| // Copyright 2014 Google Inc. All Rights Reserved. |
| // |
| // Use of this source code is governed by a BSD-style license |
| // that can be found in the COPYING file in the root of the source |
| // tree. An additional intellectual property rights grant can be found |
| // in the file PATENTS. All contributing project authors may |
| // be found in the AUTHORS file in the root of the source tree. |
| // ----------------------------------------------------------------------------- |
| // |
| // WebPPicture utils for colorspace conversion |
| // |
| // Author: Skal (pascal.massimino@gmail.com) |
| |
| #include "starboard/client_porting/cwrappers/pow_wrapper.h" |
| |
| #if defined(STARBOARD) |
| #include "starboard/client_porting/poem/assert_poem.h" |
| #else |
| #include <assert.h> |
| #include <math.h> |
| #endif |
| |
| #include <stdlib.h> |
| |
| #include "sharpyuv/sharpyuv.h" |
| #include "sharpyuv/sharpyuv_csp.h" |
| #include "src/enc/vp8i_enc.h" |
| #include "src/utils/random_utils.h" |
| #include "src/utils/utils.h" |
| #include "src/dsp/dsp.h" |
| #include "src/dsp/lossless.h" |
| #include "src/dsp/yuv.h" |
| #include "src/dsp/cpu.h" |
| |
| #if defined(WEBP_USE_THREAD) && !defined(_WIN32) |
| #include <pthread.h> |
| #endif |
| |
| // Uncomment to disable gamma-compression during RGB->U/V averaging |
| #define USE_GAMMA_COMPRESSION |
| |
| // If defined, use table to compute x / alpha. |
| #define USE_INVERSE_ALPHA_TABLE |
| |
| #ifdef WORDS_BIGENDIAN |
| // uint32_t 0xff000000 is 0xff,00,00,00 in memory |
| #define CHANNEL_OFFSET(i) (i) |
| #else |
| // uint32_t 0xff000000 is 0x00,00,00,ff in memory |
| #define CHANNEL_OFFSET(i) (3-(i)) |
| #endif |
| |
| #define ALPHA_OFFSET CHANNEL_OFFSET(0) |
| |
| //------------------------------------------------------------------------------ |
| // Detection of non-trivial transparency |
| |
| // Returns true if alpha[] has non-0xff values. |
| static int CheckNonOpaque(const uint8_t* alpha, int width, int height, |
| int x_step, int y_step) { |
| if (alpha == NULL) return 0; |
| WebPInitAlphaProcessing(); |
| if (x_step == 1) { |
| for (; height-- > 0; alpha += y_step) { |
| if (WebPHasAlpha8b(alpha, width)) return 1; |
| } |
| } else { |
| for (; height-- > 0; alpha += y_step) { |
| if (WebPHasAlpha32b(alpha, width)) return 1; |
| } |
| } |
| return 0; |
| } |
| |
| // Checking for the presence of non-opaque alpha. |
| int WebPPictureHasTransparency(const WebPPicture* picture) { |
| if (picture == NULL) return 0; |
| if (picture->use_argb) { |
| if (picture->argb != NULL) { |
| return CheckNonOpaque((const uint8_t*)picture->argb + ALPHA_OFFSET, |
| picture->width, picture->height, |
| 4, picture->argb_stride * sizeof(*picture->argb)); |
| } |
| return 0; |
| } |
| return CheckNonOpaque(picture->a, picture->width, picture->height, |
| 1, picture->a_stride); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Code for gamma correction |
| |
| #if defined(USE_GAMMA_COMPRESSION) |
| |
| // Gamma correction compensates loss of resolution during chroma subsampling. |
