| // Copyright 2012 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // Author: Jyrki Alakuijala (jyrki@google.com) |
| // |
| #ifdef HAVE_CONFIG_H |
| #include "src/webp/config.h" |
| #endif |
| |
| #include <float.h> |
| #if defined(STARBOARD) |
| #include "starboard/client_porting/poem/assert_poem.h" |
| #else |
| #include <math.h> |
| #endif |
| |
| #include "src/dsp/lossless.h" |
| #include "src/dsp/lossless_common.h" |
| #include "src/enc/backward_references_enc.h" |
| #include "src/enc/histogram_enc.h" |
| #include "src/enc/vp8i_enc.h" |
| #include "src/utils/utils.h" |
| |
| #define MAX_BIT_COST FLT_MAX |
| |
| // Number of partitions for the three dominant (literal, red and blue) symbol |
| // costs. |
| #define NUM_PARTITIONS 4 |
| // The size of the bin-hash corresponding to the three dominant costs. |
| #define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS) |
| // Maximum number of histograms allowed in greedy combining algorithm. |
| #define MAX_HISTO_GREEDY 100 |
| |
| static void HistogramClear(VP8LHistogram* const p) { |
| uint32_t* const literal = p->literal_; |
| const int cache_bits = p->palette_code_bits_; |
| const int histo_size = VP8LGetHistogramSize(cache_bits); |
| memset(p, 0, histo_size); |
| p->palette_code_bits_ = cache_bits; |
| p->literal_ = literal; |
| } |
| |
| // Swap two histogram pointers. |
| static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) { |
| VP8LHistogram* const tmp = *A; |
| *A = *B; |
| *B = tmp; |
| } |
| |
| static void HistogramCopy(const VP8LHistogram* const src, |
| VP8LHistogram* const dst) { |
| uint32_t* const dst_literal = dst->literal_; |
| const int dst_cache_bits = dst->palette_code_bits_; |
| const int literal_size = VP8LHistogramNumCodes(dst_cache_bits); |
| const int histo_size = VP8LGetHistogramSize(dst_cache_bits); |
| assert(src->palette_code_bits_ == dst_cache_bits); |
| memcpy(dst, src, histo_size); |
| dst->literal_ = dst_literal; |
| memcpy(dst->literal_, src->literal_, literal_size * sizeof(*dst->literal_)); |
| } |
| |
| int VP8LGetHistogramSize(int cache_bits) { |
| const int literal_size = VP8LHistogramNumCodes(cache_bits); |
| const size_t total_size = sizeof(VP8LHistogram) + sizeof(int) * literal_size; |
| assert(total_size <= (size_t)0x7fffffff); |
| return (int)total_size; |
| } |
| |
| void VP8LFreeHistogram(VP8LHistogram* const histo) { |
| WebPSafeFree(histo); |
| } |
| |
| void VP8LFreeHistogramSet(VP8LHistogramSet* const histo) { |
| WebPSafeFree(histo); |
| } |
| |
| void VP8LHistogramStoreRefs(const VP8LBackwardRefs* const refs, |
| VP8LHistogram* const histo) { |
| VP8LRefsCursor c = VP8LRefsCursorInit(refs); |
| while (VP8LRefsCursorOk(&c)) { |
| VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos, NULL, 0); |
| VP8LRefsCursorNext(&c); |
| } |
| } |
| |
| void VP8LHistogramCreate(VP8LHistogram* const p, |
| const VP8LBackwardRefs* const refs, |
| int palette_code_bits) { |
| if (palette_code_bits >= 0) { |
| p->palette_code_bits_ = palette_code_bits; |
| } |
| HistogramClear(p); |
| VP8LHistogramStoreRefs(refs, p); |
| } |
| |
| void VP8LHistogramInit(VP8LHistogram* const p, int palette_code_bits, |
| int init_arrays) { |
| p->palette_code_bits_ = palette_code_bits; |
| if (init_arrays) { |
| HistogramClear(p); |
| } else { |
| p->trivial_symbol_ = 0; |
| p->bit_cost_ = 0.; |
| p->literal_cost_ = 0.; |
| p->red_cost_ = 0.; |
| p->blue_cost_ = 0.; |
| memset(p->is_used_, 0, sizeof(p->is_used_)); |
| } |
| } |
| |
| VP8LHistogram* VP8LAllocateHistogram(int cache_bits) { |
| VP8LHistogram* histo = NULL; |
| const int total_size = VP8LGetHistogramSize(cache_bits); |
| uint8_t* const memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); |
| if (memory == NULL) return NULL; |
| histo = (VP8LHistogram*)memory; |
| // literal_ won't necessary be aligned. |
| histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); |
| VP8LHistogramInit(histo, cache_bits, /*init_arrays=*/ 0); |
| return histo; |
| } |
| |
| // Resets the pointers of the histograms to point to the bit buffer in the set. |
| static void HistogramSetResetPointers(VP8LHistogramSet* const set, |
| int cache_bits) { |
| int i; |
| const int histo_size = VP8LGetHistogramSize(cache_bits); |
| uint8_t* memory = (uint8_t*) (set->histograms); |
| memory += set->max_size * sizeof(*set->histograms); |
| for (i = 0; i < set->max_size; ++i) { |
| memory = (uint8_t*) WEBP_ALIGN(memory); |
| set->histograms[i] = (VP8LHistogram*) memory; |
| // literal_ won't necessary be aligned. |
| set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); |
| memory += histo_size; |
| } |
| } |
| |
| // Returns the total size of the VP8LHistogramSet. |
| static size_t HistogramSetTotalSize(int size, int cache_bits) { |
| const int histo_size = VP8LGetHistogramSize(cache_bits); |
| return (sizeof(VP8LHistogramSet) + size * (sizeof(VP8LHistogram*) + |
| histo_size + WEBP_ALIGN_CST)); |
| } |
| |
| VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) { |
| int i; |
| VP8LHistogramSet* set; |
| const size_t total_size = HistogramSetTotalSize(size, cache_bits); |
| uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); |
| if (memory == NULL) return NULL; |
| |
| set = (VP8LHistogramSet*)memory; |
| memory += sizeof(*set); |
| set->histograms = (VP8LHistogram**)memory; |
| set->max_size = size; |
| set->size = size; |
| HistogramSetResetPointers(set, cache_bits); |
| for (i = 0; i < size; ++i) { |
| VP8LHistogramInit(set->histograms[i], cache_bits, /*init_arrays=*/ 0); |
| } |
| return set; |
| } |
| |
| void VP8LHistogramSetClear(VP8LHistogramSet* const set) { |
| int i; |
| const int cache_bits = set->histograms[0]->palette_code_bits_; |
