blob: 929dc3182fa0a69ba50c40464ca1f5699443a87d [file] [log] [blame]
/*
* Copyright 2020 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLInliner.h"
#include <limits.h>
#include <memory>
#include <unordered_set>
#include "include/private/SkSLLayout.h"
#include "src/sksl/analysis/SkSLProgramVisitor.h"
#include "src/sksl/ir/SkSLBinaryExpression.h"
#include "src/sksl/ir/SkSLBreakStatement.h"
#include "src/sksl/ir/SkSLChildCall.h"
#include "src/sksl/ir/SkSLConstructor.h"
#include "src/sksl/ir/SkSLConstructorArray.h"
#include "src/sksl/ir/SkSLConstructorArrayCast.h"
#include "src/sksl/ir/SkSLConstructorCompound.h"
#include "src/sksl/ir/SkSLConstructorCompoundCast.h"
#include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h"
#include "src/sksl/ir/SkSLConstructorMatrixResize.h"
#include "src/sksl/ir/SkSLConstructorScalarCast.h"
#include "src/sksl/ir/SkSLConstructorSplat.h"
#include "src/sksl/ir/SkSLConstructorStruct.h"
#include "src/sksl/ir/SkSLContinueStatement.h"
#include "src/sksl/ir/SkSLDiscardStatement.h"
#include "src/sksl/ir/SkSLDoStatement.h"
#include "src/sksl/ir/SkSLExpressionStatement.h"
#include "src/sksl/ir/SkSLExternalFunctionCall.h"
#include "src/sksl/ir/SkSLExternalFunctionReference.h"
#include "src/sksl/ir/SkSLField.h"
#include "src/sksl/ir/SkSLFieldAccess.h"
#include "src/sksl/ir/SkSLForStatement.h"
#include "src/sksl/ir/SkSLFunctionCall.h"
#include "src/sksl/ir/SkSLFunctionDeclaration.h"
#include "src/sksl/ir/SkSLFunctionDefinition.h"
#include "src/sksl/ir/SkSLFunctionReference.h"
#include "src/sksl/ir/SkSLIfStatement.h"
#include "src/sksl/ir/SkSLIndexExpression.h"
#include "src/sksl/ir/SkSLInlineMarker.h"
#include "src/sksl/ir/SkSLInterfaceBlock.h"
#include "src/sksl/ir/SkSLLiteral.h"
#include "src/sksl/ir/SkSLNop.h"
#include "src/sksl/ir/SkSLPostfixExpression.h"
#include "src/sksl/ir/SkSLPrefixExpression.h"
#include "src/sksl/ir/SkSLReturnStatement.h"
#include "src/sksl/ir/SkSLSetting.h"
#include "src/sksl/ir/SkSLSwitchCase.h"
#include "src/sksl/ir/SkSLSwitchStatement.h"
#include "src/sksl/ir/SkSLSwizzle.h"
#include "src/sksl/ir/SkSLTernaryExpression.h"
#include "src/sksl/ir/SkSLUnresolvedFunction.h"
#include "src/sksl/ir/SkSLVarDeclarations.h"
#include "src/sksl/ir/SkSLVariable.h"
#include "src/sksl/ir/SkSLVariableReference.h"
namespace SkSL {
namespace {
static constexpr int kInlinedStatementLimit = 2500;
static int count_returns_at_end_of_control_flow(const FunctionDefinition& funcDef) {
class CountReturnsAtEndOfControlFlow : public ProgramVisitor {
public:
CountReturnsAtEndOfControlFlow(const FunctionDefinition& funcDef) {
this->visitProgramElement(funcDef);
}
bool visitExpression(const Expression& expr) override {
// Do not recurse into expressions.
return false;
}
bool visitStatement(const Statement& stmt) override {
switch (stmt.kind()) {
case Statement::Kind::kBlock: {
// Check only the last statement of a block.
const auto& block = stmt.as<Block>();
return block.children().size() &&
this->visitStatement(*block.children().back());
}
case Statement::Kind::kSwitch:
case Statement::Kind::kDo:
case Statement::Kind::kFor:
// Don't introspect switches or loop structures at all.
return false;
case Statement::Kind::kReturn:
++fNumReturns;
[[fallthrough]];
default:
return INHERITED::visitStatement(stmt);
}
}
int fNumReturns = 0;
using INHERITED = ProgramVisitor;
};
return CountReturnsAtEndOfControlFlow{funcDef}.fNumReturns;
}
static bool contains_recursive_call(const FunctionDeclaration& funcDecl) {
class ContainsRecursiveCall : public ProgramVisitor {
public:
bool visit(const FunctionDeclaration& funcDecl) {
fFuncDecl = &funcDecl;
return funcDecl.definition() ? this->visitProgramElement(*funcDecl.definition())
: false;
}
bool visitExpression(const Expression& expr) override {
if (expr.is<FunctionCall>() && expr.as<FunctionCall>().function().matches(*fFuncDecl)) {
return true;
}
return INHERITED::visitExpression(expr);
}
bool visitStatement(const Statement& stmt) override {
if (stmt.is<InlineMarker>() &&
stmt.as<InlineMarker>().function().matches(*fFuncDecl)) {
return true;
}
return INHERITED::visitStatement(stmt);
}
const FunctionDeclaration* fFuncDecl;
using INHERITED = ProgramVisitor;
};
return ContainsRecursiveCall{}.visit(funcDecl);
}
static std::unique_ptr<Statement>* find_parent_statement(
const std::vector<std::unique_ptr<Statement>*>& stmtStack) {
SkASSERT(!stmtStack.empty());
// Walk the statement stack from back to front, ignoring the last element (which is the
// enclosing statement).
auto iter = stmtStack.rbegin();
++iter;
// Anything counts as a parent statement other than a scopeless Block.