| #define GAMMA_FIX 12 // fixed-point precision for linear values |
| #define GAMMA_TAB_FIX 7 // fixed-point fractional bits precision |
| #define GAMMA_TAB_SIZE (1 << (GAMMA_FIX - GAMMA_TAB_FIX)) |
| static const double kGamma = 0.80; |
| static const int kGammaScale = ((1 << GAMMA_FIX) - 1); |
| static const int kGammaTabScale = (1 << GAMMA_TAB_FIX); |
| static const int kGammaTabRounder = (1 << GAMMA_TAB_FIX >> 1); |
| |
| static int kLinearToGammaTab[GAMMA_TAB_SIZE + 1]; |
| static uint16_t kGammaToLinearTab[256]; |
| static volatile int kGammaTablesOk = 0; |
| static void InitGammaTables(void); |
| extern VP8CPUInfo VP8GetCPUInfo; |
| |
| WEBP_DSP_INIT_FUNC(InitGammaTables) { |
| if (!kGammaTablesOk) { |
| int v; |
| const double scale = (double)(1 << GAMMA_TAB_FIX) / kGammaScale; |
| const double norm = 1. / 255.; |
| for (v = 0; v <= 255; ++v) { |
| kGammaToLinearTab[v] = |
| (uint16_t)(pow(norm * v, kGamma) * kGammaScale + .5); |
| } |
| for (v = 0; v <= GAMMA_TAB_SIZE; ++v) { |
| kLinearToGammaTab[v] = (int)(255. * pow(scale * v, 1. / kGamma) + .5); |
| } |
| kGammaTablesOk = 1; |
| } |
| } |
| |
| static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { |
| return kGammaToLinearTab[v]; |
| } |
| |
| static WEBP_INLINE int Interpolate(int v) { |
| const int tab_pos = v >> (GAMMA_TAB_FIX + 2); // integer part |
| const int x = v & ((kGammaTabScale << 2) - 1); // fractional part |
| const int v0 = kLinearToGammaTab[tab_pos]; |
| const int v1 = kLinearToGammaTab[tab_pos + 1]; |
| const int y = v1 * x + v0 * ((kGammaTabScale << 2) - x); // interpolate |
| assert(tab_pos + 1 < GAMMA_TAB_SIZE + 1); |
| return y; |
| } |
| |
| // Convert a linear value 'v' to YUV_FIX+2 fixed-point precision |
| // U/V value, suitable for RGBToU/V calls. |
| static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { |
| const int y = Interpolate(base_value << shift); // final uplifted value |
| return (y + kGammaTabRounder) >> GAMMA_TAB_FIX; // descale |
| } |
| |
| #else |
| |
| static void InitGammaTables(void) {} |
| static WEBP_INLINE uint32_t GammaToLinear(uint8_t v) { return v; } |
| static WEBP_INLINE int LinearToGamma(uint32_t base_value, int shift) { |
| return (int)(base_value << shift); |
| } |
| |
| #endif // USE_GAMMA_COMPRESSION |
| |
| //------------------------------------------------------------------------------ |
| // RGB -> YUV conversion |
| |
| static int RGBToY(int r, int g, int b, VP8Random* const rg) { |
| return (rg == NULL) ? VP8RGBToY(r, g, b, YUV_HALF) |
| : VP8RGBToY(r, g, b, VP8RandomBits(rg, YUV_FIX)); |
| } |
| |
| static int RGBToU(int r, int g, int b, VP8Random* const rg) { |
| return (rg == NULL) ? VP8RGBToU(r, g, b, YUV_HALF << 2) |
| : VP8RGBToU(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); |
| } |
| |
| static int RGBToV(int r, int g, int b, VP8Random* const rg) { |
| return (rg == NULL) ? VP8RGBToV(r, g, b, YUV_HALF << 2) |
| : VP8RGBToV(r, g, b, VP8RandomBits(rg, YUV_FIX + 2)); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // Sharp RGB->YUV conversion |
| |
| static const int kMinDimensionIterativeConversion = 4; |
