| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <algorithm> |
| |
| #include "src/base/adapters.h" |
| #include "src/base/overflowing-math.h" |
| #include "src/compiler/backend/instruction-selector-impl.h" |
| #include "src/compiler/node-matchers.h" |
| #include "src/compiler/node-properties.h" |
| #include "src/roots/roots-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| // Adds X64-specific methods for generating operands. |
| class X64OperandGenerator final : public OperandGenerator { |
| public: |
| explicit X64OperandGenerator(InstructionSelector* selector) |
| : OperandGenerator(selector) {} |
| |
| bool CanBeImmediate(Node* node) { |
| switch (node->opcode()) { |
| case IrOpcode::kInt32Constant: |
| case IrOpcode::kRelocatableInt32Constant: |
| return true; |
| case IrOpcode::kInt64Constant: { |
| const int64_t value = OpParameter<int64_t>(node->op()); |
| return std::numeric_limits<int32_t>::min() < value && |
| value <= std::numeric_limits<int32_t>::max(); |
| } |
| case IrOpcode::kNumberConstant: { |
| const double value = OpParameter<double>(node->op()); |
| return bit_cast<int64_t>(value) == 0; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| int32_t GetImmediateIntegerValue(Node* node) { |
| DCHECK(CanBeImmediate(node)); |
| if (node->opcode() == IrOpcode::kInt32Constant) { |
| return OpParameter<int32_t>(node->op()); |
| } |
| DCHECK_EQ(IrOpcode::kInt64Constant, node->opcode()); |
| return static_cast<int32_t>(OpParameter<int64_t>(node->op())); |
| } |
| |
| bool CanBeMemoryOperand(InstructionCode opcode, Node* node, Node* input, |
| int effect_level) { |
| if (input->opcode() != IrOpcode::kLoad || |
| !selector()->CanCover(node, input)) { |
| return false; |
| } |
| if (effect_level != selector()->GetEffectLevel(input)) { |
| return false; |
| } |
| MachineRepresentation rep = |
| LoadRepresentationOf(input->op()).representation(); |
| switch (opcode) { |
| case kX64And: |
| case kX64Or: |
| case kX64Xor: |
| case kX64Add: |
| case kX64Sub: |
| case kX64Push: |
| case kX64Cmp: |
| case kX64Test: |
| // When pointer compression is enabled 64-bit memory operands can't be |
| // used for tagged values. |
| return rep == MachineRepresentation::kWord64 || |
| (!COMPRESS_POINTERS_BOOL && IsAnyTagged(rep)); |
| case kX64And32: |
| case kX64Or32: |
| case kX64Xor32: |
| case kX64Add32: |
| case kX64Sub32: |
| case kX64Cmp32: |
| case kX64Test32: |
| // When pointer compression is enabled 32-bit memory operands can be |
| // used for tagged values. |
| return rep == MachineRepresentation::kWord32 || |
| (COMPRESS_POINTERS_BOOL && IsAnyTagged(rep)); |
| case kX64Cmp16: |
| case kX64Test16: |
| return rep == MachineRepresentation::kWord16; |
| case kX64Cmp8: |
| case kX64Test8: |
| return rep == MachineRepresentation::kWord8; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| AddressingMode GenerateMemoryOperandInputs(Node* index, int scale_exponent, |
| Node* base, Node* displacement, |
| DisplacementMode displacement_mode, |
| InstructionOperand inputs[], |
| size_t* input_count) { |
| AddressingMode mode = kMode_MRI; |
| if (base != nullptr && (index != nullptr || displacement != nullptr)) { |
| if (base->opcode() == IrOpcode::kInt32Constant && |
| OpParameter<int32_t>(base->op()) == 0) { |
| base = nullptr; |
| } else if (base->opcode() == IrOpcode::kInt64Constant && |
| OpParameter<int64_t>(base->op()) == 0) { |
| base = nullptr; |
| } |
| } |
| if (base != nullptr) { |
| inputs[(*input_count)++] = UseRegister(base); |
| if (index != nullptr) { |
| DCHECK(scale_exponent >= 0 && scale_exponent <= 3); |
| inputs[(*input_count)++] = UseRegister(index); |
| if (displacement != nullptr) { |
| inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement |
| ? UseNegatedImmediate(displacement) |
| : UseImmediate(displacement); |
| static const AddressingMode kMRnI_modes[] = {kMode_MR1I, kMode_MR2I, |
| kMode_MR4I, kMode_MR8I}; |
| mode = kMRnI_modes[scale_exponent]; |
| } else { |
| static const AddressingMode kMRn_modes[] = {kMode_MR1, kMode_MR2, |
| kMode_MR4, kMode_MR8}; |
| mode = kMRn_modes[scale_exponent]; |
| } |
| } else { |
| if (displacement == nullptr) { |
| mode = kMode_MR; |
| } else { |
| inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement |
| ? UseNegatedImmediate(displacement) |
| : UseImmediate(displacement); |
| mode = kMode_MRI; |
| } |
| } |
| } else { |
| DCHECK(scale_exponent >= 0 && scale_exponent <= 3); |
| if (displacement != nullptr) { |
| if (index == nullptr) { |
| inputs[(*input_count)++] = UseRegister(displacement); |
| mode = kMode_MR; |
| } else { |
| inputs[(*input_count)++] = UseRegister(index); |
| inputs[(*input_count)++] = displacement_mode == kNegativeDisplacement |
| ? UseNegatedImmediate(displacement) |
| : UseImmediate(displacement); |
| static const AddressingMode kMnI_modes[] = {kMode_MRI, kMode_M2I, |
| kMode_M4I, kMode_M8I}; |
| mode = kMnI_modes[scale_exponent]; |
| } |
| } else { |
| inputs[(*input_count)++] = UseRegister(index); |
| static const AddressingMode kMn_modes[] = {kMode_MR, kMode_MR1, |
| kMode_M4, kMode_M8}; |
| mode = kMn_modes[scale_exponent]; |
| if (mode == kMode_MR1) { |
| // [%r1 + %r1*1] has a smaller encoding than [%r1*2+0] |
| inputs[(*input_count)++] = UseRegister(index); |
| } |
| } |
| } |
| return mode; |
| } |
| |
| AddressingMode GetEffectiveAddressMemoryOperand(Node* operand, |
| InstructionOperand inputs[], |
| size_t* input_count) { |
| if (selector()->CanAddressRelativeToRootsRegister()) { |
| LoadMatcher<ExternalReferenceMatcher> m(operand); |
| if (m.index().HasValue() && m.object().HasValue()) { |
| ptrdiff_t const delta = |
| m.index().Value() + |
| TurboAssemblerBase::RootRegisterOffsetForExternalReference( |
| selector()->isolate(), m.object().Value()); |
| if (is_int32(delta)) { |
| inputs[(*input_count)++] = TempImmediate(static_cast<int32_t>(delta)); |
| return kMode_Root; |
| } |
| } |
| } |
| BaseWithIndexAndDisplacement64Matcher m(operand, AddressOption::kAllowAll); |
| DCHECK(m.matches()); |
| if (m.displacement() == nullptr || CanBeImmediate(m.displacement())) { |
| return GenerateMemoryOperandInputs( |
| m.index(), m.scale(), m.base(), m.displacement(), |
| m.displacement_mode(), inputs, input_count); |
| } else if (m.base() == nullptr && |
| m.displacement_mode() == kPositiveDisplacement) { |
| // The displacement cannot be an immediate, but we can use the |
| // displacement as base instead and still benefit from addressing |
| // modes for the scale. |
| return GenerateMemoryOperandInputs(m.index(), m.scale(), m.displacement(), |
| nullptr, m.displacement_mode(), inputs, |
| input_count); |
| } else { |
| inputs[(*input_count)++] = UseRegister(operand->InputAt(0)); |
| inputs[(*input_count)++] = UseRegister(operand->InputAt(1)); |
| return kMode_MR1; |
| } |
| } |
| |
| InstructionOperand GetEffectiveIndexOperand(Node* index, |
| AddressingMode* mode) { |
| if (CanBeImmediate(index)) { |
| *mode = kMode_MRI; |
| return UseImmediate(index); |
| } else { |
| *mode = kMode_MR1; |
| return UseUniqueRegister(index); |
| } |
| } |
| |
| bool CanBeBetterLeftOperand(Node* node) const { |
| return !selector()->IsLive(node); |
| } |
| }; |
| |
| namespace { |
| ArchOpcode GetLoadOpcode(LoadRepresentation load_rep) { |
| ArchOpcode opcode = kArchNop; |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kFloat32: |
| opcode = kX64Movss; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kX64Movsd; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = load_rep.IsSigned() ? kX64Movsxbl : kX64Movzxbl; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsSigned() ? kX64Movsxwl : kX64Movzxwl; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kX64Movl; |
| break; |
| case MachineRepresentation::kCompressedSigned: // Fall through. |
| case MachineRepresentation::kCompressedPointer: // Fall through. |
| case MachineRepresentation::kCompressed: |
| #ifdef V8_COMPRESS_POINTERS |
| opcode = kX64Movl; |
| break; |
| #else |
| UNREACHABLE(); |
| #endif |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| case MachineRepresentation::kWord64: |
| opcode = kX64Movq; |
| break; |
| case MachineRepresentation::kSimd128: // Fall through. |
| opcode = kX64Movdqu; |
| break; |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| } |
| return opcode; |
| } |
| |
| ArchOpcode GetStoreOpcode(StoreRepresentation store_rep) { |
| switch (store_rep.representation()) { |
| case MachineRepresentation::kFloat32: |
| return kX64Movss; |
| case MachineRepresentation::kFloat64: |
| return kX64Movsd; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| return kX64Movb; |
| case MachineRepresentation::kWord16: |
| return kX64Movw; |
| case MachineRepresentation::kWord32: |
| return kX64Movl; |
| case MachineRepresentation::kCompressedSigned: // Fall through. |
| case MachineRepresentation::kCompressedPointer: // Fall through. |
| case MachineRepresentation::kCompressed: |
| #ifdef V8_COMPRESS_POINTERS |
| return kX64MovqCompressTagged; |
| #else |
| UNREACHABLE(); |
| #endif |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| case MachineRepresentation::kWord64: |
| return kX64Movq; |
| case MachineRepresentation::kSimd128: // Fall through. |
| return kX64Movdqu; |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| } |
| UNREACHABLE(); |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitStackSlot(Node* node) { |
| StackSlotRepresentation rep = StackSlotRepresentationOf(node->op()); |
| int slot = frame_->AllocateSpillSlot(rep.size()); |
| OperandGenerator g(this); |
| |
| Emit(kArchStackSlot, g.DefineAsRegister(node), |
| sequence()->AddImmediate(Constant(slot)), 0, nullptr); |
| } |
| |
| void InstructionSelector::VisitAbortCSAAssert(Node* node) { |
| X64OperandGenerator g(this); |
| Emit(kArchAbortCSAAssert, g.NoOutput(), g.UseFixed(node->InputAt(0), rdx)); |
| } |
| |
| void InstructionSelector::VisitLoad(Node* node, Node* value, |
| InstructionCode opcode) { |
| X64OperandGenerator g(this); |
| InstructionOperand outputs[] = {g.DefineAsRegister(node)}; |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| AddressingMode mode = |
| g.GetEffectiveAddressMemoryOperand(value, inputs, &input_count); |
| InstructionCode code = opcode | AddressingModeField::encode(mode); |
| if (node->opcode() == IrOpcode::kProtectedLoad) { |
| code |= MiscField::encode(kMemoryAccessProtected); |
| } else if (node->opcode() == IrOpcode::kPoisonedLoad) { |
| CHECK_NE(poisoning_level_, PoisoningMitigationLevel::kDontPoison); |
| code |= MiscField::encode(kMemoryAccessPoisoned); |
| } |