| const int size = set->max_size; |
| const size_t total_size = HistogramSetTotalSize(size, cache_bits); |
| uint8_t* memory = (uint8_t*)set; |
| |
| memset(memory, 0, total_size); |
| memory += sizeof(*set); |
| set->histograms = (VP8LHistogram**)memory; |
| set->max_size = size; |
| set->size = size; |
| HistogramSetResetPointers(set, cache_bits); |
| for (i = 0; i < size; ++i) { |
| set->histograms[i]->palette_code_bits_ = cache_bits; |
| } |
| } |
| |
| // Removes the histogram 'i' from 'set' by setting it to NULL. |
| static void HistogramSetRemoveHistogram(VP8LHistogramSet* const set, int i, |
| int* const num_used) { |
| assert(set->histograms[i] != NULL); |
| set->histograms[i] = NULL; |
| --*num_used; |
| // If we remove the last valid one, shrink until the next valid one. |
| if (i == set->size - 1) { |
| while (set->size >= 1 && set->histograms[set->size - 1] == NULL) { |
| --set->size; |
| } |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| |
| void VP8LHistogramAddSinglePixOrCopy(VP8LHistogram* const histo, |
| const PixOrCopy* const v, |
| int (*const distance_modifier)(int, int), |
| int distance_modifier_arg0) { |
| if (PixOrCopyIsLiteral(v)) { |
| ++histo->alpha_[PixOrCopyLiteral(v, 3)]; |
| ++histo->red_[PixOrCopyLiteral(v, 2)]; |
| ++histo->literal_[PixOrCopyLiteral(v, 1)]; |
| ++histo->blue_[PixOrCopyLiteral(v, 0)]; |
| } else if (PixOrCopyIsCacheIdx(v)) { |
| const int literal_ix = |
| NUM_LITERAL_CODES + NUM_LENGTH_CODES + PixOrCopyCacheIdx(v); |
| assert(histo->palette_code_bits_ != 0); |
| ++histo->literal_[literal_ix]; |
| } else { |
| int code, extra_bits; |
| VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits); |
| ++histo->literal_[NUM_LITERAL_CODES + code]; |
| if (distance_modifier == NULL) { |
| VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits); |
| } else { |
| VP8LPrefixEncodeBits( |
| distance_modifier(distance_modifier_arg0, PixOrCopyDistance(v)), |
| &code, &extra_bits); |
| } |
| ++histo->distance_[code]; |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Entropy-related functions. |
| |
| static WEBP_INLINE float BitsEntropyRefine(const VP8LBitEntropy* entropy) { |
| float mix; |
| if (entropy->nonzeros < 5) { |
| if (entropy->nonzeros <= 1) { |
| return 0; |
| } |
| // Two symbols, they will be 0 and 1 in a Huffman code. |
| // Let's mix in a bit of entropy to favor good clustering when |
| // distributions of these are combined. |
| if (entropy->nonzeros == 2) { |
| return 0.99f * entropy->sum + 0.01f * entropy->entropy; |
| } |
| // No matter what the entropy says, we cannot be better than min_limit |
| // with Huffman coding. I am mixing a bit of entropy into the |
| // min_limit since it produces much better (~0.5 %) compression results |
| // perhaps because of better entropy clustering. |
| if (entropy->nonzeros == 3) { |
| mix = 0.95f; |
| } else { |
| mix = 0.7f; // nonzeros == 4. |
| } |
| } else { |
| mix = 0.627f; |
| } |
| |
| { |
| float min_limit = 2.f * entropy->sum - entropy->max_val; |
| min_limit = mix * min_limit + (1.f - mix) * entropy->entropy; |
| return (entropy->entropy < min_limit) ? min_limit : entropy->entropy; |
| } |
| } |
| |
| float VP8LBitsEntropy(const uint32_t* const array, int n) { |
| VP8LBitEntropy entropy; |
| VP8LBitsEntropyUnrefined(array, n, &entropy); |
| |
| return BitsEntropyRefine(&entropy); |
| } |
| |
| static float InitialHuffmanCost(void) { |
| // Small bias because Huffman code length is typically not stored in |
| // full length. |
| static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3; |
| static const float kSmallBias = 9.1f; |
| return kHuffmanCodeOfHuffmanCodeSize - kSmallBias; |
| } |
| |
| // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3) |
| static float FinalHuffmanCost(const VP8LStreaks* const stats) { |
| // The constants in this function are experimental and got rounded from |
| // their original values in 1/8 when switched to 1/1024. |
| float retval = InitialHuffmanCost(); |
| // Second coefficient: Many zeros in the histogram are covered efficiently |
| // by a run-length encode. Originally 2/8. |
| retval += stats->counts[0] * 1.5625f + 0.234375f * stats->streaks[0][1]; |
| // Second coefficient: Constant values are encoded less efficiently, but still |
| // RLE'ed. Originally 6/8. |
| retval += stats->counts[1] * 2.578125f + 0.703125f * stats->streaks[1][1]; |
| // 0s are usually encoded more efficiently than non-0s. |
| // Originally 15/8. |
| retval += 1.796875f * stats->streaks[0][0]; |
| // Originally 26/8. |
| retval += 3.28125f * stats->streaks[1][0]; |
| return retval; |
| } |
| |
| // Get the symbol entropy for the distribution 'population'. |
| // Set 'trivial_sym', if there's only one symbol present in the distribution. |
| static float PopulationCost(const uint32_t* const population, int length, |
| uint32_t* const trivial_sym, |
| uint8_t* const is_used) { |
| VP8LBitEntropy bit_entropy; |
| VP8LStreaks stats; |
| VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats); |
| if (trivial_sym != NULL) { |
| *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code |
| : VP8L_NON_TRIVIAL_SYM; |
| } |
| // The histogram is used if there is at least one non-zero streak. |
| *is_used = (stats.streaks[1][0] != 0 || stats.streaks[1][1] != 0); |
| |
| return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats); |
| } |
| |
| // trivial_at_end is 1 if the two histograms only have one element that is |
| // non-zero: both the zero-th one, or both the last one. |
| static WEBP_INLINE float GetCombinedEntropy(const uint32_t* const X, |
| const uint32_t* const Y, int length, |
| int is_X_used, int is_Y_used, |
| int trivial_at_end) { |
