blob: e56902c8f32a9bbe0f2dd16574aadf3b9af123bc [file] [log] [blame]
//===-- working_set.cpp ---------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of EfficiencySanitizer, a family of performance tuners.
//
// This file contains working-set-specific code.
//===----------------------------------------------------------------------===//
#include "working_set.h"
#include "esan.h"
#include "esan_circular_buffer.h"
#include "esan_flags.h"
#include "esan_shadow.h"
#include "esan_sideline.h"
#include "sanitizer_common/sanitizer_procmaps.h"
// We shadow every cache line of app memory with one shadow byte.
// - The highest bit of each shadow byte indicates whether the corresponding
// cache line has ever been accessed.
// - The lowest bit of each shadow byte indicates whether the corresponding
// cache line was accessed since the last sample.
// - The other bits are used for working set snapshots at successively
// lower frequencies, each bit to the left from the lowest bit stepping
// down the frequency by 2 to the power of getFlags()->snapshot_step.
// Thus we have something like this:
// Bit 0: Since last sample
// Bit 1: Since last 2^2 samples
// Bit 2: Since last 2^4 samples
// Bit 3: ...
// Bit 7: Ever accessed.
// We live with races in accessing each shadow byte.
typedef unsigned char byte;
namespace __esan {
// Our shadow memory assumes that the line size is 64.
static const u32 CacheLineSize = 64;
// See the shadow byte layout description above.
static const u32 TotalWorkingSetBitIdx = 7;
// We accumulate to the left until we hit this bit.
// We don't need to accumulate to the final bit as it's set on each ref
// by the compiler instrumentation.
static const u32 MaxAccumBitIdx = 6;
static const u32 CurWorkingSetBitIdx = 0;
static const byte ShadowAccessedVal =
(1 << TotalWorkingSetBitIdx) | (1 << CurWorkingSetBitIdx);
static SidelineThread Thread;
// If we use real-time-based timer samples this won't overflow in any realistic
// scenario, but if we switch to some other unit (such as memory accesses) we
// may want to consider a 64-bit int.
static u32 SnapshotNum;
// We store the wset size for each of 8 different sampling frequencies.
static const u32 NumFreq = 8; // One for each bit of our shadow bytes.
// We cannot use static objects as the global destructor is called
// prior to our finalize routine.
// These are each circular buffers, sized up front.
CircularBuffer<u32> SizePerFreq[NumFreq];
// We cannot rely on static initializers (they may run too late) but
// we record the size here for clarity:
u32 CircularBufferSizes[NumFreq] = {
// These are each mmap-ed so our minimum is one page.
32*1024,
16*1024,
8*1024,
4*1024,
4*1024,
4*1024,
4*1024,
4*1024,
};
void processRangeAccessWorkingSet(uptr PC, uptr Addr, SIZE_T Size,
bool IsWrite) {
if (Size == 0)
return;
SIZE_T I = 0;
uptr LineSize = getFlags()->cache_line_size;
// As Addr+Size could overflow at the top of a 32-bit address space,
// we avoid the simpler formula that rounds the start and end.
SIZE_T NumLines = Size / LineSize +
// Add any extra at the start or end adding on an extra line:
(LineSize - 1 + Addr % LineSize + Size % LineSize) / LineSize;
byte *Shadow = (byte *)appToShadow(Addr);
// Write shadow bytes until we're word-aligned.
while (I < NumLines && (uptr)Shadow % 4 != 0) {
if ((*Shadow & ShadowAccessedVal) != ShadowAccessedVal)
*Shadow |= ShadowAccessedVal;
++Shadow;
++I;
}
// Write whole shadow words at a time.
// Using a word-stride loop improves the runtime of a microbenchmark of
// memset calls by 10%.
u32 WordValue = ShadowAccessedVal | ShadowAccessedVal << 8 |
ShadowAccessedVal << 16 | ShadowAccessedVal << 24;
while (I + 4 <= NumLines) {
if ((*(u32*)Shadow & WordValue) != WordValue)
*(u32*)Shadow |= WordValue;
Shadow += 4;
I += 4;
}
// Write any trailing shadow bytes.
while (I < NumLines) {
if ((*Shadow & ShadowAccessedVal) != ShadowAccessedVal)
*Shadow |= ShadowAccessedVal;
++Shadow;
++I;
}
}
// This routine will word-align ShadowStart and ShadowEnd prior to scanning.
// It does *not* clear for BitIdx==TotalWorkingSetBitIdx, as that top bit
// measures the access during the entire execution and should never be cleared.
static u32 countAndClearShadowValues(u32 BitIdx, uptr ShadowStart,
uptr ShadowEnd) {
u32 WorkingSetSize = 0;
u32 ByteValue = 0x1 << BitIdx;
u32 WordValue = ByteValue | ByteValue << 8 | ByteValue << 16 |
ByteValue << 24;
// Get word aligned start.
ShadowStart = RoundDownTo(ShadowStart, sizeof(u32));
bool Accum = getFlags()->record_snapshots && BitIdx < MaxAccumBitIdx;
// Do not clear the bit that measures access during the entire execution.
bool Clear = BitIdx < TotalWorkingSetBitIdx;
for (u32 *Ptr = (u32 *)ShadowStart; Ptr < (u32 *)ShadowEnd; ++Ptr) {
if ((*Ptr & WordValue) != 0) {
byte *BytePtr = (byte *)Ptr;
for (u32 j = 0; j < sizeof(u32); ++j) {
if (BytePtr[j] & ByteValue) {
++WorkingSetSize;
if (Accum) {
// Accumulate to the lower-frequency bit to the left.