| Emit(code, 1, outputs, input_count, inputs); |
| } |
| |
| void InstructionSelector::VisitLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| VisitLoad(node, node, GetLoadOpcode(load_rep)); |
| } |
| |
| void InstructionSelector::VisitPoisonedLoad(Node* node) { VisitLoad(node); } |
| |
| void InstructionSelector::VisitProtectedLoad(Node* node) { VisitLoad(node); } |
| |
| void InstructionSelector::VisitStore(Node* node) { |
| X64OperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| StoreRepresentation store_rep = StoreRepresentationOf(node->op()); |
| WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); |
| |
| if (write_barrier_kind != kNoWriteBarrier) { |
| DCHECK(CanBeTaggedOrCompressedPointer(store_rep.representation())); |
| AddressingMode addressing_mode; |
| InstructionOperand inputs[] = { |
| g.UseUniqueRegister(base), |
| g.GetEffectiveIndexOperand(index, &addressing_mode), |
| g.UseUniqueRegister(value)}; |
| RecordWriteMode record_write_mode = |
| WriteBarrierKindToRecordWriteMode(write_barrier_kind); |
| InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; |
| InstructionCode code = kArchStoreWithWriteBarrier; |
| code |= AddressingModeField::encode(addressing_mode); |
| code |= MiscField::encode(static_cast<int>(record_write_mode)); |
| Emit(code, 0, nullptr, arraysize(inputs), inputs, arraysize(temps), temps); |
| } else { |
| ArchOpcode opcode = GetStoreOpcode(store_rep); |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| AddressingMode addressing_mode = |
| g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count); |
| InstructionCode code = |
| opcode | AddressingModeField::encode(addressing_mode); |
| if ((ElementSizeLog2Of(store_rep.representation()) < |
| kSystemPointerSizeLog2) && |
| (value->opcode() == IrOpcode::kTruncateInt64ToInt32) && |
| CanCover(node, value)) { |
| value = value->InputAt(0); |
| } |
| InstructionOperand value_operand = |
| g.CanBeImmediate(value) ? g.UseImmediate(value) : g.UseRegister(value); |
| inputs[input_count++] = value_operand; |
| Emit(code, 0, static_cast<InstructionOperand*>(nullptr), input_count, |
| inputs); |
| } |
| } |
| |
| void InstructionSelector::VisitProtectedStore(Node* node) { |
| X64OperandGenerator g(this); |
| Node* value = node->InputAt(2); |
| |
| StoreRepresentation store_rep = StoreRepresentationOf(node->op()); |
| |
| ArchOpcode opcode = GetStoreOpcode(store_rep); |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| AddressingMode addressing_mode = |
| g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count); |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode) | |
| MiscField::encode(kMemoryAccessProtected); |
| InstructionOperand value_operand = |
| g.CanBeImmediate(value) ? g.UseImmediate(value) : g.UseRegister(value); |
| inputs[input_count++] = value_operand; |
| Emit(code, 0, static_cast<InstructionOperand*>(nullptr), input_count, inputs); |
| } |
| |
| // Architecture supports unaligned access, therefore VisitLoad is used instead |
| void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); } |
| |
| // Architecture supports unaligned access, therefore VisitStore is used instead |
| void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); } |
| |
| // Shared routine for multiple binary operations. |
| static void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont) { |
| X64OperandGenerator g(selector); |
| Int32BinopMatcher m(node); |
| Node* left = m.left().node(); |
| Node* right = m.right().node(); |
| InstructionOperand inputs[8]; |
| size_t input_count = 0; |
| InstructionOperand outputs[1]; |
| size_t output_count = 0; |
| |
| // TODO(turbofan): match complex addressing modes. |
| if (left == right) { |
| // If both inputs refer to the same operand, enforce allocating a register |
| // for both of them to ensure that we don't end up generating code like |
| // this: |
| // |
| // mov rax, [rbp-0x10] |
| // add rax, [rbp-0x10] |
| // jo label |
| InstructionOperand const input = g.UseRegister(left); |
| inputs[input_count++] = input; |
| inputs[input_count++] = input; |
| } else if (g.CanBeImmediate(right)) { |
| inputs[input_count++] = g.UseRegister(left); |
| inputs[input_count++] = g.UseImmediate(right); |
| } else { |
| int effect_level = selector->GetEffectLevel(node); |
| if (cont->IsBranch()) { |
| effect_level = selector->GetEffectLevel( |
| cont->true_block()->PredecessorAt(0)->control_input()); |
| } |
| if (node->op()->HasProperty(Operator::kCommutative) && |
| g.CanBeBetterLeftOperand(right) && |
| (!g.CanBeBetterLeftOperand(left) || |
| !g.CanBeMemoryOperand(opcode, node, right, effect_level))) { |
| std::swap(left, right); |
| } |
| if (g.CanBeMemoryOperand(opcode, node, right, effect_level)) { |
| inputs[input_count++] = g.UseRegister(left); |
| AddressingMode addressing_mode = |
| g.GetEffectiveAddressMemoryOperand(right, inputs, &input_count); |
| opcode |= AddressingModeField::encode(addressing_mode); |
| } else { |
| inputs[input_count++] = g.UseRegister(left); |
| inputs[input_count++] = g.Use(right); |
| } |
| } |
| |
| if (cont->IsBranch()) { |
| inputs[input_count++] = g.Label(cont->true_block()); |
| inputs[input_count++] = g.Label(cont->false_block()); |
| } |
| |
| outputs[output_count++] = g.DefineSameAsFirst(node); |
| |
| DCHECK_NE(0u, input_count); |
| DCHECK_EQ(1u, output_count); |
| DCHECK_GE(arraysize(inputs), input_count); |
| DCHECK_GE(arraysize(outputs), output_count); |
| |
| selector->EmitWithContinuation(opcode, output_count, outputs, input_count, |
| inputs, cont); |
| } |
| |
| // Shared routine for multiple binary operations. |
| static void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode) { |
| FlagsContinuation cont; |
| VisitBinop(selector, node, opcode, &cont); |
| } |
| |
| void InstructionSelector::VisitWord32And(Node* node) { |
| X64OperandGenerator g(this); |
| Uint32BinopMatcher m(node); |
| if (m.right().Is(0xFF)) { |
| Emit(kX64Movzxbl, g.DefineAsRegister(node), g.Use(m.left().node())); |
| } else if (m.right().Is(0xFFFF)) { |
| Emit(kX64Movzxwl, g.DefineAsRegister(node), g.Use(m.left().node())); |
| } else { |
| VisitBinop(this, node, kX64And32); |
| } |
| } |
| |
| void InstructionSelector::VisitWord64And(Node* node) { |
| VisitBinop(this, node, kX64And); |
| } |
| |
| void InstructionSelector::VisitWord32Or(Node* node) { |
| VisitBinop(this, node, kX64Or32); |
| } |
| |
| void InstructionSelector::VisitWord64Or(Node* node) { |
| VisitBinop(this, node, kX64Or); |
| } |
| |
| void InstructionSelector::VisitWord32Xor(Node* node) { |
| X64OperandGenerator g(this); |
| Uint32BinopMatcher m(node); |
| if (m.right().Is(-1)) { |
| Emit(kX64Not32, g.DefineSameAsFirst(node), g.UseRegister(m.left().node())); |
| } else { |
| VisitBinop(this, node, kX64Xor32); |
| } |
| } |
| |
| void InstructionSelector::VisitWord64Xor(Node* node) { |
| X64OperandGenerator g(this); |
| Uint64BinopMatcher m(node); |
| if (m.right().Is(-1)) { |
| Emit(kX64Not, g.DefineSameAsFirst(node), g.UseRegister(m.left().node())); |
| } else { |
| VisitBinop(this, node, kX64Xor); |
| } |
| } |
| |
| namespace { |
| |
| bool TryMergeTruncateInt64ToInt32IntoLoad(InstructionSelector* selector, |
| Node* node, Node* load) { |
| if (load->opcode() == IrOpcode::kLoad && selector->CanCover(node, load)) { |
| LoadRepresentation load_rep = LoadRepresentationOf(load->op()); |
| MachineRepresentation rep = load_rep.representation(); |
| InstructionCode opcode = kArchNop; |
| switch (rep) { |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = load_rep.IsSigned() ? kX64Movsxbl : kX64Movzxbl; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsSigned() ? kX64Movsxwl : kX64Movzxwl; |
| break; |
| case MachineRepresentation::kWord32: |
| case MachineRepresentation::kWord64: |
| case MachineRepresentation::kTaggedSigned: |
| case MachineRepresentation::kTagged: |
| case MachineRepresentation::kCompressedSigned: // Fall through. |
| case MachineRepresentation::kCompressed: // Fall through. |
| opcode = kX64Movl; |
| break; |
| default: |
| UNREACHABLE(); |
| return false; |
| } |
| X64OperandGenerator g(selector); |
| InstructionOperand outputs[] = {g.DefineAsRegister(node)}; |
| size_t input_count = 0; |
| InstructionOperand inputs[3]; |
| AddressingMode mode = g.GetEffectiveAddressMemoryOperand( |
| node->InputAt(0), inputs, &input_count); |
| opcode |= AddressingModeField::encode(mode); |
| selector->Emit(opcode, 1, outputs, input_count, inputs); |
| return true; |
| } |
| return false; |
| } |
| |
| // Shared routine for multiple 32-bit shift operations. |
| // TODO(bmeurer): Merge this with VisitWord64Shift using template magic? |
| void VisitWord32Shift(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| X64OperandGenerator g(selector); |
| Int32BinopMatcher m(node); |
| Node* left = m.left().node(); |
| Node* right = m.right().node(); |
| |
| if (left->opcode() == IrOpcode::kTruncateInt64ToInt32 && |
| selector->CanCover(node, left)) { |
| left = left->InputAt(0); |
| } |
| |
| if (g.CanBeImmediate(right)) { |
| selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), |
| g.UseImmediate(right)); |
| } else { |
| selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), |
| g.UseFixed(right, rcx)); |
| } |
| } |
| |
| // Shared routine for multiple 64-bit shift operations. |
| // TODO(bmeurer): Merge this with VisitWord32Shift using template magic? |
| void VisitWord64Shift(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| X64OperandGenerator g(selector); |
| Int64BinopMatcher m(node); |
| Node* left = m.left().node(); |
| Node* right = m.right().node(); |
| |
| if (g.CanBeImmediate(right)) { |
| selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), |
| g.UseImmediate(right)); |
| } else { |
| if (m.right().IsWord64And()) { |
| Int64BinopMatcher mright(right); |
| if (mright.right().Is(0x3F)) { |
| right = mright.left().node(); |
| } |
| } |
| selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), |
| g.UseFixed(right, rcx)); |
| } |
| } |
| |
| // Shared routine for multiple shift operations with continuation. |
| template <typename BinopMatcher, int Bits> |
| bool TryVisitWordShift(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode, FlagsContinuation* cont) { |
| X64OperandGenerator g(selector); |
| BinopMatcher m(node); |
| Node* left = m.left().node(); |
| Node* right = m.right().node(); |
| |
| // If the shift count is 0, the flags are not affected. |
| if (!g.CanBeImmediate(right) || |
| (g.GetImmediateIntegerValue(right) & (Bits - 1)) == 0) { |
| return false; |
| } |