for (; iter != stmtStack.rend(); ++iter) {
std::unique_ptr<Statement>* stmt = *iter;
if (!(*stmt)->is<Block>() || (*stmt)->as<Block>().isScope()) {
return stmt;
}
}
// There wasn't any parent statement to be found.
return nullptr;
}
std::unique_ptr<Expression> clone_with_ref_kind(const Expression& expr,
VariableReference::RefKind refKind) {
std::unique_ptr<Expression> clone = expr.clone();
Analysis::UpdateVariableRefKind(clone.get(), refKind);
return clone;
}
class CountReturnsWithLimit : public ProgramVisitor {
public:
CountReturnsWithLimit(const FunctionDefinition& funcDef, int limit) : fLimit(limit) {
this->visitProgramElement(funcDef);
}
bool visitExpression(const Expression& expr) override {
// Do not recurse into expressions.
return false;
}
bool visitStatement(const Statement& stmt) override {
switch (stmt.kind()) {
case Statement::Kind::kReturn: {
++fNumReturns;
fDeepestReturn = std::max(fDeepestReturn, fScopedBlockDepth);
return (fNumReturns >= fLimit) || INHERITED::visitStatement(stmt);
}
case Statement::Kind::kVarDeclaration: {
if (fScopedBlockDepth > 1) {
fVariablesInBlocks = true;
}
return INHERITED::visitStatement(stmt);
}
case Statement::Kind::kBlock: {
int depthIncrement = stmt.as<Block>().isScope() ? 1 : 0;
fScopedBlockDepth += depthIncrement;
bool result = INHERITED::visitStatement(stmt);
fScopedBlockDepth -= depthIncrement;
if (fNumReturns == 0 && fScopedBlockDepth <= 1) {
// If closing this block puts us back at the top level, and we haven't
// encountered any return statements yet, any vardecls we may have encountered
// up until this point can be ignored. They are out of scope now, and they were
// never used in a return statement.
fVariablesInBlocks = false;
}
return result;
}
default:
return INHERITED::visitStatement(stmt);
}
}
int fNumReturns = 0;
int fDeepestReturn = 0;
int fLimit = 0;
int fScopedBlockDepth = 0;
bool fVariablesInBlocks = false;
using INHERITED = ProgramVisitor;
};
} // namespace
const Variable* Inliner::RemapVariable(const Variable* variable,
const VariableRewriteMap* varMap) {
auto iter = varMap->find(variable);
if (iter == varMap->end()) {
SkDEBUGFAILF("rewrite map does not contain variable '%.*s'",
(int)variable->name().size(), variable->name().data());
return variable;
}
Expression* expr = iter->second.get();
SkASSERT(expr);
if (!expr->is<VariableReference>()) {
SkDEBUGFAILF("rewrite map contains non-variable replacement for '%.*s'",
(int)variable->name().size(), variable->name().data());
return variable;
}
return expr->as<VariableReference>().variable();
}
Inliner::ReturnComplexity Inliner::GetReturnComplexity(const FunctionDefinition& funcDef) {
int returnsAtEndOfControlFlow = count_returns_at_end_of_control_flow(funcDef);
CountReturnsWithLimit counter{funcDef, returnsAtEndOfControlFlow + 1};
if (counter.fNumReturns > returnsAtEndOfControlFlow) {
return ReturnComplexity::kEarlyReturns;
}
if (counter.fNumReturns > 1) {
return ReturnComplexity::kScopedReturns;
}
if (counter.fVariablesInBlocks && counter.fDeepestReturn > 1) {
return ReturnComplexity::kScopedReturns;
}
return ReturnComplexity::kSingleSafeReturn;
}
void Inliner::ensureScopedBlocks(Statement* inlinedBody, Statement* parentStmt) {
// No changes necessary if this statement isn't actually a block.
if (!inlinedBody || !inlinedBody->is<Block>()) {
return;
}
// No changes necessary if the parent statement doesn't require a scope.
if (!parentStmt || !(parentStmt->is<IfStatement>() || parentStmt->is<ForStatement>() ||
parentStmt->is<DoStatement>())) {
return;
}
Block& block = inlinedBody->as<Block>();
// The inliner will create inlined function bodies as a Block containing multiple statements,
// but no scope. Normally, this is fine, but if this block is used as the statement for a
// do/for/if/while, this isn't actually possible to represent textually; a scope must be added
// for the generated code to match the intent. In the case of Blocks nested inside other Blocks,
// we add the scope to the outermost block if needed. Zero-statement blocks have similar
// issues--if we don't represent the Block textually somehow, we run the risk of accidentally
// absorbing the following statement into our loop--so we also add a scope to these.
for (Block* nestedBlock = &block;; ) {
if (nestedBlock->isScope()) {
// We found an explicit scope; all is well.
return;
}
if (nestedBlock->children().size() != 1) {
// We found a block with multiple (or zero) statements, but no scope? Let's add a scope
// to the outermost block.
block.setIsScope(true);
return;
}
if (!nestedBlock->children()[0]->is<Block>()) {
// This block has exactly one thing inside, and it's not another block. No need to scope
// it.
return;
}
// We have to go deeper.