| |
| //------------------------------------------------------------------------------ |
| // Main function |
| |
| static int PreprocessARGB(const uint8_t* r_ptr, |
| const uint8_t* g_ptr, |
| const uint8_t* b_ptr, |
| int step, int rgb_stride, |
| WebPPicture* const picture) { |
| const int ok = SharpYuvConvert( |
| r_ptr, g_ptr, b_ptr, step, rgb_stride, /*rgb_bit_depth=*/8, |
| picture->y, picture->y_stride, picture->u, picture->uv_stride, picture->v, |
| picture->uv_stride, /*yuv_bit_depth=*/8, picture->width, |
| picture->height, SharpYuvGetConversionMatrix(kSharpYuvMatrixWebp)); |
| if (!ok) { |
| return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| } |
| return ok; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // "Fast" regular RGB->YUV |
| |
| #define SUM4(ptr, step) LinearToGamma( \ |
| GammaToLinear((ptr)[0]) + \ |
| GammaToLinear((ptr)[(step)]) + \ |
| GammaToLinear((ptr)[rgb_stride]) + \ |
| GammaToLinear((ptr)[rgb_stride + (step)]), 0) \ |
| |
| #define SUM2(ptr) \ |
| LinearToGamma(GammaToLinear((ptr)[0]) + GammaToLinear((ptr)[rgb_stride]), 1) |
| |
| #define SUM2ALPHA(ptr) ((ptr)[0] + (ptr)[rgb_stride]) |
| #define SUM4ALPHA(ptr) (SUM2ALPHA(ptr) + SUM2ALPHA((ptr) + 4)) |
| |
| #if defined(USE_INVERSE_ALPHA_TABLE) |
| |
| static const int kAlphaFix = 19; |
| // Following table is (1 << kAlphaFix) / a. The (v * kInvAlpha[a]) >> kAlphaFix |
| // formula is then equal to v / a in most (99.6%) cases. Note that this table |
| // and constant are adjusted very tightly to fit 32b arithmetic. |
| // In particular, they use the fact that the operands for 'v / a' are actually |
| // derived as v = (a0.p0 + a1.p1 + a2.p2 + a3.p3) and a = a0 + a1 + a2 + a3 |
| // with ai in [0..255] and pi in [0..1<<GAMMA_FIX). The constraint to avoid |
| // overflow is: GAMMA_FIX + kAlphaFix <= 31. |
| static const uint32_t kInvAlpha[4 * 0xff + 1] = { |
| 0, /* alpha = 0 */ |
| 524288, 262144, 174762, 131072, 104857, 87381, 74898, 65536, |
| 58254, 52428, 47662, 43690, 40329, 37449, 34952, 32768, |
| 30840, 29127, 27594, 26214, 24966, 23831, 22795, 21845, |
| 20971, 20164, 19418, 18724, 18078, 17476, 16912, 16384, |
| 15887, 15420, 14979, 14563, 14169, 13797, 13443, 13107, |
| 12787, 12483, 12192, 11915, 11650, 11397, 11155, 10922, |
| 10699, 10485, 10280, 10082, 9892, 9709, 9532, 9362, |
| 9198, 9039, 8886, 8738, 8594, 8456, 8322, 8192, |
| 8065, 7943, 7825, 7710, 7598, 7489, 7384, 7281, |
| 7182, 7084, 6990, 6898, 6808, 6721, 6636, 6553, |
| 6472, 6393, 6316, 6241, 6168, 6096, 6026, 5957, |
| 5890, 5825, 5761, 5698, 5637, 5577, 5518, 5461, |
| 5405, 5349, 5295, 5242, 5190, 5140, 5090, 5041, |
| 4993, 4946, 4899, 4854, 4809, 4766, 4723, 4681, |
| 4639, 4599, 4559, 4519, 4481, 4443, 4405, 4369, |
| 4332, 4297, 4262, 4228, 4194, 4161, 4128, 4096, |
| 4064, 4032, 4002, 3971, 3942, 3912, 3883, 3855, |
| 3826, 3799, 3771, 3744, 3718, 3692, 3666, 3640, |
| 3615, 3591, 3566, 3542, 3518, 3495, 3472, 3449, |
| 3426, 3404, 3382, 3360, 3339, 3318, 3297, 3276, |
| 3256, 3236, 3216, 3196, 3177, 3158, 3139, 3120, |