| InstructionOperand output = g.DefineSameAsFirst(node); |
| InstructionOperand inputs[2]; |
| inputs[0] = g.UseRegister(left); |
| inputs[1] = g.UseImmediate(right); |
| selector->EmitWithContinuation(opcode, 1, &output, 2, inputs, cont); |
| return true; |
| } |
| |
| void EmitLea(InstructionSelector* selector, InstructionCode opcode, |
| Node* result, Node* index, int scale, Node* base, |
| Node* displacement, DisplacementMode displacement_mode) { |
| X64OperandGenerator g(selector); |
| |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| AddressingMode mode = |
| g.GenerateMemoryOperandInputs(index, scale, base, displacement, |
| displacement_mode, inputs, &input_count); |
| |
| DCHECK_NE(0u, input_count); |
| DCHECK_GE(arraysize(inputs), input_count); |
| |
| InstructionOperand outputs[1]; |
| outputs[0] = g.DefineAsRegister(result); |
| |
| opcode = AddressingModeField::encode(mode) | opcode; |
| |
| selector->Emit(opcode, 1, outputs, input_count, inputs); |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitWord32Shl(Node* node) { |
| Int32ScaleMatcher m(node, true); |
| if (m.matches()) { |
| Node* index = node->InputAt(0); |
| Node* base = m.power_of_two_plus_one() ? index : nullptr; |
| EmitLea(this, kX64Lea32, node, index, m.scale(), base, nullptr, |
| kPositiveDisplacement); |
| return; |
| } |
| VisitWord32Shift(this, node, kX64Shl32); |
| } |
| |
| void InstructionSelector::VisitWord64Shl(Node* node) { |
| X64OperandGenerator g(this); |
| Int64ScaleMatcher m(node, true); |
| if (m.matches()) { |
| Node* index = node->InputAt(0); |
| Node* base = m.power_of_two_plus_one() ? index : nullptr; |
| EmitLea(this, kX64Lea, node, index, m.scale(), base, nullptr, |
| kPositiveDisplacement); |
| return; |
| } else { |
| Int64BinopMatcher m(node); |
| if ((m.left().IsChangeInt32ToInt64() || |
| m.left().IsChangeUint32ToUint64()) && |
| m.right().IsInRange(32, 63)) { |
| // There's no need to sign/zero-extend to 64-bit if we shift out the upper |
| // 32 bits anyway. |
| Emit(kX64Shl, g.DefineSameAsFirst(node), |
| g.UseRegister(m.left().node()->InputAt(0)), |
| g.UseImmediate(m.right().node())); |
| return; |
| } |
| } |
| VisitWord64Shift(this, node, kX64Shl); |
| } |
| |
| void InstructionSelector::VisitWord32Shr(Node* node) { |
| VisitWord32Shift(this, node, kX64Shr32); |
| } |
| |
| namespace { |
| |
| inline AddressingMode AddDisplacementToAddressingMode(AddressingMode mode) { |
| switch (mode) { |
| case kMode_MR: |
| return kMode_MRI; |
| break; |
| case kMode_MR1: |
| return kMode_MR1I; |
| break; |
| case kMode_MR2: |
| return kMode_MR2I; |
| break; |
| case kMode_MR4: |
| return kMode_MR4I; |
| break; |
| case kMode_MR8: |
| return kMode_MR8I; |
| break; |
| case kMode_M1: |
| return kMode_M1I; |
| break; |
| case kMode_M2: |
| return kMode_M2I; |
| break; |
| case kMode_M4: |
| return kMode_M4I; |
| break; |
| case kMode_M8: |
| return kMode_M8I; |
| break; |
| case kMode_None: |
| case kMode_MRI: |
| case kMode_MR1I: |
| case kMode_MR2I: |
| case kMode_MR4I: |
| case kMode_MR8I: |
| case kMode_M1I: |
| case kMode_M2I: |
| case kMode_M4I: |
| case kMode_M8I: |
| case kMode_Root: |
| UNREACHABLE(); |
| } |
| UNREACHABLE(); |
| } |
| |
| bool TryMatchLoadWord64AndShiftRight(InstructionSelector* selector, Node* node, |
| InstructionCode opcode) { |
| DCHECK(IrOpcode::kWord64Sar == node->opcode() || |
| IrOpcode::kWord64Shr == node->opcode()); |
| X64OperandGenerator g(selector); |
| Int64BinopMatcher m(node); |
| if (selector->CanCover(m.node(), m.left().node()) && m.left().IsLoad() && |
| m.right().Is(32)) { |
| DCHECK_EQ(selector->GetEffectLevel(node), |
| selector->GetEffectLevel(m.left().node())); |
| // Just load and sign-extend the interesting 4 bytes instead. This happens, |
| // for example, when we're loading and untagging SMIs. |
| BaseWithIndexAndDisplacement64Matcher mleft(m.left().node(), |
| AddressOption::kAllowAll); |
| if (mleft.matches() && (mleft.displacement() == nullptr || |
| g.CanBeImmediate(mleft.displacement()))) { |
| size_t input_count = 0; |
| InstructionOperand inputs[3]; |
| AddressingMode mode = g.GetEffectiveAddressMemoryOperand( |
| m.left().node(), inputs, &input_count); |
| if (mleft.displacement() == nullptr) { |
| // Make sure that the addressing mode indicates the presence of an |
| // immediate displacement. It seems that we never use M1 and M2, but we |
| // handle them here anyways. |
| mode = AddDisplacementToAddressingMode(mode); |
| inputs[input_count++] = ImmediateOperand(ImmediateOperand::INLINE, 4); |
| } else { |
| // In the case that the base address was zero, the displacement will be |
| // in a register and replacing it with an immediate is not allowed. This |
| // usually only happens in dead code anyway. |
| if (!inputs[input_count - 1].IsImmediate()) return false; |
| int32_t displacement = g.GetImmediateIntegerValue(mleft.displacement()); |
| inputs[input_count - 1] = |
| ImmediateOperand(ImmediateOperand::INLINE, displacement + 4); |
| } |
| InstructionOperand outputs[] = {g.DefineAsRegister(node)}; |
| InstructionCode code = opcode | AddressingModeField::encode(mode); |
| selector->Emit(code, 1, outputs, input_count, inputs); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitWord64Shr(Node* node) { |
| if (TryMatchLoadWord64AndShiftRight(this, node, kX64Movl)) return; |
| VisitWord64Shift(this, node, kX64Shr); |
| } |
| |
| void InstructionSelector::VisitWord32Sar(Node* node) { |
| X64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| if (CanCover(m.node(), m.left().node()) && m.left().IsWord32Shl()) { |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().Is(16) && m.right().Is(16)) { |
| Emit(kX64Movsxwl, g.DefineAsRegister(node), g.Use(mleft.left().node())); |
| return; |
| } else if (mleft.right().Is(24) && m.right().Is(24)) { |
| Emit(kX64Movsxbl, g.DefineAsRegister(node), g.Use(mleft.left().node())); |
| return; |
| } |
| } |
| VisitWord32Shift(this, node, kX64Sar32); |
| } |
| |
| void InstructionSelector::VisitWord64Sar(Node* node) { |
| if (TryMatchLoadWord64AndShiftRight(this, node, kX64Movsxlq)) return; |
| VisitWord64Shift(this, node, kX64Sar); |
| } |
| |
| void InstructionSelector::VisitWord32Ror(Node* node) { |
| VisitWord32Shift(this, node, kX64Ror32); |
| } |
| |
| void InstructionSelector::VisitWord64Ror(Node* node) { |
| VisitWord64Shift(this, node, kX64Ror); |
| } |
| |
| void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord64ReverseBytes(Node* node) { |
| X64OperandGenerator g(this); |
| Emit(kX64Bswap, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitWord32ReverseBytes(Node* node) { |
| X64OperandGenerator g(this); |
| Emit(kX64Bswap32, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitInt32Add(Node* node) { |
| X64OperandGenerator g(this); |
| |
| // Try to match the Add to a leal pattern |
| BaseWithIndexAndDisplacement32Matcher m(node); |
| if (m.matches() && |
| (m.displacement() == nullptr || g.CanBeImmediate(m.displacement()))) { |
| EmitLea(this, kX64Lea32, node, m.index(), m.scale(), m.base(), |
| m.displacement(), m.displacement_mode()); |
| return; |
| } |
| |
| // No leal pattern match, use addl |
| VisitBinop(this, node, kX64Add32); |
| } |
| |
| void InstructionSelector::VisitInt64Add(Node* node) { |
| X64OperandGenerator g(this); |
| |
| // Try to match the Add to a leaq pattern |
| BaseWithIndexAndDisplacement64Matcher m(node); |
| if (m.matches() && |
| (m.displacement() == nullptr || g.CanBeImmediate(m.displacement()))) { |
| EmitLea(this, kX64Lea, node, m.index(), m.scale(), m.base(), |
| m.displacement(), m.displacement_mode()); |
| return; |
| } |
| |
| // No leal pattern match, use addq |
| VisitBinop(this, node, kX64Add); |
| } |
| |
| void InstructionSelector::VisitInt64AddWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kX64Add, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kX64Add, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32Sub(Node* node) { |
| X64OperandGenerator g(this); |
| DCHECK_EQ(node->InputCount(), 2); |
| Node* input1 = node->InputAt(0); |
| Node* input2 = node->InputAt(1); |
| if (input1->opcode() == IrOpcode::kTruncateInt64ToInt32 && |
| g.CanBeImmediate(input2)) { |
| int32_t imm = g.GetImmediateIntegerValue(input2); |
| InstructionOperand int64_input = g.UseRegister(input1->InputAt(0)); |
| if (imm == 0) { |
| // Emit "movl" for subtraction of 0. |
| Emit(kX64Movl, g.DefineAsRegister(node), int64_input); |
| } else { |
| // Omit truncation and turn subtractions of constant values into immediate |
| // "leal" instructions by negating the value. |
| Emit(kX64Lea32 | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), int64_input, |
| g.TempImmediate(base::NegateWithWraparound(imm))); |
| } |
| return; |
| } |
| |
| Int32BinopMatcher m(node); |
| if (m.left().Is(0)) { |
| Emit(kX64Neg32, g.DefineSameAsFirst(node), g.UseRegister(m.right().node())); |
| } else if (m.right().Is(0)) { |
| // {EmitIdentity} reuses the virtual register of the first input |
| // for the output. This is exactly what we want here. |
| EmitIdentity(node); |
| } else if (m.right().HasValue() && g.CanBeImmediate(m.right().node())) { |
| // Turn subtractions of constant values into immediate "leal" instructions |
| // by negating the value. |
| Emit(kX64Lea32 | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.TempImmediate(base::NegateWithWraparound(m.right().Value()))); |
| } else { |
| VisitBinop(this, node, kX64Sub32); |
| } |
| } |
| |
| void InstructionSelector::VisitInt64Sub(Node* node) { |
| X64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| if (m.left().Is(0)) { |
| Emit(kX64Neg, g.DefineSameAsFirst(node), g.UseRegister(m.right().node())); |
| } else { |
| if (m.right().HasValue() && g.CanBeImmediate(m.right().node())) { |
| // Turn subtractions of constant values into immediate "leaq" instructions |
| // by negating the value. |
| Emit(kX64Lea | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.TempImmediate(-static_cast<int32_t>(m.right().Value()))); |
| return; |
| } |
| VisitBinop(this, node, kX64Sub); |
| } |
| } |
| |
| void InstructionSelector::VisitInt64SubWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kX64Sub, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kX64Sub, &cont); |
| } |
| |
| namespace { |
| |
| void VisitMul(InstructionSelector* selector, Node* node, ArchOpcode opcode) { |
| X64OperandGenerator g(selector); |
| Int32BinopMatcher m(node); |
| Node* left = m.left().node(); |
| Node* right = m.right().node(); |
| if (g.CanBeImmediate(right)) { |
| selector->Emit(opcode, g.DefineAsRegister(node), g.Use(left), |