nestedBlock = &nestedBlock->children()[0]->as<Block>();
}
}
void Inliner::reset() {
fContext->fMangler->reset();
fInlinedStatementCounter = 0;
}
std::unique_ptr<Expression> Inliner::inlineExpression(int line,
VariableRewriteMap* varMap,
SymbolTable* symbolTableForExpression,
const Expression& expression) {
auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
if (e) {
return this->inlineExpression(line, varMap, symbolTableForExpression, *e);
}
return nullptr;
};
auto argList = [&](const ExpressionArray& originalArgs) -> ExpressionArray {
ExpressionArray args;
args.reserve_back(originalArgs.size());
for (const std::unique_ptr<Expression>& arg : originalArgs) {
args.push_back(expr(arg));
}
return args;
};
switch (expression.kind()) {
case Expression::Kind::kBinary: {
const BinaryExpression& binaryExpr = expression.as<BinaryExpression>();
return BinaryExpression::Make(*fContext,
expr(binaryExpr.left()),
binaryExpr.getOperator(),
expr(binaryExpr.right()));
}
case Expression::Kind::kLiteral:
return expression.clone();
case Expression::Kind::kChildCall: {
const ChildCall& childCall = expression.as<ChildCall>();
return ChildCall::Make(*fContext,
line,
childCall.type().clone(symbolTableForExpression),
childCall.child(),
argList(childCall.arguments()));
}
case Expression::Kind::kConstructorArray: {
const ConstructorArray& ctor = expression.as<ConstructorArray>();
return ConstructorArray::Make(*fContext, line,
*ctor.type().clone(symbolTableForExpression),
argList(ctor.arguments()));
}
case Expression::Kind::kConstructorArrayCast: {
const ConstructorArrayCast& ctor = expression.as<ConstructorArrayCast>();
return ConstructorArrayCast::Make(*fContext, line,
*ctor.type().clone(symbolTableForExpression),
expr(ctor.argument()));
}
case Expression::Kind::kConstructorCompound: {
const ConstructorCompound& ctor = expression.as<ConstructorCompound>();
return ConstructorCompound::Make(*fContext, line,
*ctor.type().clone(symbolTableForExpression),
argList(ctor.arguments()));
}
case Expression::Kind::kConstructorCompoundCast: {
const ConstructorCompoundCast& ctor = expression.as<ConstructorCompoundCast>();
return ConstructorCompoundCast::Make(*fContext, line,
*ctor.type().clone(symbolTableForExpression),
expr(ctor.argument()));
}
case Expression::Kind::kConstructorDiagonalMatrix: {
const ConstructorDiagonalMatrix& ctor = expression.as<ConstructorDiagonalMatrix>();
return ConstructorDiagonalMatrix::Make(*fContext, line,
*ctor.type().clone(symbolTableForExpression),
expr(ctor.argument()));
}
case Expression::Kind::kConstructorMatrixResize: {
const ConstructorMatrixResize& ctor = expression.as<ConstructorMatrixResize>();
return ConstructorMatrixResize::Make(*fContext, line,
*ctor.type().clone(symbolTableForExpression),
expr(ctor.argument()));
}
case Expression::Kind::kConstructorScalarCast: {
const ConstructorScalarCast& ctor = expression.as<ConstructorScalarCast>();
return ConstructorScalarCast::Make(*fContext, line,
*ctor.type().clone(symbolTableForExpression),
expr(ctor.argument()));
}
case Expression::Kind::kConstructorSplat: {
const ConstructorSplat& ctor = expression.as<ConstructorSplat>();
return ConstructorSplat::Make(*fContext, line,
*ctor.type().clone(symbolTableForExpression),
expr(ctor.argument()));
}
case Expression::Kind::kConstructorStruct: {
const ConstructorStruct& ctor = expression.as<ConstructorStruct>();
return ConstructorStruct::Make(*fContext, line,
*ctor.type().clone(symbolTableForExpression),
argList(ctor.arguments()));
}
case Expression::Kind::kExternalFunctionCall: {
const ExternalFunctionCall& externalCall = expression.as<ExternalFunctionCall>();
return std::make_unique<ExternalFunctionCall>(line, &externalCall.function(),
argList(externalCall.arguments()));
}
case Expression::Kind::kExternalFunctionReference:
return expression.clone();
case Expression::Kind::kFieldAccess: {
const FieldAccess& f = expression.as<FieldAccess>();
return FieldAccess::Make(*fContext, expr(f.base()), f.fieldIndex(), f.ownerKind());
}
case Expression::Kind::kFunctionCall: {
const FunctionCall& funcCall = expression.as<FunctionCall>();
return FunctionCall::Make(*fContext,
line,
funcCall.type().clone(symbolTableForExpression),
funcCall.function(),
argList(funcCall.arguments()));
}
case Expression::Kind::kFunctionReference:
return expression.clone();
case Expression::Kind::kIndex: {
const IndexExpression& idx = expression.as<IndexExpression>();
return IndexExpression::Make(*fContext, expr(idx.base()), expr(idx.index()));
}
case Expression::Kind::kMethodReference:
return expression.clone();
case Expression::Kind::kPrefix: {
const PrefixExpression& p = expression.as<PrefixExpression>();
return PrefixExpression::Make(*fContext, p.getOperator(), expr(p.operand()));
}
case Expression::Kind::kPostfix: {
const PostfixExpression& p = expression.as<PostfixExpression>();
return PostfixExpression::Make(*fContext, expr(p.operand()), p.getOperator());
}
case Expression::Kind::kSetting:
return expression.clone();
case Expression::Kind::kSwizzle: {
const Swizzle& s = expression.as<Swizzle>();
return Swizzle::Make(*fContext, expr(s.base()), s.components());
}
case Expression::Kind::kTernary: {
const TernaryExpression& t = expression.as<TernaryExpression>();
return TernaryExpression::Make(*fContext, expr(t.test()),
expr(t.ifTrue()), expr(t.ifFalse()));
}
case Expression::Kind::kTypeReference:
return expression.clone();
case Expression::Kind::kVariableReference: {
const VariableReference& v = expression.as<VariableReference>();
auto varMapIter = varMap->find(v.variable());
if (varMapIter != varMap->end()) {
return clone_with_ref_kind(*varMapIter->second, v.refKind());
}
return v.clone();
}
default:
SkASSERT(false);
return nullptr;
}
}
std::unique_ptr<Statement> Inliner::inlineStatement(int line,
VariableRewriteMap* varMap,