| 3102, 3084, 3066, 3048, 3030, 3013, 2995, 2978, |
| 2962, 2945, 2928, 2912, 2896, 2880, 2864, 2849, |
| 2833, 2818, 2803, 2788, 2774, 2759, 2744, 2730, |
| 2716, 2702, 2688, 2674, 2661, 2647, 2634, 2621, |
| 2608, 2595, 2582, 2570, 2557, 2545, 2532, 2520, |
| 2508, 2496, 2484, 2473, 2461, 2449, 2438, 2427, |
| 2416, 2404, 2394, 2383, 2372, 2361, 2351, 2340, |
| 2330, 2319, 2309, 2299, 2289, 2279, 2269, 2259, |
| 2250, 2240, 2231, 2221, 2212, 2202, 2193, 2184, |
| 2175, 2166, 2157, 2148, 2139, 2131, 2122, 2114, |
| 2105, 2097, 2088, 2080, 2072, 2064, 2056, 2048, |
| 2040, 2032, 2024, 2016, 2008, 2001, 1993, 1985, |
| 1978, 1971, 1963, 1956, 1949, 1941, 1934, 1927, |
| 1920, 1913, 1906, 1899, 1892, 1885, 1879, 1872, |
| 1865, 1859, 1852, 1846, 1839, 1833, 1826, 1820, |
| 1814, 1807, 1801, 1795, 1789, 1783, 1777, 1771, |
| 1765, 1759, 1753, 1747, 1741, 1736, 1730, 1724, |
| 1718, 1713, 1707, 1702, 1696, 1691, 1685, 1680, |
| 1675, 1669, 1664, 1659, 1653, 1648, 1643, 1638, |
| 1633, 1628, 1623, 1618, 1613, 1608, 1603, 1598, |
| 1593, 1588, 1583, 1579, 1574, 1569, 1565, 1560, |
| 1555, 1551, 1546, 1542, 1537, 1533, 1528, 1524, |
| 1519, 1515, 1510, 1506, 1502, 1497, 1493, 1489, |
| 1485, 1481, 1476, 1472, 1468, 1464, 1460, 1456, |
| 1452, 1448, 1444, 1440, 1436, 1432, 1428, 1424, |
| 1420, 1416, 1413, 1409, 1405, 1401, 1398, 1394, |
| 1390, 1387, 1383, 1379, 1376, 1372, 1368, 1365, |
| 1361, 1358, 1354, 1351, 1347, 1344, 1340, 1337, |
| 1334, 1330, 1327, 1323, 1320, 1317, 1314, 1310, |
| 1307, 1304, 1300, 1297, 1294, 1291, 1288, 1285, |
| 1281, 1278, 1275, 1272, 1269, 1266, 1263, 1260, |
| 1257, 1254, 1251, 1248, 1245, 1242, 1239, 1236, |
| 1233, 1230, 1227, 1224, 1222, 1219, 1216, 1213, |
| 1210, 1208, 1205, 1202, 1199, 1197, 1194, 1191, |
| 1188, 1186, 1183, 1180, 1178, 1175, 1172, 1170, |
| 1167, 1165, 1162, 1159, 1157, 1154, 1152, 1149, |
| 1147, 1144, 1142, 1139, 1137, 1134, 1132, 1129, |
| 1127, 1125, 1122, 1120, 1117, 1115, 1113, 1110, |
| 1108, 1106, 1103, 1101, 1099, 1096, 1094, 1092, |
| 1089, 1087, 1085, 1083, 1081, 1078, 1076, 1074, |
| 1072, 1069, 1067, 1065, 1063, 1061, 1059, 1057, |
| 1054, 1052, 1050, 1048, 1046, 1044, 1042, 1040, |
| 1038, 1036, 1034, 1032, 1030, 1028, 1026, 1024, |
| 1022, 1020, 1018, 1016, 1014, 1012, 1010, 1008, |
| 1006, 1004, 1002, 1000, 998, 996, 994, 992, |
| 991, 989, 987, 985, 983, 981, 979, 978, |
| 976, 974, 972, 970, 969, 967, 965, 963, |
| 961, 960, 958, 956, 954, 953, 951, 949, |
| 948, 946, 944, 942, 941, 939, 937, 936, |
| 934, 932, 931, 929, 927, 926, 924, 923, |
| 921, 919, 918, 916, 914, 913, 911, 910, |
| 908, 907, 905, 903, 902, 900, 899, 897, |
| 896, 894, 893, 891, 890, 888, 887, 885, |
| 884, 882, 881, 879, 878, 876, 875, 873, |
| 872, 870, 869, 868, 866, 865, 863, 862, |
| 860, 859, 858, 856, 855, 853, 852, 851, |
| 849, 848, 846, 845, 844, 842, 841, 840, |
| 838, 837, 836, 834, 833, 832, 830, 829, |
| 828, 826, 825, 824, 823, 821, 820, 819, |
| 817, 816, 815, 814, 812, 811, 810, 809, |
| 807, 806, 805, 804, 802, 801, 800, 799, |
| 798, 796, 795, 794, 793, 791, 790, 789, |