BytePtr[j] |= (ByteValue << 1);
}
}
}
if (Clear) {
// Clear this bit from every shadow byte.
*Ptr &= ~WordValue;
}
}
}
return WorkingSetSize;
}
// Scan shadow memory to calculate the number of cache lines being accessed,
// i.e., the number of non-zero bits indexed by BitIdx in each shadow byte.
// We also clear the lowest bits (most recent working set snapshot).
// We do *not* clear for BitIdx==TotalWorkingSetBitIdx, as that top bit
// measures the access during the entire execution and should never be cleared.
static u32 computeWorkingSizeAndReset(u32 BitIdx) {
u32 WorkingSetSize = 0;
MemoryMappingLayout MemIter(true/*cache*/);
MemoryMappedSegment Segment;
while (MemIter.Next(&Segment)) {
VPrintf(4, "%s: considering %p-%p app=%d shadow=%d prot=%u\n", __FUNCTION__,
Segment.start, Segment.end, Segment.protection,
isAppMem(Segment.start), isShadowMem(Segment.start));
if (isShadowMem(Segment.start) && Segment.IsWritable()) {
VPrintf(3, "%s: walking %p-%p\n", __FUNCTION__, Segment.start,
Segment.end);
WorkingSetSize +=
countAndClearShadowValues(BitIdx, Segment.start, Segment.end);
}
}
return WorkingSetSize;
}
// This is invoked from a signal handler but in a sideline thread doing nothing
// else so it is a little less fragile than a typical signal handler.
static void takeSample(void *Arg) {
u32 BitIdx = CurWorkingSetBitIdx;
u32 Freq = 1;
++SnapshotNum; // Simpler to skip 0 whose mod matches everything.
while (BitIdx <= MaxAccumBitIdx && (SnapshotNum % Freq) == 0) {
u32 NumLines = computeWorkingSizeAndReset(BitIdx);
VReport(1, "%s: snapshot #%5d bit %d freq %4d: %8u\n", SanitizerToolName,
SnapshotNum, BitIdx, Freq, NumLines);
SizePerFreq[BitIdx].push_back(NumLines);
Freq = Freq << getFlags()->snapshot_step;
BitIdx++;
}
}
unsigned int getSampleCountWorkingSet()
{
return SnapshotNum;
}
// Initialization that must be done before any instrumented code is executed.
void initializeShadowWorkingSet() {
CHECK(getFlags()->cache_line_size == CacheLineSize);
registerMemoryFaultHandler();
}
void initializeWorkingSet() {
if (getFlags()->record_snapshots) {
for (u32 i = 0; i < NumFreq; ++i)
SizePerFreq[i].initialize(CircularBufferSizes[i]);
Thread.launchThread(takeSample, nullptr, getFlags()->sample_freq);
}
}
static u32 getPeriodForPrinting(u32 MilliSec, const char *&Unit) {
if (MilliSec > 600000) {
Unit = "min";
return MilliSec / 60000;
} else if (MilliSec > 10000) {
Unit = "sec";
return MilliSec / 1000;
} else {
Unit = "ms";
return MilliSec;
}
}
static u32 getSizeForPrinting(u32 NumOfCachelines, const char *&Unit) {
// We need a constant to avoid software divide support:
static const u32 KilobyteCachelines = (0x1 << 10) / CacheLineSize;
static const u32 MegabyteCachelines = KilobyteCachelines << 10;
if (NumOfCachelines > 10 * MegabyteCachelines) {
Unit = "MB";
return NumOfCachelines / MegabyteCachelines;
} else if (NumOfCachelines > 10 * KilobyteCachelines) {
Unit = "KB";
return NumOfCachelines / KilobyteCachelines;
} else {
Unit = "Bytes";
return NumOfCachelines * CacheLineSize;
}
}
void reportWorkingSet() {
const char *Unit;
if (getFlags()->record_snapshots) {
u32 Freq = 1;
Report(" Total number of samples: %u\n", SnapshotNum);
for (u32 i = 0; i < NumFreq; ++i) {
u32 Time = getPeriodForPrinting(getFlags()->sample_freq*Freq, Unit);
Report(" Samples array #%d at period %u %s\n", i, Time, Unit);
// FIXME: report whether we wrapped around and thus whether we
// have data on the whole run or just the last N samples.
for (u32 j = 0; j < SizePerFreq[i].size(); ++j) {
u32 Size = getSizeForPrinting(SizePerFreq[i][j], Unit);
Report("#%4d: %8u %s (%9u cache lines)\n", j, Size, Unit,
SizePerFreq[i][j]);
}
Freq = Freq << getFlags()->snapshot_step;
}
}
// Get the working set size for the entire execution.
u32 NumOfCachelines = computeWorkingSizeAndReset(TotalWorkingSetBitIdx);
u32 Size = getSizeForPrinting(NumOfCachelines, Unit);
Report(" %s: the total working set size: %u %s (%u cache lines)\n",
SanitizerToolName, Size, Unit, NumOfCachelines);
}
int finalizeWorkingSet() {
if (getFlags()->record_snapshots)
Thread.joinThread();
reportWorkingSet();
if (getFlags()->record_snapshots) {
for (u32 i = 0; i < NumFreq; ++i)
SizePerFreq[i].free();
}
return 0;
}
} // namespace __esan