| g.UseImmediate(right)); |
| } else { |
| if (g.CanBeBetterLeftOperand(right)) { |
| std::swap(left, right); |
| } |
| selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), |
| g.Use(right)); |
| } |
| } |
| |
| void VisitMulHigh(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| X64OperandGenerator g(selector); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| if (selector->IsLive(left) && !selector->IsLive(right)) { |
| std::swap(left, right); |
| } |
| InstructionOperand temps[] = {g.TempRegister(rax)}; |
| // TODO(turbofan): We use UseUniqueRegister here to improve register |
| // allocation. |
| selector->Emit(opcode, g.DefineAsFixed(node, rdx), g.UseFixed(left, rax), |
| g.UseUniqueRegister(right), arraysize(temps), temps); |
| } |
| |
| void VisitDiv(InstructionSelector* selector, Node* node, ArchOpcode opcode) { |
| X64OperandGenerator g(selector); |
| InstructionOperand temps[] = {g.TempRegister(rdx)}; |
| selector->Emit( |
| opcode, g.DefineAsFixed(node, rax), g.UseFixed(node->InputAt(0), rax), |
| g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); |
| } |
| |
| void VisitMod(InstructionSelector* selector, Node* node, ArchOpcode opcode) { |
| X64OperandGenerator g(selector); |
| InstructionOperand temps[] = {g.TempRegister(rax)}; |
| selector->Emit( |
| opcode, g.DefineAsFixed(node, rdx), g.UseFixed(node->InputAt(0), rax), |
| g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps); |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitInt32Mul(Node* node) { |
| Int32ScaleMatcher m(node, true); |
| if (m.matches()) { |
| Node* index = node->InputAt(0); |
| Node* base = m.power_of_two_plus_one() ? index : nullptr; |
| EmitLea(this, kX64Lea32, node, index, m.scale(), base, nullptr, |
| kPositiveDisplacement); |
| return; |
| } |
| VisitMul(this, node, kX64Imul32); |
| } |
| |
| void InstructionSelector::VisitInt32MulWithOverflow(Node* node) { |
| // TODO(mvstanton): Use Int32ScaleMatcher somehow. |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kX64Imul32, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kX64Imul32, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64Mul(Node* node) { |
| VisitMul(this, node, kX64Imul); |
| } |
| |
| void InstructionSelector::VisitInt32MulHigh(Node* node) { |
| VisitMulHigh(this, node, kX64ImulHigh32); |
| } |
| |
| void InstructionSelector::VisitInt32Div(Node* node) { |
| VisitDiv(this, node, kX64Idiv32); |
| } |
| |
| void InstructionSelector::VisitInt64Div(Node* node) { |
| VisitDiv(this, node, kX64Idiv); |
| } |
| |
| void InstructionSelector::VisitUint32Div(Node* node) { |
| VisitDiv(this, node, kX64Udiv32); |
| } |
| |
| void InstructionSelector::VisitUint64Div(Node* node) { |
| VisitDiv(this, node, kX64Udiv); |
| } |
| |
| void InstructionSelector::VisitInt32Mod(Node* node) { |
| VisitMod(this, node, kX64Idiv32); |
| } |
| |
| void InstructionSelector::VisitInt64Mod(Node* node) { |
| VisitMod(this, node, kX64Idiv); |
| } |
| |
| void InstructionSelector::VisitUint32Mod(Node* node) { |
| VisitMod(this, node, kX64Udiv32); |
| } |
| |
| void InstructionSelector::VisitUint64Mod(Node* node) { |
| VisitMod(this, node, kX64Udiv); |
| } |
| |
| void InstructionSelector::VisitUint32MulHigh(Node* node) { |
| VisitMulHigh(this, node, kX64UmulHigh32); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) { |
| X64OperandGenerator g(this); |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| Emit(kSSEFloat32ToInt64, output_count, outputs, 1, inputs); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) { |
| X64OperandGenerator g(this); |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| Emit(kSSEFloat64ToInt64, output_count, outputs, 1, inputs); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) { |
| X64OperandGenerator g(this); |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| Emit(kSSEFloat32ToUint64, output_count, outputs, 1, inputs); |
| } |
| |
| void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) { |
| X64OperandGenerator g(this); |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| Emit(kSSEFloat64ToUint64, output_count, outputs, 1, inputs); |
| } |
| |
| void InstructionSelector::VisitChangeInt32ToInt64(Node* node) { |
| X64OperandGenerator g(this); |
| Node* const value = node->InputAt(0); |
| if (value->opcode() == IrOpcode::kLoad && CanCover(node, value)) { |
| LoadRepresentation load_rep = LoadRepresentationOf(value->op()); |
| MachineRepresentation rep = load_rep.representation(); |
| InstructionCode opcode = kArchNop; |
| switch (rep) { |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = load_rep.IsSigned() ? kX64Movsxbq : kX64Movzxbq; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsSigned() ? kX64Movsxwq : kX64Movzxwq; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = load_rep.IsSigned() ? kX64Movsxlq : kX64Movl; |
| break; |
| default: |
| UNREACHABLE(); |
| return; |
| } |
| InstructionOperand outputs[] = {g.DefineAsRegister(node)}; |
| size_t input_count = 0; |
| InstructionOperand inputs[3]; |
| AddressingMode mode = g.GetEffectiveAddressMemoryOperand( |
| node->InputAt(0), inputs, &input_count); |
| opcode |= AddressingModeField::encode(mode); |
| Emit(opcode, 1, outputs, input_count, inputs); |
| } else { |
| Emit(kX64Movsxlq, g.DefineAsRegister(node), g.Use(node->InputAt(0))); |
| } |
| } |
| |
| namespace { |
| |
| bool ZeroExtendsWord32ToWord64(Node* node) { |
| switch (node->opcode()) { |
| case IrOpcode::kWord32And: |
| case IrOpcode::kWord32Or: |
| case IrOpcode::kWord32Xor: |
| case IrOpcode::kWord32Shl: |
| case IrOpcode::kWord32Shr: |
| case IrOpcode::kWord32Sar: |
| case IrOpcode::kWord32Ror: |
| case IrOpcode::kWord32Equal: |
| case IrOpcode::kInt32Add: |
| case IrOpcode::kInt32Sub: |
| case IrOpcode::kInt32Mul: |
| case IrOpcode::kInt32MulHigh: |
| case IrOpcode::kInt32Div: |
| case IrOpcode::kInt32LessThan: |
| case IrOpcode::kInt32LessThanOrEqual: |
| case IrOpcode::kInt32Mod: |
| case IrOpcode::kUint32Div: |
| case IrOpcode::kUint32LessThan: |
| case IrOpcode::kUint32LessThanOrEqual: |
| case IrOpcode::kUint32Mod: |
| case IrOpcode::kUint32MulHigh: |
| case IrOpcode::kTruncateInt64ToInt32: |
| // These 32-bit operations implicitly zero-extend to 64-bit on x64, so the |
| // zero-extension is a no-op. |
| return true; |
| case IrOpcode::kProjection: { |
| Node* const value = node->InputAt(0); |
| switch (value->opcode()) { |
| case IrOpcode::kInt32AddWithOverflow: |
| case IrOpcode::kInt32SubWithOverflow: |
| case IrOpcode::kInt32MulWithOverflow: |
| return true; |
| default: |
| return false; |
| } |
| } |
| case IrOpcode::kLoad: |
| case IrOpcode::kProtectedLoad: |
| case IrOpcode::kPoisonedLoad: { |
| // The movzxbl/movsxbl/movzxwl/movsxwl/movl operations implicitly |
| // zero-extend to 64-bit on x64, so the zero-extension is a no-op. |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kWord8: |
| case MachineRepresentation::kWord16: |
| case MachineRepresentation::kWord32: |
| return true; |
| default: |
| return false; |
| } |
| } |
| default: |
| return false; |
| } |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitChangeUint32ToUint64(Node* node) { |
| X64OperandGenerator g(this); |
| Node* value = node->InputAt(0); |
| if (ZeroExtendsWord32ToWord64(value)) { |
| // These 32-bit operations implicitly zero-extend to 64-bit on x64, so the |
| // zero-extension is a no-op. |
| return EmitIdentity(node); |
| } |
| Emit(kX64Movl, g.DefineAsRegister(node), g.Use(value)); |
| } |
| |
| void InstructionSelector::VisitChangeTaggedToCompressed(Node* node) { |
| X64OperandGenerator g(this); |
| Node* value = node->InputAt(0); |
| Emit(kX64CompressAny, g.DefineAsRegister(node), g.Use(value)); |
| } |
| |
| void InstructionSelector::VisitChangeTaggedPointerToCompressedPointer( |
| Node* node) { |
| X64OperandGenerator g(this); |
| Node* value = node->InputAt(0); |
| Emit(kX64CompressPointer, g.DefineAsRegister(node), g.Use(value)); |
| } |
| |
| void InstructionSelector::VisitChangeTaggedSignedToCompressedSigned( |
| Node* node) { |
| X64OperandGenerator g(this); |
| Node* value = node->InputAt(0); |
| Emit(kX64CompressSigned, g.DefineAsRegister(node), g.Use(value)); |
| } |
| |
| void InstructionSelector::VisitChangeCompressedToTagged(Node* node) { |
| Node* const value = node->InputAt(0); |
| if ((value->opcode() == IrOpcode::kLoad || |
| value->opcode() == IrOpcode::kPoisonedLoad) && |
| CanCover(node, value)) { |
| DCHECK_EQ(LoadRepresentationOf(value->op()).representation(), |
| MachineRepresentation::kCompressed); |
| VisitLoad(node, value, kX64MovqDecompressAnyTagged); |
| } else { |
| X64OperandGenerator g(this); |
| Emit(kX64DecompressAny, g.DefineAsRegister(node), g.Use(value)); |
| } |
| } |
| |
| void InstructionSelector::VisitChangeCompressedPointerToTaggedPointer( |
| Node* node) { |
| Node* const value = node->InputAt(0); |
| if ((value->opcode() == IrOpcode::kLoad || |
| value->opcode() == IrOpcode::kPoisonedLoad) && |
| CanCover(node, value)) { |
| DCHECK_EQ(LoadRepresentationOf(value->op()).representation(), |
| MachineRepresentation::kCompressedPointer); |
| VisitLoad(node, value, kX64MovqDecompressTaggedPointer); |
| } else { |
| X64OperandGenerator g(this); |
| Emit(kX64DecompressPointer, g.DefineAsRegister(node), g.Use(value)); |
| } |
| } |
| |
| void InstructionSelector::VisitChangeCompressedSignedToTaggedSigned( |
| Node* node) { |
| Node* const value = node->InputAt(0); |
| if ((value->opcode() == IrOpcode::kLoad || |
| value->opcode() == IrOpcode::kPoisonedLoad) && |
| CanCover(node, value)) { |
| DCHECK_EQ(LoadRepresentationOf(value->op()).representation(), |
| MachineRepresentation::kCompressedSigned); |
| VisitLoad(node, value, kX64MovqDecompressTaggedSigned); |
| } else { |
| X64OperandGenerator g(this); |
| Emit(kX64DecompressSigned, g.DefineAsRegister(node), g.Use(value)); |
| } |
| } |
| |
| namespace { |
| |
| void VisitRO(InstructionSelector* selector, Node* node, |
| InstructionCode opcode) { |
| X64OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), g.Use(node->InputAt(0))); |
| } |
| |
| void VisitRR(InstructionSelector* selector, Node* node, |
| InstructionCode opcode) { |
| X64OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void VisitRRO(InstructionSelector* selector, Node* node, |
| InstructionCode opcode) { |
| X64OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1))); |
| } |
| |
| void VisitFloatBinop(InstructionSelector* selector, Node* node, |
| ArchOpcode avx_opcode, ArchOpcode sse_opcode) { |
| X64OperandGenerator g(selector); |