SymbolTable* symbolTableForStatement,
std::unique_ptr<Expression>* resultExpr,
ReturnComplexity returnComplexity,
const Statement& statement,
bool isBuiltinCode) {
auto stmt = [&](const std::unique_ptr<Statement>& s) -> std::unique_ptr<Statement> {
if (s) {
return this->inlineStatement(line, varMap, symbolTableForStatement, resultExpr,
returnComplexity, *s, isBuiltinCode);
}
return nullptr;
};
auto blockStmts = [&](const Block& block) {
StatementArray result;
result.reserve_back(block.children().size());
for (const std::unique_ptr<Statement>& child : block.children()) {
result.push_back(stmt(child));
}
return result;
};
auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
if (e) {
return this->inlineExpression(line, varMap, symbolTableForStatement, *e);
}
return nullptr;
};
++fInlinedStatementCounter;
switch (statement.kind()) {
case Statement::Kind::kBlock: {
const Block& b = statement.as<Block>();
return Block::Make(line, blockStmts(b),
SymbolTable::WrapIfBuiltin(b.symbolTable()),
b.isScope());
}
case Statement::Kind::kBreak:
case Statement::Kind::kContinue:
case Statement::Kind::kDiscard:
return statement.clone();
case Statement::Kind::kDo: {
const DoStatement& d = statement.as<DoStatement>();
return DoStatement::Make(*fContext, stmt(d.statement()), expr(d.test()));
}
case Statement::Kind::kExpression: {
const ExpressionStatement& e = statement.as<ExpressionStatement>();
return ExpressionStatement::Make(*fContext, expr(e.expression()));
}
case Statement::Kind::kFor: {
const ForStatement& f = statement.as<ForStatement>();
// need to ensure initializer is evaluated first so that we've already remapped its
// declarations by the time we evaluate test & next
std::unique_ptr<Statement> initializer = stmt(f.initializer());
std::unique_ptr<LoopUnrollInfo> unrollInfo;
if (f.unrollInfo()) {
// The for loop's unroll-info points to the Variable in the initializer as the
// index. This variable has been rewritten into a clone by the inliner, so we need
// to update the loop-unroll info to point to the clone.
unrollInfo = std::make_unique<LoopUnrollInfo>(*f.unrollInfo());
unrollInfo->fIndex = RemapVariable(unrollInfo->fIndex, varMap);
}
return ForStatement::Make(*fContext, line, std::move(initializer), expr(f.test()),
expr(f.next()), stmt(f.statement()), std::move(unrollInfo),
SymbolTable::WrapIfBuiltin(f.symbols()));
}
case Statement::Kind::kIf: {
const IfStatement& i = statement.as<IfStatement>();
return IfStatement::Make(*fContext, line, i.isStatic(), expr(i.test()),
stmt(i.ifTrue()), stmt(i.ifFalse()));
}
case Statement::Kind::kInlineMarker:
case Statement::Kind::kNop:
return statement.clone();
case Statement::Kind::kReturn: {
const ReturnStatement& r = statement.as<ReturnStatement>();
if (!r.expression()) {
// This function doesn't return a value. We won't inline functions with early
// returns, so a return statement is a no-op and can be treated as such.
return Nop::Make();
}
// If a function only contains a single return, and it doesn't reference variables from
// inside an Block's scope, we don't need to store the result in a variable at all. Just
// replace the function-call expression with the function's return expression.
SkASSERT(resultExpr);
if (returnComplexity <= ReturnComplexity::kSingleSafeReturn) {
*resultExpr = expr(r.expression());
return Nop::Make();
}
// For more complex functions, assign their result into a variable.
SkASSERT(*resultExpr);
auto assignment = ExpressionStatement::Make(
*fContext,
BinaryExpression::Make(
*fContext,
clone_with_ref_kind(**resultExpr, VariableRefKind::kWrite),
Token::Kind::TK_EQ,
expr(r.expression())));
// Functions without early returns aren't wrapped in a for loop and don't need to worry
// about breaking out of the control flow.
return assignment;
}
case Statement::Kind::kSwitch: {
const SwitchStatement& ss = statement.as<SwitchStatement>();
StatementArray cases;
cases.reserve_back(ss.cases().size());
for (const std::unique_ptr<Statement>& switchCaseStmt : ss.cases()) {
const SwitchCase& sc = switchCaseStmt->as<SwitchCase>();
cases.push_back(std::make_unique<SwitchCase>(line, expr(sc.value()),
stmt(sc.statement())));
}
return SwitchStatement::Make(*fContext, line, ss.isStatic(), expr(ss.value()),
std::move(cases), SymbolTable::WrapIfBuiltin(ss.symbols()));
}
case Statement::Kind::kVarDeclaration: {
const VarDeclaration& decl = statement.as<VarDeclaration>();
std::unique_ptr<Expression> initialValue = expr(decl.value());
const Variable& variable = decl.var();
// We assign unique names to inlined variables--scopes hide most of the problems in this
// regard, but see `InlinerAvoidsVariableNameOverlap` for a counterexample where unique
// names are important.
const String* name = symbolTableForStatement->takeOwnershipOfString(
fContext->fMangler->uniqueName(variable.name(), symbolTableForStatement));
auto clonedVar = std::make_unique<Variable>(
line,
&variable.modifiers(),
name->c_str(),
variable.type().clone(symbolTableForStatement),
isBuiltinCode,
variable.storage());
(*varMap)[&variable] = VariableReference::Make(line, clonedVar.get());
auto result = VarDeclaration::Make(*fContext,
clonedVar.get(),
decl.baseType().clone(symbolTableForStatement),
decl.arraySize(),
std::move(initialValue));
symbolTableForStatement->takeOwnershipOfSymbol(std::move(clonedVar));
return result;
}
default:
SkASSERT(false);
return nullptr;
}
}
Inliner::InlinedCall Inliner::inlineCall(FunctionCall* call,
std::shared_ptr<SymbolTable> symbolTable,
const ProgramUsage& usage,
const FunctionDeclaration* caller) {
using ScratchVariable = Variable::ScratchVariable;
// Inlining is more complicated here than in a typical compiler, because we have to have a
// high-level IR and can't just drop statements into the middle of an expression or even use
// gotos.