| VP8LStreaks stats; |
| if (trivial_at_end) { |
| // This configuration is due to palettization that transforms an indexed |
| // pixel into 0xff000000 | (pixel << 8) in VP8LBundleColorMap. |
| // BitsEntropyRefine is 0 for histograms with only one non-zero value. |
| // Only FinalHuffmanCost needs to be evaluated. |
| memset(&stats, 0, sizeof(stats)); |
| // Deal with the non-zero value at index 0 or length-1. |
| stats.streaks[1][0] = 1; |
| // Deal with the following/previous zero streak. |
| stats.counts[0] = 1; |
| stats.streaks[0][1] = length - 1; |
| return FinalHuffmanCost(&stats); |
| } else { |
| VP8LBitEntropy bit_entropy; |
| if (is_X_used) { |
| if (is_Y_used) { |
| VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats); |
| } else { |
| VP8LGetEntropyUnrefined(X, length, &bit_entropy, &stats); |
| } |
| } else { |
| if (is_Y_used) { |
| VP8LGetEntropyUnrefined(Y, length, &bit_entropy, &stats); |
| } else { |
| memset(&stats, 0, sizeof(stats)); |
| stats.counts[0] = 1; |
| stats.streaks[0][length > 3] = length; |
| VP8LBitEntropyInit(&bit_entropy); |
| } |
| } |
| |
| return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats); |
| } |
| } |
| |
| // Estimates the Entropy + Huffman + other block overhead size cost. |
| float VP8LHistogramEstimateBits(VP8LHistogram* const p) { |
| return |
| PopulationCost(p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), |
| NULL, &p->is_used_[0]) |
| + PopulationCost(p->red_, NUM_LITERAL_CODES, NULL, &p->is_used_[1]) |
| + PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL, &p->is_used_[2]) |
| + PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL, &p->is_used_[3]) |
| + PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL, &p->is_used_[4]) |
| + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES) |
| + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Various histogram combine/cost-eval functions |
| |
| static int GetCombinedHistogramEntropy(const VP8LHistogram* const a, |
| const VP8LHistogram* const b, |
| float cost_threshold, float* cost) { |
| const int palette_code_bits = a->palette_code_bits_; |
| int trivial_at_end = 0; |
| assert(a->palette_code_bits_ == b->palette_code_bits_); |
| *cost += GetCombinedEntropy(a->literal_, b->literal_, |
| VP8LHistogramNumCodes(palette_code_bits), |
| a->is_used_[0], b->is_used_[0], 0); |
| *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES, |
| b->literal_ + NUM_LITERAL_CODES, |
| NUM_LENGTH_CODES); |
| if (*cost > cost_threshold) return 0; |
| |
| if (a->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM && |
| a->trivial_symbol_ == b->trivial_symbol_) { |
| // A, R and B are all 0 or 0xff. |
| const uint32_t color_a = (a->trivial_symbol_ >> 24) & 0xff; |
| const uint32_t color_r = (a->trivial_symbol_ >> 16) & 0xff; |
| const uint32_t color_b = (a->trivial_symbol_ >> 0) & 0xff; |
| if ((color_a == 0 || color_a == 0xff) && |
| (color_r == 0 || color_r == 0xff) && |
| (color_b == 0 || color_b == 0xff)) { |
| trivial_at_end = 1; |
| } |
| } |
| |
| *cost += |
| GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES, a->is_used_[1], |
| b->is_used_[1], trivial_at_end); |
| if (*cost > cost_threshold) return 0; |
| |
| *cost += |
| GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES, a->is_used_[2], |
| b->is_used_[2], trivial_at_end); |
| if (*cost > cost_threshold) return 0; |
| |
| *cost += |
| GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES, |
| a->is_used_[3], b->is_used_[3], trivial_at_end); |
| if (*cost > cost_threshold) return 0; |
| |
| *cost += |
| GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES, |
| a->is_used_[4], b->is_used_[4], 0); |
| *cost += |
| VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES); |
| if (*cost > cost_threshold) return 0; |
| |
| return 1; |
| } |
| |
| static WEBP_INLINE void HistogramAdd(const VP8LHistogram* const a, |
| const VP8LHistogram* const b, |
| VP8LHistogram* const out) { |
| VP8LHistogramAdd(a, b, out); |
| out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_) |
| ? a->trivial_symbol_ |
| : VP8L_NON_TRIVIAL_SYM; |
| } |
| |
| // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing |
| // to the threshold value 'cost_threshold'. The score returned is |
| // Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed. |
| // Since the previous score passed is 'cost_threshold', we only need to compare |
| // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out |
| // early. |
| static float HistogramAddEval(const VP8LHistogram* const a, |
| const VP8LHistogram* const b, |
| VP8LHistogram* const out, float cost_threshold) { |
| float cost = 0; |
| const float sum_cost = a->bit_cost_ + b->bit_cost_; |
| cost_threshold += sum_cost; |
| |
| if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) { |
| HistogramAdd(a, b, out); |
| out->bit_cost_ = cost; |
| out->palette_code_bits_ = a->palette_code_bits_; |
| } |
| |
| return cost - sum_cost; |
| } |
| |
| // Same as HistogramAddEval(), except that the resulting histogram |
| // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit |
| // the term C(b) which is constant over all the evaluations. |
| static float HistogramAddThresh(const VP8LHistogram* const a, |
| const VP8LHistogram* const b, |
| float cost_threshold) { |
| float cost; |
| assert(a != NULL && b != NULL); |
| cost = -a->bit_cost_; |
| GetCombinedHistogramEntropy(a, b, cost_threshold, &cost); |
| return cost; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| |
| // The structure to keep track of cost range for the three dominant entropy |
| // symbols. |
| typedef struct { |
| float literal_max_; |
| float literal_min_; |
| float red_max_; |
| float red_min_; |
| float blue_max_; |