| InstructionOperand operand0 = g.UseRegister(node->InputAt(0)); |
| InstructionOperand operand1 = g.Use(node->InputAt(1)); |
| if (selector->IsSupported(AVX)) { |
| selector->Emit(avx_opcode, g.DefineAsRegister(node), operand0, operand1); |
| } else { |
| selector->Emit(sse_opcode, g.DefineSameAsFirst(node), operand0, operand1); |
| } |
| } |
| |
| void VisitFloatUnop(InstructionSelector* selector, Node* node, Node* input, |
| ArchOpcode avx_opcode, ArchOpcode sse_opcode) { |
| X64OperandGenerator g(selector); |
| if (selector->IsSupported(AVX)) { |
| selector->Emit(avx_opcode, g.DefineAsRegister(node), g.Use(input)); |
| } else { |
| selector->Emit(sse_opcode, g.DefineSameAsFirst(node), g.UseRegister(input)); |
| } |
| } |
| |
| } // namespace |
| |
| #define RO_OP_LIST(V) \ |
| V(Word64Clz, kX64Lzcnt) \ |
| V(Word32Clz, kX64Lzcnt32) \ |
| V(Word64Ctz, kX64Tzcnt) \ |
| V(Word32Ctz, kX64Tzcnt32) \ |
| V(Word64Popcnt, kX64Popcnt) \ |
| V(Word32Popcnt, kX64Popcnt32) \ |
| V(Float64Sqrt, kSSEFloat64Sqrt) \ |
| V(Float32Sqrt, kSSEFloat32Sqrt) \ |
| V(ChangeFloat64ToInt32, kSSEFloat64ToInt32) \ |
| V(ChangeFloat64ToInt64, kSSEFloat64ToInt64) \ |
| V(ChangeFloat64ToUint32, kSSEFloat64ToUint32 | MiscField::encode(1)) \ |
| V(TruncateFloat64ToInt64, kSSEFloat64ToInt64) \ |
| V(TruncateFloat64ToUint32, kSSEFloat64ToUint32 | MiscField::encode(0)) \ |
| V(ChangeFloat64ToUint64, kSSEFloat64ToUint64) \ |
| V(TruncateFloat64ToFloat32, kSSEFloat64ToFloat32) \ |
| V(ChangeFloat32ToFloat64, kSSEFloat32ToFloat64) \ |
| V(TruncateFloat32ToInt32, kSSEFloat32ToInt32) \ |
| V(TruncateFloat32ToUint32, kSSEFloat32ToUint32) \ |
| V(ChangeInt32ToFloat64, kSSEInt32ToFloat64) \ |
| V(ChangeInt64ToFloat64, kSSEInt64ToFloat64) \ |
| V(ChangeUint32ToFloat64, kSSEUint32ToFloat64) \ |
| V(RoundFloat64ToInt32, kSSEFloat64ToInt32) \ |
| V(RoundInt32ToFloat32, kSSEInt32ToFloat32) \ |
| V(RoundInt64ToFloat32, kSSEInt64ToFloat32) \ |
| V(RoundUint64ToFloat32, kSSEUint64ToFloat32) \ |
| V(RoundInt64ToFloat64, kSSEInt64ToFloat64) \ |
| V(RoundUint64ToFloat64, kSSEUint64ToFloat64) \ |
| V(RoundUint32ToFloat32, kSSEUint32ToFloat32) \ |
| V(BitcastFloat32ToInt32, kX64BitcastFI) \ |
| V(BitcastFloat64ToInt64, kX64BitcastDL) \ |
| V(BitcastInt32ToFloat32, kX64BitcastIF) \ |
| V(BitcastInt64ToFloat64, kX64BitcastLD) \ |
| V(Float64ExtractLowWord32, kSSEFloat64ExtractLowWord32) \ |
| V(Float64ExtractHighWord32, kSSEFloat64ExtractHighWord32) \ |
| V(SignExtendWord8ToInt32, kX64Movsxbl) \ |
| V(SignExtendWord16ToInt32, kX64Movsxwl) \ |
| V(SignExtendWord8ToInt64, kX64Movsxbq) \ |
| V(SignExtendWord16ToInt64, kX64Movsxwq) \ |
| V(SignExtendWord32ToInt64, kX64Movsxlq) |
| |
| #define RR_OP_LIST(V) \ |
| V(Float32RoundDown, kSSEFloat32Round | MiscField::encode(kRoundDown)) \ |
| V(Float64RoundDown, kSSEFloat64Round | MiscField::encode(kRoundDown)) \ |
| V(Float32RoundUp, kSSEFloat32Round | MiscField::encode(kRoundUp)) \ |
| V(Float64RoundUp, kSSEFloat64Round | MiscField::encode(kRoundUp)) \ |
| V(Float32RoundTruncate, kSSEFloat32Round | MiscField::encode(kRoundToZero)) \ |
| V(Float64RoundTruncate, kSSEFloat64Round | MiscField::encode(kRoundToZero)) \ |
| V(Float32RoundTiesEven, \ |
| kSSEFloat32Round | MiscField::encode(kRoundToNearest)) \ |
| V(Float64RoundTiesEven, kSSEFloat64Round | MiscField::encode(kRoundToNearest)) |
| |
| #define RO_VISITOR(Name, opcode) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitRO(this, node, opcode); \ |
| } |
| RO_OP_LIST(RO_VISITOR) |
| #undef RO_VISITOR |
| #undef RO_OP_LIST |
| |
| #define RR_VISITOR(Name, opcode) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitRR(this, node, opcode); \ |
| } |
| RR_OP_LIST(RR_VISITOR) |
| #undef RR_VISITOR |
| #undef RR_OP_LIST |
| |
| void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) { |
| VisitRR(this, node, kArchTruncateDoubleToI); |
| } |
| |
| void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) { |
| // We rely on the fact that TruncateInt64ToInt32 zero extends the |
| // value (see ZeroExtendsWord32ToWord64). So all code paths here |
| // have to satisfy that condition. |
| X64OperandGenerator g(this); |
| Node* value = node->InputAt(0); |
| if (CanCover(node, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kWord64Sar: |
| case IrOpcode::kWord64Shr: { |
| Int64BinopMatcher m(value); |
| if (m.right().Is(32)) { |
| if (CanCoverTransitively(node, value, value->InputAt(0)) && |
| TryMatchLoadWord64AndShiftRight(this, value, kX64Movl)) { |
| return EmitIdentity(node); |
| } |
| Emit(kX64Shr, g.DefineSameAsFirst(node), |
| g.UseRegister(m.left().node()), g.TempImmediate(32)); |
| return; |
| } |
| break; |
| } |
| case IrOpcode::kLoad: { |
| if (TryMergeTruncateInt64ToInt32IntoLoad(this, node, value)) { |
| return; |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| Emit(kX64Movl, g.DefineAsRegister(node), g.Use(value)); |
| } |
| |
| void InstructionSelector::VisitFloat32Add(Node* node) { |
| VisitFloatBinop(this, node, kAVXFloat32Add, kSSEFloat32Add); |
| } |
| |
| void InstructionSelector::VisitFloat32Sub(Node* node) { |
| VisitFloatBinop(this, node, kAVXFloat32Sub, kSSEFloat32Sub); |
| } |
| |
| void InstructionSelector::VisitFloat32Mul(Node* node) { |
| VisitFloatBinop(this, node, kAVXFloat32Mul, kSSEFloat32Mul); |
| } |
| |
| void InstructionSelector::VisitFloat32Div(Node* node) { |
| VisitFloatBinop(this, node, kAVXFloat32Div, kSSEFloat32Div); |
| } |
| |
| void InstructionSelector::VisitFloat32Abs(Node* node) { |
| VisitFloatUnop(this, node, node->InputAt(0), kAVXFloat32Abs, kSSEFloat32Abs); |
| } |
| |
| void InstructionSelector::VisitFloat32Max(Node* node) { |
| VisitRRO(this, node, kSSEFloat32Max); |
| } |
| |
| void InstructionSelector::VisitFloat32Min(Node* node) { |
| VisitRRO(this, node, kSSEFloat32Min); |
| } |
| |
| void InstructionSelector::VisitFloat64Add(Node* node) { |
| VisitFloatBinop(this, node, kAVXFloat64Add, kSSEFloat64Add); |
| } |
| |
| void InstructionSelector::VisitFloat64Sub(Node* node) { |
| VisitFloatBinop(this, node, kAVXFloat64Sub, kSSEFloat64Sub); |
| } |
| |
| void InstructionSelector::VisitFloat64Mul(Node* node) { |
| VisitFloatBinop(this, node, kAVXFloat64Mul, kSSEFloat64Mul); |
| } |
| |
| void InstructionSelector::VisitFloat64Div(Node* node) { |
| VisitFloatBinop(this, node, kAVXFloat64Div, kSSEFloat64Div); |
| } |
| |
| void InstructionSelector::VisitFloat64Mod(Node* node) { |
| X64OperandGenerator g(this); |
| InstructionOperand temps[] = {g.TempRegister(rax)}; |
| Emit(kSSEFloat64Mod, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), 1, |
| temps); |
| } |
| |
| void InstructionSelector::VisitFloat64Max(Node* node) { |
| VisitRRO(this, node, kSSEFloat64Max); |
| } |
| |
| void InstructionSelector::VisitFloat64Min(Node* node) { |
| VisitRRO(this, node, kSSEFloat64Min); |
| } |
| |
| void InstructionSelector::VisitFloat64Abs(Node* node) { |
| VisitFloatUnop(this, node, node->InputAt(0), kAVXFloat64Abs, kSSEFloat64Abs); |
| } |
| |
| void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| void InstructionSelector::VisitFloat32Neg(Node* node) { |
| VisitFloatUnop(this, node, node->InputAt(0), kAVXFloat32Neg, kSSEFloat32Neg); |
| } |
| |
| void InstructionSelector::VisitFloat64Neg(Node* node) { |
| VisitFloatUnop(this, node, node->InputAt(0), kAVXFloat64Neg, kSSEFloat64Neg); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, |
| InstructionCode opcode) { |
| X64OperandGenerator g(this); |
| Emit(opcode, g.DefineAsFixed(node, xmm0), g.UseFixed(node->InputAt(0), xmm0), |
| g.UseFixed(node->InputAt(1), xmm1)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, |
| InstructionCode opcode) { |
| X64OperandGenerator g(this); |
| Emit(opcode, g.DefineAsFixed(node, xmm0), g.UseFixed(node->InputAt(0), xmm0)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::EmitPrepareArguments( |
| ZoneVector<PushParameter>* arguments, const CallDescriptor* call_descriptor, |
| Node* node) { |
| X64OperandGenerator g(this); |
| |
| // Prepare for C function call. |
| if (call_descriptor->IsCFunctionCall()) { |
| Emit(kArchPrepareCallCFunction | MiscField::encode(static_cast<int>( |
| call_descriptor->ParameterCount())), |
| 0, nullptr, 0, nullptr); |
| |
| // Poke any stack arguments. |
| for (size_t n = 0; n < arguments->size(); ++n) { |
| PushParameter input = (*arguments)[n]; |
| if (input.node) { |
| int slot = static_cast<int>(n); |
| InstructionOperand value = g.CanBeImmediate(input.node) |
| ? g.UseImmediate(input.node) |
| : g.UseRegister(input.node); |
| Emit(kX64Poke | MiscField::encode(slot), g.NoOutput(), value); |
| } |
| } |
| } else { |
| // Push any stack arguments. |
| int effect_level = GetEffectLevel(node); |
| for (PushParameter input : base::Reversed(*arguments)) { |
| // Skip any alignment holes in pushed nodes. We may have one in case of a |
| // Simd128 stack argument. |
| if (input.node == nullptr) continue; |
| if (g.CanBeImmediate(input.node)) { |
| Emit(kX64Push, g.NoOutput(), g.UseImmediate(input.node)); |
| } else if (IsSupported(ATOM) || |
| sequence()->IsFP(GetVirtualRegister(input.node))) { |
| // TODO(titzer): X64Push cannot handle stack->stack double moves |
| // because there is no way to encode fixed double slots. |
| Emit(kX64Push, g.NoOutput(), g.UseRegister(input.node)); |
| } else if (g.CanBeMemoryOperand(kX64Push, node, input.node, |
| effect_level)) { |
| InstructionOperand outputs[1]; |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| InstructionCode opcode = kX64Push; |
| AddressingMode mode = g.GetEffectiveAddressMemoryOperand( |
| input.node, inputs, &input_count); |
| opcode |= AddressingModeField::encode(mode); |
| Emit(opcode, 0, outputs, input_count, inputs); |
| } else { |
| Emit(kX64Push, g.NoOutput(), g.UseAny(input.node)); |
| } |
| } |
| } |
| } |
| |
| void InstructionSelector::EmitPrepareResults( |
| ZoneVector<PushParameter>* results, const CallDescriptor* call_descriptor, |
| Node* node) { |
| X64OperandGenerator g(this); |
| |
| int reverse_slot = 0; |
| for (PushParameter output : *results) { |
| if (!output.location.IsCallerFrameSlot()) continue; |
| reverse_slot += output.location.GetSizeInPointers(); |
| // Skip any alignment holes in nodes. |
| if (output.node == nullptr) continue; |
| DCHECK(!call_descriptor->IsCFunctionCall()); |
| if (output.location.GetType() == MachineType::Float32()) { |
| MarkAsFloat32(output.node); |
| } else if (output.location.GetType() == MachineType::Float64()) { |
| MarkAsFloat64(output.node); |
| } |
| InstructionOperand result = g.DefineAsRegister(output.node); |