| 788, 787, 786, 784, 783, 782, 781, 780, |
| 779, 777, 776, 775, 774, 773, 772, 771, |
| 769, 768, 767, 766, 765, 764, 763, 762, |
| 760, 759, 758, 757, 756, 755, 754, 753, |
| 752, 751, 750, 748, 747, 746, 745, 744, |
| 743, 742, 741, 740, 739, 738, 737, 736, |
| 735, 734, 733, 732, 731, 730, 729, 728, |
| 727, 726, 725, 724, 723, 722, 721, 720, |
| 719, 718, 717, 716, 715, 714, 713, 712, |
| 711, 710, 709, 708, 707, 706, 705, 704, |
| 703, 702, 701, 700, 699, 699, 698, 697, |
| 696, 695, 694, 693, 692, 691, 690, 689, |
| 688, 688, 687, 686, 685, 684, 683, 682, |
| 681, 680, 680, 679, 678, 677, 676, 675, |
| 674, 673, 673, 672, 671, 670, 669, 668, |
| 667, 667, 666, 665, 664, 663, 662, 661, |
| 661, 660, 659, 658, 657, 657, 656, 655, |
| 654, 653, 652, 652, 651, 650, 649, 648, |
| 648, 647, 646, 645, 644, 644, 643, 642, |
| 641, 640, 640, 639, 638, 637, 637, 636, |
| 635, 634, 633, 633, 632, 631, 630, 630, |
| 629, 628, 627, 627, 626, 625, 624, 624, |
| 623, 622, 621, 621, 620, 619, 618, 618, |
| 617, 616, 616, 615, 614, 613, 613, 612, |
| 611, 611, 610, 609, 608, 608, 607, 606, |
| 606, 605, 604, 604, 603, 602, 601, 601, |
| 600, 599, 599, 598, 597, 597, 596, 595, |
| 595, 594, 593, 593, 592, 591, 591, 590, |
| 589, 589, 588, 587, 587, 586, 585, 585, |
| 584, 583, 583, 582, 581, 581, 580, 579, |
| 579, 578, 578, 577, 576, 576, 575, 574, |
| 574, 573, 572, 572, 571, 571, 570, 569, |
| 569, 568, 568, 567, 566, 566, 565, 564, |
| 564, 563, 563, 562, 561, 561, 560, 560, |
| 559, 558, 558, 557, 557, 556, 555, 555, |
| 554, 554, 553, 553, 552, 551, 551, 550, |
| 550, 549, 548, 548, 547, 547, 546, 546, |
| 545, 544, 544, 543, 543, 542, 542, 541, |
| 541, 540, 539, 539, 538, 538, 537, 537, |
| 536, 536, 535, 534, 534, 533, 533, 532, |
| 532, 531, 531, 530, 530, 529, 529, 528, |
| 527, 527, 526, 526, 525, 525, 524, 524, |
| 523, 523, 522, 522, 521, 521, 520, 520, |
| 519, 519, 518, 518, 517, 517, 516, 516, |
| 515, 515, 514, 514 |
| }; |
| |
| // Note that LinearToGamma() expects the values to be premultiplied by 4, |
| // so we incorporate this factor 4 inside the DIVIDE_BY_ALPHA macro directly. |
| #define DIVIDE_BY_ALPHA(sum, a) (((sum) * kInvAlpha[(a)]) >> (kAlphaFix - 2)) |
| |
| #else |
| |
| #define DIVIDE_BY_ALPHA(sum, a) (4 * (sum) / (a)) |
| |
| #endif // USE_INVERSE_ALPHA_TABLE |
| |
| static WEBP_INLINE int LinearToGammaWeighted(const uint8_t* src, |
| const uint8_t* a_ptr, |
| uint32_t total_a, int step, |
| int rgb_stride) { |
| const uint32_t sum = |
| a_ptr[0] * GammaToLinear(src[0]) + |
| a_ptr[step] * GammaToLinear(src[step]) + |
| a_ptr[rgb_stride] * GammaToLinear(src[rgb_stride]) + |
| a_ptr[rgb_stride + step] * GammaToLinear(src[rgb_stride + step]); |
| assert(total_a > 0 && total_a <= 4 * 0xff); |
| #if defined(USE_INVERSE_ALPHA_TABLE) |
| assert((uint64_t)sum * kInvAlpha[total_a] < ((uint64_t)1 << 32)); |
| #endif |
| return LinearToGamma(DIVIDE_BY_ALPHA(sum, total_a), 0); |
| } |
| |
| static WEBP_INLINE void ConvertRowToY(const uint8_t* const r_ptr, |
| const uint8_t* const g_ptr, |
| const uint8_t* const b_ptr, |
| int step, |
