
// Any unperformed, unpending move with a source the same as this one's
// destination blocks this one so recursively perform all such moves.
for (size_t i = 0; i < moves->size(); ++i) {
auto other = (*moves)[i];
if (other->IsEliminated()) continue;
if (other->IsPending()) continue;
if (other->source().InterferesWith(destination)) {
if (is_fp_loc_move &&
LocationOperand::cast(other->source()).representation() >
split_rep_) {
// 'other' must also be an FP location move. Break it into fragments
// of the same size as 'move'. 'other' is set to one of the fragments,
// and the rest are appended to 'moves'.
other = Split(other, split_rep_, moves);
// 'other' may not block destination now.
if (!other->source().InterferesWith(destination)) continue;
}
// Though PerformMove can change any source operand in the move graph,
// this call cannot create a blocking move via a swap (this loop does not
// miss any). Assume there is a non-blocking move with source A and this
// move is blocked on source B and there is a swap of A and B. Then A and
// B must be involved in the same cycle (or they would not be swapped).
// Since this move's destination is B and there is only a single incoming
// edge to an operand, this move must also be involved in the same cycle.
// In that case, the blocking move will be created but will be "pending"
// when we return from PerformMove.
PerformMove(moves, other);
}
}
// This move's source may have changed due to swaps to resolve cycles and so
// it may now be the last move in the cycle. If so remove it.
source = move->source();
if (source.EqualsCanonicalized(destination)) {
move->Eliminate();
return;
}
// We are about to resolve this move and don't need it marked as pending, so
// restore its destination.
move->set_destination(destination);
// The move may be blocked on a (at most one) pending move, in which case we
// have a cycle. Search for such a blocking move and perform a swap to
// resolve it.
auto blocker =
std::find_if(moves->begin(), moves->end(), [&](MoveOperands* move) {
return !move->IsEliminated() &&
move->source().InterferesWith(destination);
});
if (blocker == moves->end()) {
// The easy case: This move is not blocked.
assembler_->AssembleMove(&source, &destination);
move->Eliminate();
return;
}
// Ensure source is a register or both are stack slots, to limit swap cases.
if (source.IsStackSlot() || source.IsFPStackSlot()) {
std::swap(source, destination);
}
assembler_->AssembleSwap(&source, &destination);
move->Eliminate();
// Update outstanding moves whose source may now have been moved.
if (is_fp_loc_move) {
// We may have to split larger moves.
for (size_t i = 0; i < moves->size(); ++i) {
auto other = (*moves)[i];
if (other->IsEliminated()) continue;
if (source.InterferesWith(other->source())) {
if (LocationOperand::cast(other->source()).representation() >
split_rep_) {
other = Split(other, split_rep_, moves);
if (!source.InterferesWith(other->source())) continue;
}
other->set_source(destination);
} else if (destination.InterferesWith(other->source())) {
if (LocationOperand::cast(other->source()).representation() >
split_rep_) {
other = Split(other, split_rep_, moves);
if (!destination.InterferesWith(other->source())) continue;
}
other->set_source(source);
}
}
} else {
for (auto other : *moves) {
if (other->IsEliminated()) continue;
if (source.EqualsCanonicalized(other->source())) {
other->set_source(destination);
} else if (destination.EqualsCanonicalized(other->source())) {
other->set_source(source);
}
}
}
}
} // namespace compiler
} // namespace internal
} // namespace v8