| InstructionOperand slot = g.UseImmediate(reverse_slot); |
| Emit(kX64Peek, 1, &result, 1, &slot); |
| } |
| } |
| |
| bool InstructionSelector::IsTailCallAddressImmediate() { return true; } |
| |
| int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; } |
| |
| namespace { |
| |
| void VisitCompareWithMemoryOperand(InstructionSelector* selector, |
| InstructionCode opcode, Node* left, |
| InstructionOperand right, |
| FlagsContinuation* cont) { |
| DCHECK_EQ(IrOpcode::kLoad, left->opcode()); |
| X64OperandGenerator g(selector); |
| size_t input_count = 0; |
| InstructionOperand inputs[4]; |
| AddressingMode addressing_mode = |
| g.GetEffectiveAddressMemoryOperand(left, inputs, &input_count); |
| opcode |= AddressingModeField::encode(addressing_mode); |
| inputs[input_count++] = right; |
| |
| selector->EmitWithContinuation(opcode, 0, nullptr, input_count, inputs, cont); |
| } |
| |
| // Shared routine for multiple compare operations. |
| void VisitCompare(InstructionSelector* selector, InstructionCode opcode, |
| InstructionOperand left, InstructionOperand right, |
| FlagsContinuation* cont) { |
| selector->EmitWithContinuation(opcode, left, right, cont); |
| } |
| |
| // Shared routine for multiple compare operations. |
| void VisitCompare(InstructionSelector* selector, InstructionCode opcode, |
| Node* left, Node* right, FlagsContinuation* cont, |
| bool commutative) { |
| X64OperandGenerator g(selector); |
| if (commutative && g.CanBeBetterLeftOperand(right)) { |
| std::swap(left, right); |
| } |
| VisitCompare(selector, opcode, g.UseRegister(left), g.Use(right), cont); |
| } |
| |
| MachineType MachineTypeForNarrow(Node* node, Node* hint_node) { |
| if (hint_node->opcode() == IrOpcode::kLoad) { |
| MachineType hint = LoadRepresentationOf(hint_node->op()); |
| if (node->opcode() == IrOpcode::kInt32Constant || |
| node->opcode() == IrOpcode::kInt64Constant) { |
| int64_t constant = node->opcode() == IrOpcode::kInt32Constant |
| ? OpParameter<int32_t>(node->op()) |
| : OpParameter<int64_t>(node->op()); |
| if (hint == MachineType::Int8()) { |
| if (constant >= std::numeric_limits<int8_t>::min() && |
| constant <= std::numeric_limits<int8_t>::max()) { |
| return hint; |
| } |
| } else if (hint == MachineType::Uint8()) { |
| if (constant >= std::numeric_limits<uint8_t>::min() && |
| constant <= std::numeric_limits<uint8_t>::max()) { |
| return hint; |
| } |
| } else if (hint == MachineType::Int16()) { |
| if (constant >= std::numeric_limits<int16_t>::min() && |
| constant <= std::numeric_limits<int16_t>::max()) { |
| return hint; |
| } |
| } else if (hint == MachineType::Uint16()) { |
| if (constant >= std::numeric_limits<uint16_t>::min() && |
| constant <= std::numeric_limits<uint16_t>::max()) { |
| return hint; |
| } |
| } else if (hint == MachineType::Int32()) { |
| return hint; |
| } else if (hint == MachineType::Uint32()) { |
| if (constant >= 0) return hint; |
| } |
| } |
| } |
| return node->opcode() == IrOpcode::kLoad ? LoadRepresentationOf(node->op()) |
| : MachineType::None(); |
| } |
| |
| // Tries to match the size of the given opcode to that of the operands, if |
| // possible. |
| InstructionCode TryNarrowOpcodeSize(InstructionCode opcode, Node* left, |
| Node* right, FlagsContinuation* cont) { |
| // TODO(epertoso): we can probably get some size information out phi nodes. |
| // If the load representations don't match, both operands will be |
| // zero/sign-extended to 32bit. |
| MachineType left_type = MachineTypeForNarrow(left, right); |
| MachineType right_type = MachineTypeForNarrow(right, left); |
| if (left_type == right_type) { |
| switch (left_type.representation()) { |
| case MachineRepresentation::kBit: |
| case MachineRepresentation::kWord8: { |
| if (opcode == kX64Test32) return kX64Test8; |
| if (opcode == kX64Cmp32) { |
| if (left_type.semantic() == MachineSemantic::kUint32) { |
| cont->OverwriteUnsignedIfSigned(); |
| } else { |
| CHECK_EQ(MachineSemantic::kInt32, left_type.semantic()); |
| } |
| return kX64Cmp8; |
| } |
| break; |
| } |
| case MachineRepresentation::kWord16: |
| if (opcode == kX64Test32) return kX64Test16; |
| if (opcode == kX64Cmp32) { |
| if (left_type.semantic() == MachineSemantic::kUint32) { |
| cont->OverwriteUnsignedIfSigned(); |
| } else { |
| CHECK_EQ(MachineSemantic::kInt32, left_type.semantic()); |
| } |
| return kX64Cmp16; |
| } |
| break; |
| #ifdef V8_COMPRESS_POINTERS |
| case MachineRepresentation::kTaggedSigned: |
| case MachineRepresentation::kTaggedPointer: |
| case MachineRepresentation::kTagged: |
| // When pointer compression is enabled the lower 32-bits uniquely |
| // identify tagged value. |
| if (opcode == kX64Cmp) return kX64Cmp32; |
| break; |
| #endif |
| default: |
| break; |
| } |
| } |
| return opcode; |
| } |
| |
| // Shared routine for multiple word compare operations. |
| void VisitWordCompare(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont) { |
| X64OperandGenerator g(selector); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| |
| // The 32-bit comparisons automatically truncate Word64 |
| // values to Word32 range, no need to do that explicitly. |
| if (opcode == kX64Cmp32 || opcode == kX64Test32) { |
| if (left->opcode() == IrOpcode::kTruncateInt64ToInt32 && |
| selector->CanCover(node, left)) { |
| left = left->InputAt(0); |
| } |
| |
| if (right->opcode() == IrOpcode::kTruncateInt64ToInt32 && |
| selector->CanCover(node, right)) { |
| right = right->InputAt(0); |
| } |
| } |
| |
| opcode = TryNarrowOpcodeSize(opcode, left, right, cont); |
| |
| // If one of the two inputs is an immediate, make sure it's on the right, or |
| // if one of the two inputs is a memory operand, make sure it's on the left. |
| int effect_level = selector->GetEffectLevel(node); |
| if (cont->IsBranch()) { |
| effect_level = selector->GetEffectLevel( |
| cont->true_block()->PredecessorAt(0)->control_input()); |
| } |
| |
| if ((!g.CanBeImmediate(right) && g.CanBeImmediate(left)) || |
| (g.CanBeMemoryOperand(opcode, node, right, effect_level) && |
| !g.CanBeMemoryOperand(opcode, node, left, effect_level))) { |
| if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute(); |
| std::swap(left, right); |
| } |
| |
| // Match immediates on right side of comparison. |
| if (g.CanBeImmediate(right)) { |
| if (g.CanBeMemoryOperand(opcode, node, left, effect_level)) { |
| return VisitCompareWithMemoryOperand(selector, opcode, left, |
| g.UseImmediate(right), cont); |
| } |
| return VisitCompare(selector, opcode, g.Use(left), g.UseImmediate(right), |
| cont); |
| } |
| |
| // Match memory operands on left side of comparison. |
| if (g.CanBeMemoryOperand(opcode, node, left, effect_level)) { |
| return VisitCompareWithMemoryOperand(selector, opcode, left, |
| g.UseRegister(right), cont); |
| } |
| |
| return VisitCompare(selector, opcode, left, right, cont, |
| node->op()->HasProperty(Operator::kCommutative)); |
| } |
| |
| // Shared routine for 64-bit word comparison operations. |
| void VisitWord64Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| X64OperandGenerator g(selector); |
| if (selector->CanUseRootsRegister()) { |
| const RootsTable& roots_table = selector->isolate()->roots_table(); |
| RootIndex root_index; |
| HeapObjectBinopMatcher m(node); |
| if (m.right().HasValue() && |
| roots_table.IsRootHandle(m.right().Value(), &root_index)) { |
| if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute(); |
| InstructionCode opcode = |
| kX64Cmp | AddressingModeField::encode(kMode_Root); |
| return VisitCompare( |
| selector, opcode, |
| g.TempImmediate( |
| TurboAssemblerBase::RootRegisterOffsetForRootIndex(root_index)), |
| g.UseRegister(m.left().node()), cont); |
| } else if (m.left().HasValue() && |
| roots_table.IsRootHandle(m.left().Value(), &root_index)) { |
| InstructionCode opcode = |
| kX64Cmp | AddressingModeField::encode(kMode_Root); |
| return VisitCompare( |
| selector, opcode, |
| g.TempImmediate( |
| TurboAssemblerBase::RootRegisterOffsetForRootIndex(root_index)), |
| g.UseRegister(m.right().node()), cont); |
| } |
| } |
| if (selector->isolate() != nullptr) { |
| StackCheckMatcher<Int64BinopMatcher, IrOpcode::kUint64LessThan> m( |
| selector->isolate(), node); |
| if (m.Matched()) { |
| // Compare(Load(js_stack_limit), LoadStackPointer) |
| if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute(); |
| InstructionCode opcode = cont->Encode(kX64StackCheck); |
| CHECK(cont->IsBranch()); |
| selector->EmitWithContinuation(opcode, cont); |
| return; |
| } |
| } |
| WasmStackCheckMatcher<Int64BinopMatcher, IrOpcode::kUint64LessThan> wasm_m( |
| node); |
| if (wasm_m.Matched()) { |
| // This is a wasm stack check. By structure, we know that we can use the |
| // stack pointer directly, as wasm code does not modify the stack at points |
| // where stack checks are performed. |
| Node* left = node->InputAt(0); |
| LocationOperand rsp(InstructionOperand::EXPLICIT, LocationOperand::REGISTER, |
| InstructionSequence::DefaultRepresentation(), |
| RegisterCode::kRegCode_rsp); |
| return VisitCompareWithMemoryOperand(selector, kX64Cmp, left, rsp, cont); |
| } |
| VisitWordCompare(selector, node, kX64Cmp, cont); |
| } |
| |
| // Shared routine for comparison with zero. |
| void VisitCompareZero(InstructionSelector* selector, Node* user, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont) { |
| X64OperandGenerator g(selector); |
| if (cont->IsBranch() && |
| (cont->condition() == kNotEqual || cont->condition() == kEqual)) { |
| switch (node->opcode()) { |
| #define FLAGS_SET_BINOP_LIST(V) \ |
| V(kInt32Add, VisitBinop, kX64Add32) \ |
| V(kInt32Sub, VisitBinop, kX64Sub32) \ |
| V(kWord32And, VisitBinop, kX64And32) \ |
| V(kWord32Or, VisitBinop, kX64Or32) \ |
| V(kInt64Add, VisitBinop, kX64Add) \ |
| V(kInt64Sub, VisitBinop, kX64Sub) \ |
| V(kWord64And, VisitBinop, kX64And) \ |
| V(kWord64Or, VisitBinop, kX64Or) |
| #define FLAGS_SET_BINOP(opcode, Visit, archOpcode) \ |
| case IrOpcode::opcode: \ |
| if (selector->IsOnlyUserOfNodeInSameBlock(user, node)) { \ |
| return Visit(selector, node, archOpcode, cont); \ |
| } \ |
| break; |
| FLAGS_SET_BINOP_LIST(FLAGS_SET_BINOP) |
| #undef FLAGS_SET_BINOP_LIST |
| #undef FLAGS_SET_BINOP |
| |
| #define TRY_VISIT_WORD32_SHIFT TryVisitWordShift<Int32BinopMatcher, 32> |
| #define TRY_VISIT_WORD64_SHIFT TryVisitWordShift<Int64BinopMatcher, 64> |
| // Skip Word64Sar/Word32Sar since no instruction reduction in most cases. |
| #define FLAGS_SET_SHIFT_LIST(V) \ |
| V(kWord32Shl, TRY_VISIT_WORD32_SHIFT, kX64Shl32) \ |
| V(kWord32Shr, TRY_VISIT_WORD32_SHIFT, kX64Shr32) \ |
