blob: ff6246e25883b5bb231eb349d4bc0f48eaaee27f [file] [log] [blame]
//===-- scudo_allocator_secondary.h -----------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// Scudo Secondary Allocator.
/// This services allocation that are too large to be serviced by the Primary
/// Allocator. It is directly backed by the memory mapping functions of the
/// operating system.
///
//===----------------------------------------------------------------------===//
#ifndef SCUDO_ALLOCATOR_SECONDARY_H_
#define SCUDO_ALLOCATOR_SECONDARY_H_
#ifndef SCUDO_ALLOCATOR_H_
# error "This file must be included inside scudo_allocator.h."
#endif
// Secondary backed allocations are standalone chunks that contain extra
// information stored in a LargeChunk::Header prior to the frontend's header.
//
// The secondary takes care of alignment requirements (so that it can release
// unnecessary pages in the rare event of larger alignments), and as such must
// know about the frontend's header size.
//
// Since Windows doesn't support partial releasing of a reserved memory region,
// we have to keep track of both the reserved and the committed memory.
//
// The resulting chunk resembles the following:
//
// +--------------------+
// | Guard page(s) |
// +--------------------+
// | Unused space* |
// +--------------------+
// | LargeChunk::Header |
// +--------------------+
// | {Unp,P}ackedHeader |
// +--------------------+
// | Data (aligned) |
// +--------------------+
// | Unused space** |
// +--------------------+
// | Guard page(s) |
// +--------------------+
namespace LargeChunk {
struct Header {
ReservedAddressRange StoredRange;
uptr CommittedSize;
uptr Size;
};
constexpr uptr getHeaderSize() {
return RoundUpTo(sizeof(Header), MinAlignment);
}
static Header *getHeader(uptr Ptr) {
return reinterpret_cast<Header *>(Ptr - getHeaderSize());
}
static Header *getHeader(const void *Ptr) {
return getHeader(reinterpret_cast<uptr>(Ptr));
}
} // namespace LargeChunk
class LargeMmapAllocator {
public:
void Init() {
internal_memset(this, 0, sizeof(*this));
}
void *Allocate(AllocatorStats *Stats, uptr Size, uptr Alignment) {
const uptr UserSize = Size - Chunk::getHeaderSize();
// The Scudo frontend prevents us from allocating more than
// MaxAllowedMallocSize, so integer overflow checks would be superfluous.
uptr ReservedSize = Size + LargeChunk::getHeaderSize();
if (UNLIKELY(Alignment > MinAlignment))
ReservedSize += Alignment;
const uptr PageSize = GetPageSizeCached();
ReservedSize = RoundUpTo(ReservedSize, PageSize);
// Account for 2 guard pages, one before and one after the chunk.
ReservedSize += 2 * PageSize;
ReservedAddressRange AddressRange;
uptr ReservedBeg = AddressRange.Init(ReservedSize, SecondaryAllocatorName);
if (UNLIKELY(ReservedBeg == ~static_cast<uptr>(0)))
return nullptr;
// A page-aligned pointer is assumed after that, so check it now.
DCHECK(IsAligned(ReservedBeg, PageSize));
uptr ReservedEnd = ReservedBeg + ReservedSize;
// The beginning of the user area for that allocation comes after the
// initial guard page, and both headers. This is the pointer that has to
// abide by alignment requirements.
uptr CommittedBeg = ReservedBeg + PageSize;
uptr UserBeg = CommittedBeg + HeadersSize;
uptr UserEnd = UserBeg + UserSize;
uptr CommittedEnd = RoundUpTo(UserEnd, PageSize);
// In the rare event of larger alignments, we will attempt to fit the mmap
// area better and unmap extraneous memory. This will also ensure that the
// offset and unused bytes field of the header stay small.
if (UNLIKELY(Alignment > MinAlignment)) {
if (!IsAligned(UserBeg, Alignment)) {
UserBeg = RoundUpTo(UserBeg, Alignment);
CommittedBeg = RoundDownTo(UserBeg - HeadersSize, PageSize);
const uptr NewReservedBeg = CommittedBeg - PageSize;
DCHECK_GE(NewReservedBeg, ReservedBeg);
if (!SANITIZER_WINDOWS && NewReservedBeg != ReservedBeg) {
AddressRange.Unmap(ReservedBeg, NewReservedBeg - ReservedBeg);
ReservedBeg = NewReservedBeg;
}
UserEnd = UserBeg + UserSize;
CommittedEnd = RoundUpTo(UserEnd, PageSize);
}
const uptr NewReservedEnd = CommittedEnd + PageSize;
DCHECK_LE(NewReservedEnd, ReservedEnd);
if (!SANITIZER_WINDOWS && NewReservedEnd != ReservedEnd) {
AddressRange.Unmap(NewReservedEnd, ReservedEnd - NewReservedEnd);
ReservedEnd = NewReservedEnd;
}
}
DCHECK_LE(UserEnd, CommittedEnd);
const uptr CommittedSize = CommittedEnd - CommittedBeg;
// Actually mmap the memory, preserving the guard pages on either sides.
CHECK_EQ(CommittedBeg, AddressRange.Map(CommittedBeg, CommittedSize));
const uptr Ptr = UserBeg - Chunk::getHeaderSize();
LargeChunk::Header *H = LargeChunk::getHeader(Ptr);
H->StoredRange = AddressRange;
H->Size = CommittedEnd - Ptr;
H->CommittedSize = CommittedSize;
// The primary adds the whole class size to the stats when allocating a
// chunk, so we will do something similar here. But we will not account for
// the guard pages.
{
SpinMutexLock l(&StatsMutex);
Stats->Add(AllocatorStatAllocated, CommittedSize);
Stats->Add(AllocatorStatMapped, CommittedSize);
AllocatedBytes += CommittedSize;
if (LargestSize < CommittedSize)
LargestSize = CommittedSize;
NumberOfAllocs++;
}
return reinterpret_cast<void *>(Ptr);
}
void Deallocate(AllocatorStats *Stats, void *Ptr) {
LargeChunk::Header *H = LargeChunk::getHeader(Ptr);
// Since we're unmapping the entirety of where the ReservedAddressRange
// actually is, copy onto the stack.
ReservedAddressRange AddressRange = H->StoredRange;
const uptr Size = H->CommittedSize;
{
SpinMutexLock l(&StatsMutex);
Stats->Sub(AllocatorStatAllocated, Size);
Stats->Sub(AllocatorStatMapped, Size);
FreedBytes += Size;
NumberOfFrees++;
}
AddressRange.Unmap(reinterpret_cast<uptr>(AddressRange.base()),
AddressRange.size());
}
static uptr GetActuallyAllocatedSize(void *Ptr) {
return LargeChunk::getHeader(Ptr)->Size;
}
void PrintStats() {
Printf("Stats: LargeMmapAllocator: allocated %zd times (%zd K), "
"freed %zd times (%zd K), remains %zd (%zd K) max %zd M\n",
NumberOfAllocs, AllocatedBytes >> 10, NumberOfFrees,
FreedBytes >> 10, NumberOfAllocs - NumberOfFrees,
(AllocatedBytes - FreedBytes) >> 10, LargestSize >> 20);
}
private:
static constexpr uptr HeadersSize =
LargeChunk::getHeaderSize() + Chunk::getHeaderSize();
StaticSpinMutex StatsMutex;
u32 NumberOfAllocs;
u32 NumberOfFrees;
uptr AllocatedBytes;
uptr FreedBytes;
uptr LargestSize;
};
#endif // SCUDO_ALLOCATOR_SECONDARY_H_