| float blue_min_; |
| } DominantCostRange; |
| |
| static void DominantCostRangeInit(DominantCostRange* const c) { |
| c->literal_max_ = 0.; |
| c->literal_min_ = MAX_BIT_COST; |
| c->red_max_ = 0.; |
| c->red_min_ = MAX_BIT_COST; |
| c->blue_max_ = 0.; |
| c->blue_min_ = MAX_BIT_COST; |
| } |
| |
| static void UpdateDominantCostRange( |
| const VP8LHistogram* const h, DominantCostRange* const c) { |
| if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_; |
| if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_; |
| if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_; |
| if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_; |
| if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_; |
| if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_; |
| } |
| |
| static void UpdateHistogramCost(VP8LHistogram* const h) { |
| uint32_t alpha_sym, red_sym, blue_sym; |
| const float alpha_cost = |
| PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym, &h->is_used_[3]); |
| const float distance_cost = |
| PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL, &h->is_used_[4]) + |
| VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES); |
| const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_); |
| h->literal_cost_ = |
| PopulationCost(h->literal_, num_codes, NULL, &h->is_used_[0]) + |
| VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES); |
| h->red_cost_ = |
| PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym, &h->is_used_[1]); |
| h->blue_cost_ = |
| PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym, &h->is_used_[2]); |
| h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ + |
| alpha_cost + distance_cost; |
| if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) { |
| h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM; |
| } else { |
| h->trivial_symbol_ = |
| ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0); |
| } |
| } |
| |
| static int GetBinIdForEntropy(float min, float max, float val) { |
| const float range = max - min; |
| if (range > 0.) { |
| const float delta = val - min; |
| return (int)((NUM_PARTITIONS - 1e-6) * delta / range); |
| } else { |
| return 0; |
| } |
| } |
| |
| static int GetHistoBinIndex(const VP8LHistogram* const h, |
| const DominantCostRange* const c, int low_effort) { |
| int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_, |
| h->literal_cost_); |
| assert(bin_id < NUM_PARTITIONS); |
| if (!low_effort) { |
| bin_id = bin_id * NUM_PARTITIONS |
| + GetBinIdForEntropy(c->red_min_, c->red_max_, h->red_cost_); |
| bin_id = bin_id * NUM_PARTITIONS |
| + GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_); |
| assert(bin_id < BIN_SIZE); |
| } |
| return bin_id; |
| } |
| |
| // Construct the histograms from backward references. |
| static void HistogramBuild( |
| int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs, |
| VP8LHistogramSet* const image_histo) { |
| int x = 0, y = 0; |
| const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits); |
| VP8LHistogram** const histograms = image_histo->histograms; |
| VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs); |
| assert(histo_bits > 0); |
| VP8LHistogramSetClear(image_histo); |
| while (VP8LRefsCursorOk(&c)) { |
| const PixOrCopy* const v = c.cur_pos; |
| const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits); |
| VP8LHistogramAddSinglePixOrCopy(histograms[ix], v, NULL, 0); |
| x += PixOrCopyLength(v); |
| while (x >= xsize) { |
| x -= xsize; |
| ++y; |
| } |
| VP8LRefsCursorNext(&c); |
| } |
| } |
| |
| // Copies the histograms and computes its bit_cost. |
| static const uint16_t kInvalidHistogramSymbol = (uint16_t)(-1); |
| static void HistogramCopyAndAnalyze(VP8LHistogramSet* const orig_histo, |
| VP8LHistogramSet* const image_histo, |
| int* const num_used, |
| uint16_t* const histogram_symbols) { |
| int i, cluster_id; |
| int num_used_orig = *num_used; |
| VP8LHistogram** const orig_histograms = orig_histo->histograms; |
| VP8LHistogram** const histograms = image_histo->histograms; |
| assert(image_histo->max_size == orig_histo->max_size); |
| for (cluster_id = 0, i = 0; i < orig_histo->max_size; ++i) { |
| VP8LHistogram* const histo = orig_histograms[i]; |
| UpdateHistogramCost(histo); |
| |
| // Skip the histogram if it is completely empty, which can happen for tiles |
| // with no information (when they are skipped because of LZ77). |
| if (!histo->is_used_[0] && !histo->is_used_[1] && !histo->is_used_[2] |
| && !histo->is_used_[3] && !histo->is_used_[4]) { |
| // The first histogram is always used. If an histogram is empty, we set |
| // its id to be the same as the previous one: this will improve |
| // compressibility for later LZ77. |
| assert(i > 0); |
| HistogramSetRemoveHistogram(image_histo, i, num_used); |
| HistogramSetRemoveHistogram(orig_histo, i, &num_used_orig); |
| histogram_symbols[i] = kInvalidHistogramSymbol; |
| } else { |
| // Copy histograms from orig_histo[] to image_histo[]. |
| HistogramCopy(histo, histograms[i]); |
| histogram_symbols[i] = cluster_id++; |
| assert(cluster_id <= image_histo->max_size); |
| } |
| } |
| } |
| |
| // Partition histograms to different entropy bins for three dominant (literal, |
| // red and blue) symbol costs and compute the histogram aggregate bit_cost. |
| static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo, |
| uint16_t* const bin_map, |
| int low_effort) { |
| int i; |
| VP8LHistogram** const histograms = image_histo->histograms; |
| const int histo_size = image_histo->size; |
| DominantCostRange cost_range; |
| DominantCostRangeInit(&cost_range); |
| |
| // Analyze the dominant (literal, red and blue) entropy costs. |