//
// Since we can't insert statements into an expression, we run the inline function as extra
// statements before the statement we're currently processing, relying on a lack of execution
// order guarantees. Since we can't use gotos (which are normally used to replace return
// statements), we wrap the whole function in a loop and use break statements to jump to the
// end.
SkASSERT(fContext);
SkASSERT(call);
SkASSERT(this->isSafeToInline(call->function().definition()));
ExpressionArray& arguments = call->arguments();
const int line = call->fLine;
const FunctionDefinition& function = *call->function().definition();
const Block& body = function.body()->as<Block>();
const ReturnComplexity returnComplexity = GetReturnComplexity(function);
StatementArray inlineStatements;
int expectedStmtCount = 1 + // Inline marker
1 + // Result variable
arguments.size() + // Function argument temp-vars
body.children().size(); // Inlined code
inlineStatements.reserve_back(expectedStmtCount);
inlineStatements.push_back(InlineMarker::Make(&call->function()));
std::unique_ptr<Expression> resultExpr;
if (returnComplexity > ReturnComplexity::kSingleSafeReturn &&
!function.declaration().returnType().isVoid()) {
// Create a variable to hold the result in the extra statements. We don't need to do this
// for void-return functions, or in cases that are simple enough that we can just replace
// the function-call node with the result expression.
ScratchVariable var = Variable::MakeScratchVariable(*fContext,
function.declaration().name(),
&function.declaration().returnType(),
Modifiers{},
symbolTable.get(),
/*initialValue=*/nullptr);
inlineStatements.push_back(std::move(var.fVarDecl));
resultExpr = VariableReference::Make(/*line=*/-1, var.fVarSymbol);
}
// Create variables in the extra statements to hold the arguments, and assign the arguments to
// them.
VariableRewriteMap varMap;
for (int i = 0; i < arguments.count(); ++i) {
// If the parameter isn't written to within the inline function ...
Expression* arg = arguments[i].get();
const Variable* param = function.declaration().parameters()[i];
const ProgramUsage::VariableCounts& paramUsage = usage.get(*param);
if (!paramUsage.fWrite) {
// ... and can be inlined trivially (e.g. a swizzle, or a constant array index),
// or any expression without side effects that is only accessed at most once...
if ((paramUsage.fRead > 1) ? Analysis::IsTrivialExpression(*arg)
: !arg->hasSideEffects()) {
// ... we don't need to copy it at all! We can just use the existing expression.
varMap[param] = arg->clone();
continue;
}
}
ScratchVariable var = Variable::MakeScratchVariable(*fContext,
param->name(),
&arg->type(),
param->modifiers(),
symbolTable.get(),
std::move(arguments[i]));
inlineStatements.push_back(std::move(var.fVarDecl));
varMap[param] = VariableReference::Make(/*line=*/-1, var.fVarSymbol);
}
for (const std::unique_ptr<Statement>& stmt : body.children()) {
inlineStatements.push_back(this->inlineStatement(line, &varMap, symbolTable.get(),
&resultExpr, returnComplexity, *stmt,
caller->isBuiltin()));
}
SkASSERT(inlineStatements.count() <= expectedStmtCount);
// Wrap all of the generated statements in a block. We need a real Block here, so we can't use
// MakeUnscoped. This is because we need to add another child statement to the Block later.
InlinedCall inlinedCall;
inlinedCall.fInlinedBody = Block::Make(line, std::move(inlineStatements),
/*symbols=*/nullptr, /*isScope=*/false);
if (resultExpr) {
// Return our result expression as-is.
inlinedCall.fReplacementExpr = std::move(resultExpr);
} else if (function.declaration().returnType().isVoid()) {
// It's a void function, so it doesn't actually result in anything, but we have to return
// something non-null as a standin.
inlinedCall.fReplacementExpr = Literal::MakeBool(*fContext, line, /*value=*/false);
} else {
// It's a non-void function, but it never created a result expression--that is, it never
// returned anything on any path! This should have been detected in the function finalizer.
// Still, discard our output and generate an error.
SkDEBUGFAIL("inliner found non-void function that fails to return a value on any path");
fContext->fErrors->error(function.fLine, "inliner found non-void function '" +
function.declaration().name() +
"' that fails to return a value on any path");
inlinedCall = {};
}
return inlinedCall;
}
bool Inliner::isSafeToInline(const FunctionDefinition* functionDef) {
// A threshold of zero indicates that the inliner is completely disabled, so we can just return.
if (this->settings().fInlineThreshold <= 0) {
return false;
}
// Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl)
if (fInlinedStatementCounter >= kInlinedStatementLimit) {
return false;
}
if (functionDef == nullptr) {
// Can't inline something if we don't actually have its definition.
return false;
}
if (functionDef->declaration().modifiers().fFlags & Modifiers::kNoInline_Flag) {
// Refuse to inline functions decorated with `noinline`.
return false;
}
// We don't allow inlining a function with out parameters. (See skia:11326 for rationale.)
for (const Variable* param : functionDef->declaration().parameters()) {
if (param->modifiers().fFlags & Modifiers::Flag::kOut_Flag) {
return false;
}
}
// We don't have a mechanism to simulate early returns, so we can't inline if there is one.
return GetReturnComplexity(*functionDef) < ReturnComplexity::kEarlyReturns;
}
// A candidate function for inlining, containing everything that `inlineCall` needs.
struct InlineCandidate {
std::shared_ptr<SymbolTable> fSymbols; // the SymbolTable of the candidate
std::unique_ptr<Statement>* fParentStmt; // the parent Statement of the enclosing stmt
std::unique_ptr<Statement>* fEnclosingStmt; // the Statement containing the candidate
std::unique_ptr<Expression>* fCandidateExpr; // the candidate FunctionCall to be inlined
FunctionDefinition* fEnclosingFunction; // the Function containing the candidate
};
struct InlineCandidateList {
std::vector<InlineCandidate> fCandidates;
};
class InlineCandidateAnalyzer {
public:
// A list of all the inlining candidates we found during analysis.