| V(kWord64Shl, TRY_VISIT_WORD64_SHIFT, kX64Shl) \ |
| V(kWord64Shr, TRY_VISIT_WORD64_SHIFT, kX64Shr) |
| #define FLAGS_SET_SHIFT(opcode, TryVisit, archOpcode) \ |
| case IrOpcode::opcode: \ |
| if (selector->IsOnlyUserOfNodeInSameBlock(user, node)) { \ |
| if (TryVisit(selector, node, archOpcode, cont)) return; \ |
| } \ |
| break; |
| FLAGS_SET_SHIFT_LIST(FLAGS_SET_SHIFT) |
| #undef TRY_VISIT_WORD32_SHIFT |
| #undef TRY_VISIT_WORD64_SHIFT |
| #undef FLAGS_SET_SHIFT_LIST |
| #undef FLAGS_SET_SHIFT |
| default: |
| break; |
| } |
| } |
| int effect_level = selector->GetEffectLevel(node); |
| if (cont->IsBranch()) { |
| effect_level = selector->GetEffectLevel( |
| cont->true_block()->PredecessorAt(0)->control_input()); |
| } |
| if (node->opcode() == IrOpcode::kLoad) { |
| switch (LoadRepresentationOf(node->op()).representation()) { |
| case MachineRepresentation::kWord8: |
| if (opcode == kX64Cmp32) { |
| opcode = kX64Cmp8; |
| } else if (opcode == kX64Test32) { |
| opcode = kX64Test8; |
| } |
| break; |
| case MachineRepresentation::kWord16: |
| if (opcode == kX64Cmp32) { |
| opcode = kX64Cmp16; |
| } else if (opcode == kX64Test32) { |
| opcode = kX64Test16; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| if (g.CanBeMemoryOperand(opcode, user, node, effect_level)) { |
| VisitCompareWithMemoryOperand(selector, opcode, node, g.TempImmediate(0), |
| cont); |
| } else { |
| VisitCompare(selector, opcode, g.Use(node), g.TempImmediate(0), cont); |
| } |
| } |
| |
| // Shared routine for multiple float32 compare operations (inputs commuted). |
| void VisitFloat32Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| Node* const left = node->InputAt(0); |
| Node* const right = node->InputAt(1); |
| InstructionCode const opcode = |
| selector->IsSupported(AVX) ? kAVXFloat32Cmp : kSSEFloat32Cmp; |
| VisitCompare(selector, opcode, right, left, cont, false); |
| } |
| |
| // Shared routine for multiple float64 compare operations (inputs commuted). |
| void VisitFloat64Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| Node* const left = node->InputAt(0); |
| Node* const right = node->InputAt(1); |
| InstructionCode const opcode = |
| selector->IsSupported(AVX) ? kAVXFloat64Cmp : kSSEFloat64Cmp; |
| VisitCompare(selector, opcode, right, left, cont, false); |
| } |
| |
| // Shared routine for Word32/Word64 Atomic Binops |
| void VisitAtomicBinop(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| X64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| AddressingMode addressing_mode; |
| InstructionOperand inputs[] = { |
| g.UseUniqueRegister(value), g.UseUniqueRegister(base), |
| g.GetEffectiveIndexOperand(index, &addressing_mode)}; |
| InstructionOperand outputs[] = {g.DefineAsFixed(node, rax)}; |
| InstructionOperand temps[] = {g.TempRegister()}; |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs, |
| arraysize(temps), temps); |
| } |
| |
| // Shared routine for Word32/Word64 Atomic CmpExchg |
| void VisitAtomicCompareExchange(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| X64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* old_value = node->InputAt(2); |
| Node* new_value = node->InputAt(3); |
| AddressingMode addressing_mode; |
| InstructionOperand inputs[] = { |
| g.UseFixed(old_value, rax), g.UseUniqueRegister(new_value), |
| g.UseUniqueRegister(base), |
| g.GetEffectiveIndexOperand(index, &addressing_mode)}; |
| InstructionOperand outputs[] = {g.DefineAsFixed(node, rax)}; |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs); |
| } |
| |
| // Shared routine for Word32/Word64 Atomic Exchange |
| void VisitAtomicExchange(InstructionSelector* selector, Node* node, |
| ArchOpcode opcode) { |
| X64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| AddressingMode addressing_mode; |
| InstructionOperand inputs[] = { |
| g.UseUniqueRegister(value), g.UseUniqueRegister(base), |
| g.GetEffectiveIndexOperand(index, &addressing_mode)}; |
| InstructionOperand outputs[] = {g.DefineSameAsFirst(node)}; |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| selector->Emit(code, arraysize(outputs), outputs, arraysize(inputs), inputs); |
| } |
| |
| } // namespace |
| |
| // Shared routine for word comparison against zero. |
| void InstructionSelector::VisitWordCompareZero(Node* user, Node* value, |
| FlagsContinuation* cont) { |
| // Try to combine with comparisons against 0 by simply inverting the branch. |
| while (value->opcode() == IrOpcode::kWord32Equal && CanCover(user, value)) { |
| Int32BinopMatcher m(value); |
| if (!m.right().Is(0)) break; |
| |
| user = value; |
| value = m.left().node(); |
| cont->Negate(); |
| } |
| |
| if (CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kWord32Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitWordCompare(this, value, kX64Cmp32, cont); |
| case IrOpcode::kInt32LessThan: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThan); |
| return VisitWordCompare(this, value, kX64Cmp32, cont); |
| case IrOpcode::kInt32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); |
| return VisitWordCompare(this, value, kX64Cmp32, cont); |
| case IrOpcode::kUint32LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitWordCompare(this, value, kX64Cmp32, cont); |
| case IrOpcode::kUint32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitWordCompare(this, value, kX64Cmp32, cont); |
| case IrOpcode::kWord64Equal: { |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| Int64BinopMatcher m(value); |
| if (m.right().Is(0)) { |
| // Try to combine the branch with a comparison. |
| Node* const user = m.node(); |
| Node* const value = m.left().node(); |
| if (CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kInt64Sub: |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kWord64And: |
| return VisitWordCompare(this, value, kX64Test, cont); |
| default: |
| break; |
| } |
| } |
| return VisitCompareZero(this, user, value, kX64Cmp, cont); |
| } |
| return VisitWord64Compare(this, value, cont); |
| } |
| case IrOpcode::kInt64LessThan: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThan); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kInt64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kUint64LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kUint64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitWord64Compare(this, value, cont); |
| case IrOpcode::kFloat32Equal: |
| cont->OverwriteAndNegateIfEqual(kUnorderedEqual); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat32LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual); |
| return VisitFloat32Compare(this, value, cont); |
| case IrOpcode::kFloat64Equal: |
| cont->OverwriteAndNegateIfEqual(kUnorderedEqual); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kFloat64LessThan: { |
| Float64BinopMatcher m(value); |
| if (m.left().Is(0.0) && m.right().IsFloat64Abs()) { |
| // This matches the pattern |
| // |
| // Float64LessThan(#0.0, Float64Abs(x)) |
| // |
| // which TurboFan generates for NumberToBoolean in the general case, |
| // and which evaluates to false if x is 0, -0 or NaN. We can compile |
| // this to a simple (v)ucomisd using not_equal flags condition, which |
| // avoids the costly Float64Abs. |
| cont->OverwriteAndNegateIfEqual(kNotEqual); |
| InstructionCode const opcode = |
| IsSupported(AVX) ? kAVXFloat64Cmp : kSSEFloat64Cmp; |
| return VisitCompare(this, opcode, m.left().node(), |
| m.right().InputAt(0), cont, false); |
| } |
| cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan); |
| return VisitFloat64Compare(this, value, cont); |
| } |
| case IrOpcode::kFloat64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual); |
| return VisitFloat64Compare(this, value, cont); |
| case IrOpcode::kProjection: |
| // Check if this is the overflow output projection of an |
| // <Operation>WithOverflow node. |
| if (ProjectionIndexOf(value->op()) == 1u) { |
| // We cannot combine the <Operation>WithOverflow with this branch |
| // unless the 0th projection (the use of the actual value of the |
| // <Operation> is either nullptr, which means there's no use of the |
| // actual value, or was already defined, which means it is scheduled |
| // *AFTER* this branch). |
| Node* const node = value->InputAt(0); |
| Node* const result = NodeProperties::FindProjection(node, 0); |
| if (result == nullptr || IsDefined(result)) { |
| switch (node->opcode()) { |
| case IrOpcode::kInt32AddWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(this, node, kX64Add32, cont); |
| case IrOpcode::kInt32SubWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(this, node, kX64Sub32, cont); |
| case IrOpcode::kInt32MulWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(this, node, kX64Imul32, cont); |
| case IrOpcode::kInt64AddWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(this, node, kX64Add, cont); |
| case IrOpcode::kInt64SubWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(this, node, kX64Sub, cont); |
| default: |
| break; |
| } |
| } |
| } |
| break; |
| case IrOpcode::kInt32Sub: |
| return VisitWordCompare(this, value, kX64Cmp32, cont); |
| case IrOpcode::kWord32And: |
| return VisitWordCompare(this, value, kX64Test32, cont); |
| default: |
| break; |
| } |
| } |
| |
| // Branch could not be combined with a compare, emit compare against 0. |
| VisitCompareZero(this, user, value, kX64Cmp32, cont); |
| } |
| |
| void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { |
| X64OperandGenerator g(this); |
| InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); |
| |
| // Emit either ArchTableSwitch or ArchLookupSwitch. |
| if (enable_switch_jump_table_ == kEnableSwitchJumpTable) { |
| static const size_t kMaxTableSwitchValueRange = 2 << 16; |
| size_t table_space_cost = 4 + sw.value_range(); |
| size_t table_time_cost = 3; |
| size_t lookup_space_cost = 3 + 2 * sw.case_count(); |
| size_t lookup_time_cost = sw.case_count(); |
| if (sw.case_count() > 4 && |
| table_space_cost + 3 * table_time_cost <= |
| lookup_space_cost + 3 * lookup_time_cost && |
| sw.min_value() > std::numeric_limits<int32_t>::min() && |
| sw.value_range() <= kMaxTableSwitchValueRange) { |
| InstructionOperand index_operand = g.TempRegister(); |
| if (sw.min_value()) { |
| // The leal automatically zero extends, so result is a valid 64-bit |
| // index. |
| Emit(kX64Lea32 | AddressingModeField::encode(kMode_MRI), index_operand, |
| value_operand, g.TempImmediate(-sw.min_value())); |
| } else { |
| // Zero extend, because we use it as 64-bit index into the jump table. |
| Emit(kX64Movl, index_operand, value_operand); |
| } |