| for (i = 0; i < histo_size; ++i) { |
| if (histograms[i] == NULL) continue; |
| UpdateDominantCostRange(histograms[i], &cost_range); |
| } |
| |
| // bin-hash histograms on three of the dominant (literal, red and blue) |
| // symbol costs and store the resulting bin_id for each histogram. |
| for (i = 0; i < histo_size; ++i) { |
| // bin_map[i] is not set to a special value as its use will later be guarded |
| // by another (histograms[i] == NULL). |
| if (histograms[i] == NULL) continue; |
| bin_map[i] = GetHistoBinIndex(histograms[i], &cost_range, low_effort); |
| } |
| } |
| |
| // Merges some histograms with same bin_id together if it's advantageous. |
| // Sets the remaining histograms to NULL. |
| static void HistogramCombineEntropyBin( |
| VP8LHistogramSet* const image_histo, int* num_used, |
| const uint16_t* const clusters, uint16_t* const cluster_mappings, |
| VP8LHistogram* cur_combo, const uint16_t* const bin_map, int num_bins, |
| float combine_cost_factor, int low_effort) { |
| VP8LHistogram** const histograms = image_histo->histograms; |
| int idx; |
| struct { |
| int16_t first; // position of the histogram that accumulates all |
| // histograms with the same bin_id |
| uint16_t num_combine_failures; // number of combine failures per bin_id |
| } bin_info[BIN_SIZE]; |
| |
| assert(num_bins <= BIN_SIZE); |
| for (idx = 0; idx < num_bins; ++idx) { |
| bin_info[idx].first = -1; |
| bin_info[idx].num_combine_failures = 0; |
| } |
| |
| // By default, a cluster matches itself. |
| for (idx = 0; idx < *num_used; ++idx) cluster_mappings[idx] = idx; |
| for (idx = 0; idx < image_histo->size; ++idx) { |
| int bin_id, first; |
| if (histograms[idx] == NULL) continue; |
| bin_id = bin_map[idx]; |
| first = bin_info[bin_id].first; |
| if (first == -1) { |
| bin_info[bin_id].first = idx; |
| } else if (low_effort) { |
| HistogramAdd(histograms[idx], histograms[first], histograms[first]); |
| HistogramSetRemoveHistogram(image_histo, idx, num_used); |
| cluster_mappings[clusters[idx]] = clusters[first]; |
| } else { |
| // try to merge #idx into #first (both share the same bin_id) |
| const float bit_cost = histograms[idx]->bit_cost_; |
| const float bit_cost_thresh = -bit_cost * combine_cost_factor; |
| const float curr_cost_diff = HistogramAddEval( |
| histograms[first], histograms[idx], cur_combo, bit_cost_thresh); |
| if (curr_cost_diff < bit_cost_thresh) { |
| // Try to merge two histograms only if the combo is a trivial one or |
| // the two candidate histograms are already non-trivial. |
| // For some images, 'try_combine' turns out to be false for a lot of |
| // histogram pairs. In that case, we fallback to combining |
| // histograms as usual to avoid increasing the header size. |
| const int try_combine = |
| (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) || |
| ((histograms[idx]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) && |
| (histograms[first]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM)); |
| const int max_combine_failures = 32; |
| if (try_combine || |
| bin_info[bin_id].num_combine_failures >= max_combine_failures) { |
| // move the (better) merged histogram to its final slot |
| HistogramSwap(&cur_combo, &histograms[first]); |
| HistogramSetRemoveHistogram(image_histo, idx, num_used); |
| cluster_mappings[clusters[idx]] = clusters[first]; |
| } else { |
| ++bin_info[bin_id].num_combine_failures; |
| } |
| } |
| } |
| } |
| if (low_effort) { |
| // for low_effort case, update the final cost when everything is merged |
| for (idx = 0; idx < image_histo->size; ++idx) { |
| if (histograms[idx] == NULL) continue; |
| UpdateHistogramCost(histograms[idx]); |
| } |
| } |
| } |
| |
| // Implement a Lehmer random number generator with a multiplicative constant of |
| // 48271 and a modulo constant of 2^31 - 1. |
| static uint32_t MyRand(uint32_t* const seed) { |
| *seed = (uint32_t)(((uint64_t)(*seed) * 48271u) % 2147483647u); |
| assert(*seed > 0); |
| return *seed; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Histogram pairs priority queue |
| |
| // Pair of histograms. Negative idx1 value means that pair is out-of-date. |
| typedef struct { |
| int idx1; |
| int idx2; |
| float cost_diff; |
| float cost_combo; |
| } HistogramPair; |
| |
| typedef struct { |
| HistogramPair* queue; |
| int size; |
| int max_size; |
| } HistoQueue; |
| |
| static int HistoQueueInit(HistoQueue* const histo_queue, const int max_size) { |
| histo_queue->size = 0; |
| histo_queue->max_size = max_size; |
| // We allocate max_size + 1 because the last element at index "size" is |
| // used as temporary data (and it could be up to max_size). |
| histo_queue->queue = (HistogramPair*)WebPSafeMalloc( |
| histo_queue->max_size + 1, sizeof(*histo_queue->queue)); |
| return histo_queue->queue != NULL; |
| } |
| |
| static void HistoQueueClear(HistoQueue* const histo_queue) { |
| assert(histo_queue != NULL); |
| WebPSafeFree(histo_queue->queue); |
| histo_queue->size = 0; |
| histo_queue->max_size = 0; |
| } |
| |
| // Pop a specific pair in the queue by replacing it with the last one |
| // and shrinking the queue. |
| static void HistoQueuePopPair(HistoQueue* const histo_queue, |
| HistogramPair* const pair) { |
| assert(pair >= histo_queue->queue && |
| pair < (histo_queue->queue + histo_queue->size)); |
| assert(histo_queue->size > 0); |
| *pair = histo_queue->queue[histo_queue->size - 1]; |
| --histo_queue->size; |
| } |
| |
| // Check whether a pair in the queue should be updated as head or not. |
| static void HistoQueueUpdateHead(HistoQueue* const histo_queue, |
| HistogramPair* const pair) { |
| assert(pair->cost_diff < 0.); |
| assert(pair >= histo_queue->queue && |