InlineCandidateList* fCandidateList;
// A stack of the symbol tables; since most nodes don't have one, expected to be shallower than
// the enclosing-statement stack.
std::vector<std::shared_ptr<SymbolTable>> fSymbolTableStack;
// A stack of "enclosing" statements--these would be suitable for the inliner to use for adding
// new instructions. Not all statements are suitable (e.g. a for-loop's initializer). The
// inliner might replace a statement with a block containing the statement.
std::vector<std::unique_ptr<Statement>*> fEnclosingStmtStack;
// The function that we're currently processing (i.e. inlining into).
FunctionDefinition* fEnclosingFunction = nullptr;
void visit(const std::vector<std::unique_ptr<ProgramElement>>& elements,
std::shared_ptr<SymbolTable> symbols,
InlineCandidateList* candidateList) {
fCandidateList = candidateList;
fSymbolTableStack.push_back(symbols);
for (const std::unique_ptr<ProgramElement>& pe : elements) {
this->visitProgramElement(pe.get());
}
fSymbolTableStack.pop_back();
fCandidateList = nullptr;
}
void visitProgramElement(ProgramElement* pe) {
switch (pe->kind()) {
case ProgramElement::Kind::kFunction: {
FunctionDefinition& funcDef = pe->as<FunctionDefinition>();
fEnclosingFunction = &funcDef;
this->visitStatement(&funcDef.body());
break;
}
default:
// The inliner can't operate outside of a function's scope.
break;
}
}
void visitStatement(std::unique_ptr<Statement>* stmt,
bool isViableAsEnclosingStatement = true) {
if (!*stmt) {
return;
}
size_t oldEnclosingStmtStackSize = fEnclosingStmtStack.size();
size_t oldSymbolStackSize = fSymbolTableStack.size();
if (isViableAsEnclosingStatement) {
fEnclosingStmtStack.push_back(stmt);
}
switch ((*stmt)->kind()) {
case Statement::Kind::kBreak:
case Statement::Kind::kContinue:
case Statement::Kind::kDiscard:
case Statement::Kind::kInlineMarker:
case Statement::Kind::kNop:
break;
case Statement::Kind::kBlock: {
Block& block = (*stmt)->as<Block>();
if (block.symbolTable()) {
fSymbolTableStack.push_back(block.symbolTable());
}
for (std::unique_ptr<Statement>& blockStmt : block.children()) {
this->visitStatement(&blockStmt);
}
break;
}
case Statement::Kind::kDo: {
DoStatement& doStmt = (*stmt)->as<DoStatement>();
// The loop body is a candidate for inlining.
this->visitStatement(&doStmt.statement());
// The inliner isn't smart enough to inline the test-expression for a do-while
// loop at this time. There are two limitations:
// - We would need to insert the inlined-body block at the very end of the do-
// statement's inner fStatement. We don't support that today, but it's doable.
// - We cannot inline the test expression if the loop uses `continue` anywhere; that
// would skip over the inlined block that evaluates the test expression. There
// isn't a good fix for this--any workaround would be more complex than the cost
// of a function call. However, loops that don't use `continue` would still be
// viable candidates for inlining.
break;
}
case Statement::Kind::kExpression: {
ExpressionStatement& expr = (*stmt)->as<ExpressionStatement>();
this->visitExpression(&expr.expression());
break;
}
case Statement::Kind::kFor: {
ForStatement& forStmt = (*stmt)->as<ForStatement>();
if (forStmt.symbols()) {
fSymbolTableStack.push_back(forStmt.symbols());
}
// The initializer and loop body are candidates for inlining.
this->visitStatement(&forStmt.initializer(),
/*isViableAsEnclosingStatement=*/false);
this->visitStatement(&forStmt.statement());
// The inliner isn't smart enough to inline the test- or increment-expressions
// of a for loop loop at this time. There are a handful of limitations:
// - We would need to insert the test-expression block at the very beginning of the
// for-loop's inner fStatement, and the increment-expression block at the very
// end. We don't support that today, but it's doable.
// - The for-loop's built-in test-expression would need to be dropped entirely,
// and the loop would be halted via a break statement at the end of the inlined
// test-expression. This is again something we don't support today, but it could
// be implemented.
// - We cannot inline the increment-expression if the loop uses `continue` anywhere;
// that would skip over the inlined block that evaluates the increment expression.
// There isn't a good fix for this--any workaround would be more complex than the
// cost of a function call. However, loops that don't use `continue` would still
// be viable candidates for increment-expression inlining.
break;
}
case Statement::Kind::kIf: {
IfStatement& ifStmt = (*stmt)->as<IfStatement>();
this->visitExpression(&ifStmt.test());
this->visitStatement(&ifStmt.ifTrue());
this->visitStatement(&ifStmt.ifFalse());
break;
}
case Statement::Kind::kReturn: {
ReturnStatement& returnStmt = (*stmt)->as<ReturnStatement>();
this->visitExpression(&returnStmt.expression());
break;
}
case Statement::Kind::kSwitch: {
SwitchStatement& switchStmt = (*stmt)->as<SwitchStatement>();
if (switchStmt.symbols()) {
fSymbolTableStack.push_back(switchStmt.symbols());
}
this->visitExpression(&switchStmt.value());
for (const std::unique_ptr<Statement>& switchCase : switchStmt.cases()) {
// The switch-case's fValue cannot be a FunctionCall; skip it.
this->visitStatement(&switchCase->as<SwitchCase>().statement());
}
break;
}
case Statement::Kind::kVarDeclaration: {
VarDeclaration& varDeclStmt = (*stmt)->as<VarDeclaration>();
// Don't need to scan the declaration's sizes; those are always IntLiterals.