| // Generate a table lookup. |
| return EmitTableSwitch(sw, index_operand); |
| } |
| } |
| |
| // Generate a tree of conditional jumps. |
| return EmitBinarySearchSwitch(sw, value_operand); |
| } |
| |
| void InstructionSelector::VisitWord32Equal(Node* const node) { |
| Node* user = node; |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| Int32BinopMatcher m(user); |
| if (m.right().Is(0)) { |
| return VisitWordCompareZero(m.node(), m.left().node(), &cont); |
| } |
| VisitWordCompare(this, node, kX64Cmp32, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); |
| VisitWordCompare(this, node, kX64Cmp32, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); |
| VisitWordCompare(this, node, kX64Cmp32, &cont); |
| } |
| |
| void InstructionSelector::VisitUint32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitWordCompare(this, node, kX64Cmp32, &cont); |
| } |
| |
| void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitWordCompare(this, node, kX64Cmp32, &cont); |
| } |
| |
| void InstructionSelector::VisitWord64Equal(Node* const node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| Int64BinopMatcher m(node); |
| if (m.right().Is(0)) { |
| // Try to combine the equality check with a comparison. |
| Node* const user = m.node(); |
| Node* const value = m.left().node(); |
| if (CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kInt64Sub: |
| return VisitWord64Compare(this, value, &cont); |
| case IrOpcode::kWord64And: |
| return VisitWordCompare(this, value, kX64Test, &cont); |
| default: |
| break; |
| } |
| } |
| } |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kX64Add32, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kX64Add32, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kX64Sub32, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kX64Sub32, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitWord64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32LessThan(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedGreaterThan, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64LessThan(Node* node) { |
| Float64BinopMatcher m(node); |
| if (m.left().Is(0.0) && m.right().IsFloat64Abs()) { |
| // This matches the pattern |
| // |
| // Float64LessThan(#0.0, Float64Abs(x)) |
| // |
| // which TurboFan generates for NumberToBoolean in the general case, |
| // and which evaluates to false if x is 0, -0 or NaN. We can compile |
| // this to a simple (v)ucomisd using not_equal flags condition, which |
| // avoids the costly Float64Abs. |
| FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, node); |
| InstructionCode const opcode = |
| IsSupported(AVX) ? kAVXFloat64Cmp : kSSEFloat64Cmp; |
| return VisitCompare(this, opcode, m.left().node(), m.right().InputAt(0), |
| &cont, false); |
| } |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedGreaterThan, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) { |
| X64OperandGenerator g(this); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| Float64Matcher mleft(left); |
| if (mleft.HasValue() && (bit_cast<uint64_t>(mleft.Value()) >> 32) == 0u) { |
| Emit(kSSEFloat64LoadLowWord32, g.DefineAsRegister(node), g.Use(right)); |
| return; |
| } |
| Emit(kSSEFloat64InsertLowWord32, g.DefineSameAsFirst(node), |
| g.UseRegister(left), g.Use(right)); |
| } |
| |
| void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) { |
| X64OperandGenerator g(this); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| Emit(kSSEFloat64InsertHighWord32, g.DefineSameAsFirst(node), |
| g.UseRegister(left), g.Use(right)); |
| } |
| |
| void InstructionSelector::VisitFloat64SilenceNaN(Node* node) { |
| X64OperandGenerator g(this); |
| Emit(kSSEFloat64SilenceNaN, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitMemoryBarrier(Node* node) { |
| X64OperandGenerator g(this); |
| Emit(kX64MFence, g.NoOutput()); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| DCHECK(load_rep.representation() == MachineRepresentation::kWord8 || |
| load_rep.representation() == MachineRepresentation::kWord16 || |
| load_rep.representation() == MachineRepresentation::kWord32); |
| USE(load_rep); |
| VisitLoad(node); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| USE(load_rep); |
| VisitLoad(node); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicStore(Node* node) { |
| MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); |
| ArchOpcode opcode = kArchNop; |
| switch (rep) { |
| case MachineRepresentation::kWord8: |
| opcode = kWord32AtomicExchangeInt8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kWord32AtomicExchangeInt16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kWord32AtomicExchangeWord32; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| VisitAtomicExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicStore(Node* node) { |
| MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); |
| ArchOpcode opcode = kArchNop; |
| switch (rep) { |
| case MachineRepresentation::kWord8: |
| opcode = kX64Word64AtomicExchangeUint8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kX64Word64AtomicExchangeUint16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kX64Word64AtomicExchangeUint32; |
| break; |
| case MachineRepresentation::kWord64: |
| opcode = kX64Word64AtomicExchangeUint64; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| VisitAtomicExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicExchange(Node* node) { |
| MachineType type = AtomicOpType(node->op()); |
| ArchOpcode opcode = kArchNop; |
| if (type == MachineType::Int8()) { |
| opcode = kWord32AtomicExchangeInt8; |
| } else if (type == MachineType::Uint8()) { |
| opcode = kWord32AtomicExchangeUint8; |
| } else if (type == MachineType::Int16()) { |
| opcode = kWord32AtomicExchangeInt16; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kWord32AtomicExchangeUint16; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = kWord32AtomicExchangeWord32; |
| } else { |
| UNREACHABLE(); |
| return; |
| } |
| VisitAtomicExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicExchange(Node* node) { |
| MachineType type = AtomicOpType(node->op()); |
| ArchOpcode opcode = kArchNop; |
| if (type == MachineType::Uint8()) { |
| opcode = kX64Word64AtomicExchangeUint8; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kX64Word64AtomicExchangeUint16; |
| } else if (type == MachineType::Uint32()) { |
| opcode = kX64Word64AtomicExchangeUint32; |
| } else if (type == MachineType::Uint64()) { |
| opcode = kX64Word64AtomicExchangeUint64; |
| } else { |
| UNREACHABLE(); |
| return; |
| } |
| VisitAtomicExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicCompareExchange(Node* node) { |
| MachineType type = AtomicOpType(node->op()); |
| ArchOpcode opcode = kArchNop; |
| if (type == MachineType::Int8()) { |
| opcode = kWord32AtomicCompareExchangeInt8; |
| } else if (type == MachineType::Uint8()) { |
| opcode = kWord32AtomicCompareExchangeUint8; |
| } else if (type == MachineType::Int16()) { |
| opcode = kWord32AtomicCompareExchangeInt16; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kWord32AtomicCompareExchangeUint16; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = kWord32AtomicCompareExchangeWord32; |
| } else { |
| UNREACHABLE(); |
| return; |
| } |
| VisitAtomicCompareExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord64AtomicCompareExchange(Node* node) { |
| MachineType type = AtomicOpType(node->op()); |
| ArchOpcode opcode = kArchNop; |
| if (type == MachineType::Uint8()) { |
| opcode = kX64Word64AtomicCompareExchangeUint8; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kX64Word64AtomicCompareExchangeUint16; |
| } else if (type == MachineType::Uint32()) { |
| opcode = kX64Word64AtomicCompareExchangeUint32; |
| } else if (type == MachineType::Uint64()) { |
| opcode = kX64Word64AtomicCompareExchangeUint64; |
| } else { |
| UNREACHABLE(); |
| return; |
| } |
| VisitAtomicCompareExchange(this, node, opcode); |
| } |
| |
| void InstructionSelector::VisitWord32AtomicBinaryOperation( |
| Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op, |
| ArchOpcode uint16_op, ArchOpcode word32_op) { |
| MachineType type = AtomicOpType(node->op()); |
| ArchOpcode opcode = kArchNop; |
| if (type == MachineType::Int8()) { |
| opcode = int8_op; |
| } else if (type == MachineType::Uint8()) { |
| opcode = uint8_op; |
| } else if (type == MachineType::Int16()) { |
| opcode = int16_op; |
| } else if (type == MachineType::Uint16()) { |
| opcode = uint16_op; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = word32_op; |
| } else { |
| UNREACHABLE(); |
| return; |
| } |
| VisitAtomicBinop(this, node, opcode); |
| } |
| |
| #define VISIT_ATOMIC_BINOP(op) \ |
| void InstructionSelector::VisitWord32Atomic##op(Node* node) { \ |
| VisitWord32AtomicBinaryOperation( \ |
| node, kWord32Atomic##op##Int8, kWord32Atomic##op##Uint8, \ |
| kWord32Atomic##op##Int16, kWord32Atomic##op##Uint16, \ |
| kWord32Atomic##op##Word32); \ |
| } |
| VISIT_ATOMIC_BINOP(Add) |
| VISIT_ATOMIC_BINOP(Sub) |
| VISIT_ATOMIC_BINOP(And) |
| VISIT_ATOMIC_BINOP(Or) |
| VISIT_ATOMIC_BINOP(Xor) |
| #undef VISIT_ATOMIC_BINOP |
| |
| void InstructionSelector::VisitWord64AtomicBinaryOperation( |
| Node* node, ArchOpcode uint8_op, ArchOpcode uint16_op, ArchOpcode uint32_op, |
| ArchOpcode word64_op) { |
| MachineType type = AtomicOpType(node->op()); |
| ArchOpcode opcode = kArchNop; |
| if (type == MachineType::Uint8()) { |
| opcode = uint8_op; |
| } else if (type == MachineType::Uint16()) { |
| opcode = uint16_op; |
| } else if (type == MachineType::Uint32()) { |
| opcode = uint32_op; |
| } else if (type == MachineType::Uint64()) { |
| opcode = word64_op; |
| } else { |
| UNREACHABLE(); |
| return; |
| } |
| VisitAtomicBinop(this, node, opcode); |
| } |
| |
| #define VISIT_ATOMIC_BINOP(op) \ |
| void InstructionSelector::VisitWord64Atomic##op(Node* node) { \ |
| VisitWord64AtomicBinaryOperation( \ |
| node, kX64Word64Atomic##op##Uint8, kX64Word64Atomic##op##Uint16, \ |
| kX64Word64Atomic##op##Uint32, kX64Word64Atomic##op##Uint64); \ |
| } |
| VISIT_ATOMIC_BINOP(Add) |
| VISIT_ATOMIC_BINOP(Sub) |
| VISIT_ATOMIC_BINOP(And) |
| VISIT_ATOMIC_BINOP(Or) |
| VISIT_ATOMIC_BINOP(Xor) |
| #undef VISIT_ATOMIC_BINOP |
| |
| #define SIMD_TYPES(V) \ |
| V(F64x2) \ |
| V(F32x4) \ |
| V(I64x2) \ |
| V(I32x4) \ |
| V(I16x8) \ |
| V(I8x16) |
| |
| #define SIMD_BINOP_LIST(V) \ |
| V(F64x2Eq) \ |
| V(F64x2Ne) \ |
| V(F64x2Lt) \ |
| V(F64x2Le) \ |
| V(F32x4Add) \ |
| V(F32x4AddHoriz) \ |
| V(F32x4Sub) \ |
| V(F32x4Mul) \ |
| V(F32x4Min) \ |
| V(F32x4Max) \ |
| V(F32x4Eq) \ |
| V(F32x4Ne)
|