| pair < (histo_queue->queue + histo_queue->size)); |
| assert(histo_queue->size > 0); |
| if (pair->cost_diff < histo_queue->queue[0].cost_diff) { |
| // Replace the best pair. |
| const HistogramPair tmp = histo_queue->queue[0]; |
| histo_queue->queue[0] = *pair; |
| *pair = tmp; |
| } |
| } |
| |
| // Update the cost diff and combo of a pair of histograms. This needs to be |
| // called when the the histograms have been merged with a third one. |
| static void HistoQueueUpdatePair(const VP8LHistogram* const h1, |
| const VP8LHistogram* const h2, float threshold, |
| HistogramPair* const pair) { |
| const float sum_cost = h1->bit_cost_ + h2->bit_cost_; |
| pair->cost_combo = 0.; |
| GetCombinedHistogramEntropy(h1, h2, sum_cost + threshold, &pair->cost_combo); |
| pair->cost_diff = pair->cost_combo - sum_cost; |
| } |
| |
| // Create a pair from indices "idx1" and "idx2" provided its cost |
| // is inferior to "threshold", a negative entropy. |
| // It returns the cost of the pair, or 0. if it superior to threshold. |
| static float HistoQueuePush(HistoQueue* const histo_queue, |
| VP8LHistogram** const histograms, int idx1, |
| int idx2, float threshold) { |
| const VP8LHistogram* h1; |
| const VP8LHistogram* h2; |
| HistogramPair pair; |
| |
| // Stop here if the queue is full. |
| if (histo_queue->size == histo_queue->max_size) return 0.; |
| assert(threshold <= 0.); |
| if (idx1 > idx2) { |
| const int tmp = idx2; |
| idx2 = idx1; |
| idx1 = tmp; |
| } |
| pair.idx1 = idx1; |
| pair.idx2 = idx2; |
| h1 = histograms[idx1]; |
| h2 = histograms[idx2]; |
| |
| HistoQueueUpdatePair(h1, h2, threshold, &pair); |
| |
| // Do not even consider the pair if it does not improve the entropy. |
| if (pair.cost_diff >= threshold) return 0.; |
| |
| histo_queue->queue[histo_queue->size++] = pair; |
| HistoQueueUpdateHead(histo_queue, &histo_queue->queue[histo_queue->size - 1]); |
| |
| return pair.cost_diff; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| |
| // Combines histograms by continuously choosing the one with the highest cost |
| // reduction. |
| static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo, |
| int* const num_used) { |
| int ok = 0; |
| const int image_histo_size = image_histo->size; |
| int i, j; |
| VP8LHistogram** const histograms = image_histo->histograms; |
| // Priority queue of histogram pairs. |
| HistoQueue histo_queue; |
| |
| // image_histo_size^2 for the queue size is safe. If you look at |
| // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes |
| // data to the queue, you insert at most: |
| // - image_histo_size*(image_histo_size-1)/2 (the first two for loops) |
| // - image_histo_size - 1 in the last for loop at the first iteration of |
| // the while loop, image_histo_size - 2 at the second iteration ... |
| // therefore image_histo_size*(image_histo_size-1)/2 overall too |
| if (!HistoQueueInit(&histo_queue, image_histo_size * image_histo_size)) { |
| goto End; |
| } |
| |
| for (i = 0; i < image_histo_size; ++i) { |
| if (image_histo->histograms[i] == NULL) continue; |
| for (j = i + 1; j < image_histo_size; ++j) { |
| // Initialize queue. |
| if (image_histo->histograms[j] == NULL) continue; |
| HistoQueuePush(&histo_queue, histograms, i, j, 0.); |
| } |
| } |
| |
| while (histo_queue.size > 0) { |
| const int idx1 = histo_queue.queue[0].idx1; |
| const int idx2 = histo_queue.queue[0].idx2; |
| HistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]); |
| histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo; |
| |
| // Remove merged histogram. |
| HistogramSetRemoveHistogram(image_histo, idx2, num_used); |
| |
| // Remove pairs intersecting the just combined best pair. |
| for (i = 0; i < histo_queue.size;) { |
| HistogramPair* const p = histo_queue.queue + i; |
| if (p->idx1 == idx1 || p->idx2 == idx1 || |
| p->idx1 == idx2 || p->idx2 == idx2) { |
| HistoQueuePopPair(&histo_queue, p); |
| } else { |
| HistoQueueUpdateHead(&histo_queue, p); |
| ++i; |
| } |
| } |
| |
| // Push new pairs formed with combined histogram to the queue. |
| for (i = 0; i < image_histo->size; ++i) { |
| if (i == idx1 || image_histo->histograms[i] == NULL) continue; |
| HistoQueuePush(&histo_queue, image_histo->histograms, idx1, i, 0.); |
| } |
| } |
| |
| ok = 1; |
| |
| End: |
| HistoQueueClear(&histo_queue); |
| return ok; |
| } |
| |
| // Perform histogram aggregation using a stochastic approach. |
| // 'do_greedy' is set to 1 if a greedy approach needs to be performed |
| // afterwards, 0 otherwise. |
| static int PairComparison(const void* idx1, const void* idx2) { |
| // To be used with bsearch: <0 when *idx1<*idx2, >0 if >, 0 when ==. |
| return (*(int*) idx1 - *(int*) idx2); |
| } |
| static int HistogramCombineStochastic(VP8LHistogramSet* const image_histo, |
| int* const num_used, int min_cluster_size, |
| int* const do_greedy) { |
| int j, iter; |
| uint32_t seed = 1; |
| int tries_with_no_success = 0; |
| const int outer_iters = *num_used; |
| const int num_tries_no_success = outer_iters / 2; |
| VP8LHistogram** const histograms = image_histo->histograms; |
| // Priority queue of histogram pairs. Its size of 'kHistoQueueSize' |
| // impacts the quality of the compression and the speed: the smaller the |
| // faster but the worse for the compression. |
| HistoQueue histo_queue; |
| const int kHistoQueueSize = 9; |
| int ok = 0; |
| // mapping from an index in image_histo with no NULL histogram to the full |
| // blown image_histo. |
| int* mappings; |
| |
| if (*num_used < min_cluster_size) { |
| *do_greedy = 1; |
| return 1; |
| } |
| |
| mappings = (int*) WebPSafeMalloc(*num_used, sizeof(*mappings)); |
| if (mappings == NULL) return 0; |