this->visitExpression(&varDeclStmt.value());
break;
}
default:
SkUNREACHABLE;
}
// Pop our symbol and enclosing-statement stacks.
fSymbolTableStack.resize(oldSymbolStackSize);
fEnclosingStmtStack.resize(oldEnclosingStmtStackSize);
}
void visitExpression(std::unique_ptr<Expression>* expr) {
if (!*expr) {
return;
}
switch ((*expr)->kind()) {
case Expression::Kind::kExternalFunctionReference:
case Expression::Kind::kFieldAccess:
case Expression::Kind::kFunctionReference:
case Expression::Kind::kLiteral:
case Expression::Kind::kMethodReference:
case Expression::Kind::kSetting:
case Expression::Kind::kTypeReference:
case Expression::Kind::kVariableReference:
// Nothing to scan here.
break;
case Expression::Kind::kBinary: {
BinaryExpression& binaryExpr = (*expr)->as<BinaryExpression>();
this->visitExpression(&binaryExpr.left());
// Logical-and and logical-or binary expressions do not inline the right side,
// because that would invalidate short-circuiting. That is, when evaluating
// expressions like these:
// (false && x()) // always false
// (true || y()) // always true
// It is illegal for side-effects from x() or y() to occur. The simplest way to
// enforce that rule is to avoid inlining the right side entirely. However, it is
// safe for other types of binary expression to inline both sides.
Operator op = binaryExpr.getOperator();
bool shortCircuitable = (op.kind() == Token::Kind::TK_LOGICALAND ||
op.kind() == Token::Kind::TK_LOGICALOR);
if (!shortCircuitable) {
this->visitExpression(&binaryExpr.right());
}
break;
}
case Expression::Kind::kChildCall: {
ChildCall& childCallExpr = (*expr)->as<ChildCall>();
for (std::unique_ptr<Expression>& arg : childCallExpr.arguments()) {
this->visitExpression(&arg);
}
break;
}
case Expression::Kind::kConstructorArray:
case Expression::Kind::kConstructorArrayCast:
case Expression::Kind::kConstructorCompound:
case Expression::Kind::kConstructorCompoundCast:
case Expression::Kind::kConstructorDiagonalMatrix:
case Expression::Kind::kConstructorMatrixResize:
case Expression::Kind::kConstructorScalarCast:
case Expression::Kind::kConstructorSplat:
case Expression::Kind::kConstructorStruct: {
AnyConstructor& constructorExpr = (*expr)->asAnyConstructor();
for (std::unique_ptr<Expression>& arg : constructorExpr.argumentSpan()) {
this->visitExpression(&arg);
}
break;
}
case Expression::Kind::kExternalFunctionCall: {
ExternalFunctionCall& funcCallExpr = (*expr)->as<ExternalFunctionCall>();
for (std::unique_ptr<Expression>& arg : funcCallExpr.arguments()) {
this->visitExpression(&arg);
}
break;
}
case Expression::Kind::kFunctionCall: {
FunctionCall& funcCallExpr = (*expr)->as<FunctionCall>();
for (std::unique_ptr<Expression>& arg : funcCallExpr.arguments()) {
this->visitExpression(&arg);
}
this->addInlineCandidate(expr);
break;
}
case Expression::Kind::kIndex: {
IndexExpression& indexExpr = (*expr)->as<IndexExpression>();
this->visitExpression(&indexExpr.base());
this->visitExpression(&indexExpr.index());
break;
}
case Expression::Kind::kPostfix: {
PostfixExpression& postfixExpr = (*expr)->as<PostfixExpression>();
this->visitExpression(&postfixExpr.operand());
break;
}
case Expression::Kind::kPrefix: {
PrefixExpression& prefixExpr = (*expr)->as<PrefixExpression>();
this->visitExpression(&prefixExpr.operand());
break;
}
case Expression::Kind::kSwizzle: {
Swizzle& swizzleExpr = (*expr)->as<Swizzle>();
this->visitExpression(&swizzleExpr.base());
break;
}
case Expression::Kind::kTernary: {
TernaryExpression& ternaryExpr = (*expr)->as<TernaryExpression>();
// The test expression is a candidate for inlining.
this->visitExpression(&ternaryExpr.test());
// The true- and false-expressions cannot be inlined, because we are only allowed to
// evaluate one side.
break;
}
default:
SkUNREACHABLE;
}
}
void addInlineCandidate(std::unique_ptr<Expression>* candidate) {
fCandidateList->fCandidates.push_back(
InlineCandidate{fSymbolTableStack.back(),
find_parent_statement(fEnclosingStmtStack),
fEnclosingStmtStack.back(),
candidate,
fEnclosingFunction});
}
};
static const FunctionDeclaration& candidate_func(const InlineCandidate& candidate) {
return (*candidate.fCandidateExpr)->as<FunctionCall>().function();
}
bool Inliner::candidateCanBeInlined(const InlineCandidate& candidate, InlinabilityCache* cache) {
const FunctionDeclaration& funcDecl = candidate_func(candidate);
#ifndef SKIA_STRUCTURED_BINDINGS_BACKPORT
auto [iter, wasInserted] = cache->insert({&funcDecl, false});
#else
STRUCTURED_BINDING_2(iter, wasInserted, cache->insert({&funcDecl, false}));
#endif
if (wasInserted) {
// Recursion is forbidden here to avoid an infinite death spiral of inlining.
iter->second = this->isSafeToInline(funcDecl.definition()) &&
!contains_recursive_call(funcDecl);
}
return iter->second;
}
int Inliner::getFunctionSize(const FunctionDeclaration& funcDecl, FunctionSizeCache* cache) {
#ifndef SKIA_STRUCTURED_BINDINGS_BACKPORT
auto [iter, wasInserted] = cache->insert({&funcDecl, 0});
#else
STRUCTURED_BINDING_2(iter, wasInserted, cache->insert({&funcDecl, 0}));
#endif
if (wasInserted) {
iter->second = Analysis::NodeCountUpToLimit(*funcDecl.definition(),
this->settings().fInlineThreshold);
}
return iter->second;
}
void Inliner::buildCandidateList(const std::vector<std::unique_ptr<ProgramElement>>& elements,
std::shared_ptr<SymbolTable> symbols, ProgramUsage* usage,
InlineCandidateList* candidateList) {
// This is structured much like a ProgramVisitor, but does not actually use ProgramVisitor.