| if (!HistoQueueInit(&histo_queue, kHistoQueueSize)) goto End; |
| // Fill the initial mapping. |
| for (j = 0, iter = 0; iter < image_histo->size; ++iter) { |
| if (histograms[iter] == NULL) continue; |
| mappings[j++] = iter; |
| } |
| assert(j == *num_used); |
| |
| // Collapse similar histograms in 'image_histo'. |
| for (iter = 0; |
| iter < outer_iters && *num_used >= min_cluster_size && |
| ++tries_with_no_success < num_tries_no_success; |
| ++iter) { |
| int* mapping_index; |
| float best_cost = |
| (histo_queue.size == 0) ? 0.f : histo_queue.queue[0].cost_diff; |
| int best_idx1 = -1, best_idx2 = 1; |
| const uint32_t rand_range = (*num_used - 1) * (*num_used); |
| // (*num_used) / 2 was chosen empirically. Less means faster but worse |
| // compression. |
| const int num_tries = (*num_used) / 2; |
| |
| // Pick random samples. |
| for (j = 0; *num_used >= 2 && j < num_tries; ++j) { |
| float curr_cost; |
| // Choose two different histograms at random and try to combine them. |
| const uint32_t tmp = MyRand(&seed) % rand_range; |
| uint32_t idx1 = tmp / (*num_used - 1); |
| uint32_t idx2 = tmp % (*num_used - 1); |
| if (idx2 >= idx1) ++idx2; |
| idx1 = mappings[idx1]; |
| idx2 = mappings[idx2]; |
| |
| // Calculate cost reduction on combination. |
| curr_cost = |
| HistoQueuePush(&histo_queue, histograms, idx1, idx2, best_cost); |
| if (curr_cost < 0) { // found a better pair? |
| best_cost = curr_cost; |
| // Empty the queue if we reached full capacity. |
| if (histo_queue.size == histo_queue.max_size) break; |
| } |
| } |
| if (histo_queue.size == 0) continue; |
| |
| // Get the best histograms. |
| best_idx1 = histo_queue.queue[0].idx1; |
| best_idx2 = histo_queue.queue[0].idx2; |
| assert(best_idx1 < best_idx2); |
| // Pop best_idx2 from mappings. |
| mapping_index = (int*) bsearch(&best_idx2, mappings, *num_used, |
| sizeof(best_idx2), &PairComparison); |
| assert(mapping_index != NULL); |
| memmove(mapping_index, mapping_index + 1, sizeof(*mapping_index) * |
| ((*num_used) - (mapping_index - mappings) - 1)); |
| // Merge the histograms and remove best_idx2 from the queue. |
| HistogramAdd(histograms[best_idx2], histograms[best_idx1], |
| histograms[best_idx1]); |
| histograms[best_idx1]->bit_cost_ = histo_queue.queue[0].cost_combo; |
| HistogramSetRemoveHistogram(image_histo, best_idx2, num_used); |
| // Parse the queue and update each pair that deals with best_idx1, |
| // best_idx2 or image_histo_size. |
| for (j = 0; j < histo_queue.size;) { |
| HistogramPair* const p = histo_queue.queue + j; |
| const int is_idx1_best = p->idx1 == best_idx1 || p->idx1 == best_idx2; |
| const int is_idx2_best = p->idx2 == best_idx1 || p->idx2 == best_idx2; |
| int do_eval = 0; |
| // The front pair could have been duplicated by a random pick so |
| // check for it all the time nevertheless. |
| if (is_idx1_best && is_idx2_best) { |
| HistoQueuePopPair(&histo_queue, p); |
| continue; |
| } |
| // Any pair containing one of the two best indices should only refer to |
| // best_idx1. Its cost should also be updated. |
| if (is_idx1_best) { |
| p->idx1 = best_idx1; |
| do_eval = 1; |
| } else if (is_idx2_best) { |
| p->idx2 = best_idx1; |
| do_eval = 1; |
| } |
| // Make sure the index order is respected. |
| if (p->idx1 > p->idx2) { |
| const int tmp = p->idx2; |
| p->idx2 = p->idx1; |
| p->idx1 = tmp; |
| } |
| if (do_eval) { |
| // Re-evaluate the cost of an updated pair. |
| HistoQueueUpdatePair(histograms[p->idx1], histograms[p->idx2], 0., p); |
| if (p->cost_diff >= 0.) { |
| HistoQueuePopPair(&histo_queue, p); |
| continue; |
| } |
| } |
| HistoQueueUpdateHead(&histo_queue, p); |
| ++j; |
| } |
| tries_with_no_success = 0; |
| } |
| *do_greedy = (*num_used <= min_cluster_size); |
| ok = 1; |
| |
| End: |
| HistoQueueClear(&histo_queue); |
| WebPSafeFree(mappings); |
| return ok; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Histogram refinement |
| |
| // Find the best 'out' histogram for each of the 'in' histograms. |
| // At call-time, 'out' contains the histograms of the clusters. |
| // Note: we assume that out[]->bit_cost_ is already up-to-date. |
| static void HistogramRemap(const VP8LHistogramSet* const in, |
| VP8LHistogramSet* const out, |
| uint16_t* const symbols) { |
| int i; |
| VP8LHistogram** const in_histo = in->histograms; |
| VP8LHistogram** const out_histo = out->histograms; |
| const int in_size = out->max_size; |
| const int out_size = out->size; |
| if (out_size > 1) { |
| for (i = 0; i < in_size; ++i) { |
| int best_out = 0; |
| float best_bits = MAX_BIT_COST; |
| int k; |
| if (in_histo[i] == NULL) { |
| // Arbitrarily set to the previous value if unused to help future LZ77. |
| symbols[i] = symbols[i - 1]; |
| continue; |
| } |
| for (k = 0; k < out_size; ++k) { |
| float cur_bits; |
| cur_bits = HistogramAddThresh(out_histo[k], in_histo[i], best_bits); |
| if (k == 0 || cur_bits < best_bits) { |
| best_bits = cur_bits; |
| best_out = k; |
| } |
| } |
| symbols[i] = best_out; |
| } |
| } else { |
| assert(out_size == 1); |
| for (i = 0; i < in_size; ++i) { |
| symbols[i] = 0; |
| } |
| } |
| |
| // Recompute each out based on raw and symbols. |
| VP8LHistogramSetClear(out); |
| out->size = out_size; |
| |
| for (i = 0; i < in_size; ++i) { |
| int idx; |
| if (in_histo[i] == NULL) continue; |
| idx = symbols[i]; |
| HistogramAdd(in_histo[i], out_histo[idx], out_histo[idx]); |
| } |
| } |
| |
| static float GetCombineCostFactor(int histo_size, int quality) { |
| float combine_cost_factor = 0.16f; |
| if (quality < 90) { |
| if (histo_size > 256) combine_cost_factor /= 2.f; |
| if (histo_size > 512) combine_cost_factor /= 2.f; |
| if (histo_size > 1024) combine_cost_factor /= 2.f; |
| if (quality <= 50) combine_cost_factor /= 2.f; |
| } |
| return combine_cost_factor; |
| } |
| |
| // Given a HistogramSet 'set', the mapping of clusters 'cluster_mapping' and the |
| // current assignment of the cells in 'symbols', merge the clusters and |
| // assign the smallest possible clusters values. |
| static void OptimizeHistogramSymbols(const VP8LHistogramSet* const set, |
| uint16_t* const cluster_mappings, |
| int num_clusters, |
| uint16_t* const cluster_mappings_tmp, |
| uint16_t* const symbols) { |
| int i, cluster_max; |
| int do_continue = 1; |
| // First, assign the lowest cluster to each pixel. |
| while (do_continue) { |
| do_continue = 0; |
| for (i = 0; i < num_clusters; ++i) { |
| int k; |
| k = cluster_mappings[i]; |
| while (k != cluster_mappings[k]) { |
| cluster_mappings[k] = cluster_mappings[cluster_mappings[k]]; |
| k = cluster_mappings[k]; |
| } |
| if (k != cluster_mappings[i]) { |
| do_continue = 1; |
| cluster_mappings[i] = k; |
| } |
| } |
| } |
| // Create a mapping from a cluster id to its minimal version. |
| cluster_max = 0; |
| memset(cluster_mappings_tmp, 0, |
| set->max_size * sizeof(*cluster_mappings_tmp)); |
| assert(cluster_mappings[0] == 0); |
| // Re-map the ids. |
| for (i = 0; i < set->max_size; ++i) { |
| int cluster; |
| if (symbols[i] == kInvalidHistogramSymbol) continue; |
| cluster = cluster_mappings[symbols[i]]; |
| assert(symbols[i] < num_clusters); |
| if (cluster > 0 && cluster_mappings_tmp[cluster] == 0) { |
| ++cluster_max; |
| cluster_mappings_tmp[cluster] = cluster_max; |
| } |
| symbols[i] = cluster_mappings_tmp[cluster]; |
| } |
| |
| // Make sure all cluster values are used. |
| cluster_max = 0; |
| for (i = 0; i < set->max_size; ++i) { |
| if (symbols[i] == kInvalidHistogramSymbol) continue; |
| if (symbols[i] <= cluster_max) continue; |
| ++cluster_max; |
| assert(symbols[i] == cluster_max); |
| } |
| } |
| |
| static void RemoveEmptyHistograms(VP8LHistogramSet* const image_histo) { |
| uint32_t size; |
| int i; |
| for (i = 0, size = 0; i < image_histo->size; ++i) { |
| if (image_histo->histograms[i] == NULL) continue; |
| image_histo->histograms[size++] = image_histo->histograms[i]; |
| } |
| image_histo->size = size; |
| } |
| |
| int VP8LGetHistoImageSymbols(int xsize, int ysize, |
| const VP8LBackwardRefs* const refs, int quality, |
| int low_effort, int histogram_bits, int cache_bits, |
| VP8LHistogramSet* const image_histo, |
| VP8LHistogram* const tmp_histo, |
| uint16_t* const histogram_symbols, |
| const WebPPicture* const pic, int percent_range, |
| int* const percent) { |
| const int histo_xsize = |
| histogram_bits ? VP8LSubSampleSize(xsize, histogram_bits) : 1; |
| const int histo_ysize = |
| histogram_bits ? VP8LSubSampleSize(ysize, histogram_bits) : 1; |
| const int image_histo_raw_size = histo_xsize * histo_ysize; |
| VP8LHistogramSet* const orig_histo = |
| VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits); |
| // Don't attempt linear bin-partition heuristic for |
| // histograms of small sizes (as bin_map will be very sparse) and |
| // maximum quality q==100 (to preserve the compression gains at that level). |
| const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE; |
| int entropy_combine; |
| uint16_t* const map_tmp = |
| WebPSafeMalloc(2 * image_histo_raw_size, sizeof(map_tmp)); |
| uint16_t* const cluster_mappings = map_tmp + image_histo_raw_size; |
| int num_used = image_histo_raw_size; |
| if (orig_histo == NULL || map_tmp == NULL) { |
| WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| |
| // Construct the histograms from backward references. |
| HistogramBuild(xsize, histogram_bits, refs, orig_histo); |
| // Copies the histograms and computes its bit_cost. |
| // histogram_symbols is optimized |
| HistogramCopyAndAnalyze(orig_histo, image_histo, &num_used, |
| histogram_symbols); |
| |
| entropy_combine = |
| (num_used > entropy_combine_num_bins * 2) && (quality < 100); |
| |
| if (entropy_combine) { |
| uint16_t* const bin_map = map_tmp; |
| const float combine_cost_factor = |
| GetCombineCostFactor(image_histo_raw_size, quality); |
| const uint32_t num_clusters = num_used; |
| |
| HistogramAnalyzeEntropyBin(image_histo, bin_map, low_effort); |
| // Collapse histograms with similar entropy. |
| HistogramCombineEntropyBin( |
| image_histo, &num_used, histogram_symbols, cluster_mappings, tmp_histo, |
| bin_map, entropy_combine_num_bins, combine_cost_factor, low_effort); |
| OptimizeHistogramSymbols(image_histo, cluster_mappings, num_clusters, |
| map_tmp, histogram_symbols); |
| } |
| |
| // Don't combine the histograms using stochastic and greedy heuristics for |
| // low-effort compression mode. |
| if (!low_effort || !entropy_combine) { |
| const float x = quality / 100.f; |
| // cubic ramp between 1 and MAX_HISTO_GREEDY: |
| const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1)); |
| int do_greedy; |
| if (!HistogramCombineStochastic(image_histo, &num_used, threshold_size, |
| &do_greedy)) { |
| WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| if (do_greedy) { |
| RemoveEmptyHistograms(image_histo); |
| if (!HistogramCombineGreedy(image_histo, &num_used)) { |
| WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| goto Error; |
| } |
| } |
| } |
| |
| // Find the optimal map from original histograms to the final ones. |
| RemoveEmptyHistograms(image_histo); |
| HistogramRemap(orig_histo, image_histo, histogram_symbols); |
| |
| if (!WebPReportProgress(pic, *percent + percent_range, percent)) { |
| goto Error; |
| } |
| |
| Error: |
| VP8LFreeHistogramSet(orig_histo); |
| WebPSafeFree(map_tmp); |
| return (pic->error_code == VP8_ENC_OK); |
| } |