// The analyzer needs to keep track of the `unique_ptr<T>*` of statements and expressions so
// that they can later be replaced, and ProgramVisitor does not provide this; it only provides a
// `const T&`.
InlineCandidateAnalyzer analyzer;
analyzer.visit(elements, symbols, candidateList);
// Early out if there are no inlining candidates.
std::vector<InlineCandidate>& candidates = candidateList->fCandidates;
if (candidates.empty()) {
return;
}
// Remove candidates that are not safe to inline.
InlinabilityCache cache;
candidates.erase(std::remove_if(candidates.begin(),
candidates.end(),
[&](const InlineCandidate& candidate) {
return !this->candidateCanBeInlined(candidate, &cache);
}),
candidates.end());
// If the inline threshold is unlimited, or if we have no candidates left, our candidate list is
// complete.
if (this->settings().fInlineThreshold == INT_MAX || candidates.empty()) {
return;
}
// Remove candidates on a per-function basis if the effect of inlining would be to make more
// than `inlineThreshold` nodes. (i.e. if Func() would be inlined six times and its size is
// 10 nodes, it should be inlined if the inlineThreshold is 60 or higher.)
FunctionSizeCache functionSizeCache;
FunctionSizeCache candidateTotalCost;
for (InlineCandidate& candidate : candidates) {
const FunctionDeclaration& fnDecl = candidate_func(candidate);
candidateTotalCost[&fnDecl] += this->getFunctionSize(fnDecl, &functionSizeCache);
}
candidates.erase(std::remove_if(candidates.begin(), candidates.end(),
[&](const InlineCandidate& candidate) {
const FunctionDeclaration& fnDecl = candidate_func(candidate);
if (fnDecl.modifiers().fFlags & Modifiers::kInline_Flag) {
// Functions marked `inline` ignore size limitations.
return false;
}
if (usage->get(fnDecl) == 1) {
// If a function is only used once, it's cost-free to inline.
return false;
}
if (candidateTotalCost[&fnDecl] <= this->settings().fInlineThreshold) {
// We won't exceed the inline threshold by inlining this.
return false;
}
// Inlining this function will add too many IRNodes.
return true;
}),
candidates.end());
}
bool Inliner::analyze(const std::vector<std::unique_ptr<ProgramElement>>& elements,
std::shared_ptr<SymbolTable> symbols,
ProgramUsage* usage) {
// A threshold of zero indicates that the inliner is completely disabled, so we can just return.
if (this->settings().fInlineThreshold <= 0) {
return false;
}
// Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl)
if (fInlinedStatementCounter >= kInlinedStatementLimit) {
return false;
}
InlineCandidateList candidateList;
this->buildCandidateList(elements, symbols, usage, &candidateList);
// Inline the candidates where we've determined that it's safe to do so.
using StatementRemappingTable = std::unordered_map<std::unique_ptr<Statement>*,
std::unique_ptr<Statement>*>;
StatementRemappingTable statementRemappingTable;
bool madeChanges = false;
for (const InlineCandidate& candidate : candidateList.fCandidates) {
FunctionCall& funcCall = (*candidate.fCandidateExpr)->as<FunctionCall>();
// Convert the function call to its inlined equivalent.
InlinedCall inlinedCall = this->inlineCall(&funcCall, candidate.fSymbols, *usage,
&candidate.fEnclosingFunction->declaration());
// Stop if an error was detected during the inlining process.
if (!inlinedCall.fInlinedBody && !inlinedCall.fReplacementExpr) {
break;
}
// Ensure that the inlined body has a scope if it needs one.
this->ensureScopedBlocks(inlinedCall.fInlinedBody.get(), candidate.fParentStmt->get());
// Add references within the inlined body
usage->add(inlinedCall.fInlinedBody.get());
// Look up the enclosing statement; remap it if necessary.
std::unique_ptr<Statement>* enclosingStmt = candidate.fEnclosingStmt;
for (;;) {
auto iter = statementRemappingTable.find(enclosingStmt);
if (iter == statementRemappingTable.end()) {
break;
}
enclosingStmt = iter->second;
}
// Move the enclosing statement to the end of the unscoped Block containing the inlined
// function, then replace the enclosing statement with that Block.
// Before:
// fInlinedBody = Block{ stmt1, stmt2, stmt3 }
// fEnclosingStmt = stmt4
// After:
// fInlinedBody = null
// fEnclosingStmt = Block{ stmt1, stmt2, stmt3, stmt4 }
inlinedCall.fInlinedBody->children().push_back(std::move(*enclosingStmt));
*enclosingStmt = std::move(inlinedCall.fInlinedBody);
// Replace the candidate function call with our replacement expression.
usage->remove(candidate.fCandidateExpr->get());
usage->add(inlinedCall.fReplacementExpr.get());
*candidate.fCandidateExpr = std::move(inlinedCall.fReplacementExpr);
madeChanges = true;
// If anything else pointed at our enclosing statement, it's now pointing at a Block
// containing many other statements as well. Maintain a fix-up table to account for this.
statementRemappingTable[enclosingStmt] = &(*enclosingStmt)->as<Block>().children().back();
// Stop inlining if we've reached our hard cap on new statements.
if (fInlinedStatementCounter >= kInlinedStatementLimit) {
break;
}
// Note that nothing was destroyed except for the FunctionCall. All other nodes should
// remain valid.
}
return madeChanges;
}
} // namespace SkSL