| uint8_t* const dst_y, |
| int width, |
| VP8Random* const rg) { |
| int i, j; |
| for (i = 0, j = 0; i < width; i += 1, j += step) { |
| dst_y[i] = RGBToY(r_ptr[j], g_ptr[j], b_ptr[j], rg); |
| } |
| } |
| |
| static WEBP_INLINE void AccumulateRGBA(const uint8_t* const r_ptr, |
| const uint8_t* const g_ptr, |
| const uint8_t* const b_ptr, |
| const uint8_t* const a_ptr, |
| int rgb_stride, |
| uint16_t* dst, int width) { |
| int i, j; |
| // we loop over 2x2 blocks and produce one R/G/B/A value for each. |
| for (i = 0, j = 0; i < (width >> 1); i += 1, j += 2 * 4, dst += 4) { |
| const uint32_t a = SUM4ALPHA(a_ptr + j); |
| int r, g, b; |
| if (a == 4 * 0xff || a == 0) { |
| r = SUM4(r_ptr + j, 4); |
| g = SUM4(g_ptr + j, 4); |
| b = SUM4(b_ptr + j, 4); |
| } else { |
| r = LinearToGammaWeighted(r_ptr + j, a_ptr + j, a, 4, rgb_stride); |
| g = LinearToGammaWeighted(g_ptr + j, a_ptr + j, a, 4, rgb_stride); |
| b = LinearToGammaWeighted(b_ptr + j, a_ptr + j, a, 4, rgb_stride); |
| } |
| dst[0] = r; |
| dst[1] = g; |
| dst[2] = b; |
| dst[3] = a; |
| } |
| if (width & 1) { |
| const uint32_t a = 2u * SUM2ALPHA(a_ptr + j); |
| int r, g, b; |
| if (a == 4 * 0xff || a == 0) { |
| r = SUM2(r_ptr + j); |
| g = SUM2(g_ptr + j); |
| b = SUM2(b_ptr + j); |
| } else { |
| r = LinearToGammaWeighted(r_ptr + j, a_ptr + j, a, 0, rgb_stride); |
| g = LinearToGammaWeighted(g_ptr + j, a_ptr + j, a, 0, rgb_stride); |
| b = LinearToGammaWeighted(b_ptr + j, a_ptr + j, a, 0, rgb_stride); |
| } |
| dst[0] = r; |
| dst[1] = g; |
| dst[2] = b; |
| dst[3] = a; |
| } |
| } |
| |
| static WEBP_INLINE void AccumulateRGB(const uint8_t* const r_ptr, |
| const uint8_t* const g_ptr, |
| const uint8_t* const b_ptr, |
| int step, int rgb_stride, |
| uint16_t* dst, int width) { |
| int i, j; |
| for (i = 0, j = 0; i < (width >> 1); i += 1, j += 2 * step, dst += 4) { |
| dst[0] = SUM4(r_ptr + j, step); |
| dst[1] = SUM4(g_ptr + j, step); |
| dst[2] = SUM4(b_ptr + j, step); |
| // MemorySanitizer may raise false positives with data that passes through |
| // RGBA32PackedToPlanar_16b_SSE41() due to incorrect modeling of shuffles. |
| // See https://crbug.com/webp/573. |
| #ifdef WEBP_MSAN |
| dst[3] = 0; |
| #endif |
| } |
| if (width & 1) { |
| dst[0] = SUM2(r_ptr + j); |
| dst[1] = SUM2(g_ptr + j); |
| dst[2] = SUM2(b_ptr + j); |
| #ifdef WEBP_MSAN |
| dst[3] = 0; |
| #endif |
| } |
| } |
| |
| static WEBP_INLINE void ConvertRowsToUV(const uint16_t* rgb, |
| uint8_t* const dst_u, |
| uint8_t* const dst_v, |
| int width, |
| VP8Random* const rg) { |
| int i; |
| for (i = 0; i < width; i += 1, rgb += 4) { |
| const int r = rgb[0], g = rgb[1], b = rgb[2]; |
| dst_u[i] = RGBToU(r, g, b, rg); |
| dst_v[i] = RGBToV(r, g, b, rg); |
| } |
| } |
| |
| extern void SharpYuvInit(VP8CPUInfo cpu_info_func); |
| |
| static int ImportYUVAFromRGBA(const uint8_t* r_ptr, |
| const uint8_t* g_ptr, |
| const uint8_t* b_ptr, |
| const uint8_t* a_ptr, |
| int step, // bytes per pixel |
| int rgb_stride, // bytes per scanline |
| float dithering, |
| int use_iterative_conversion, |
| WebPPicture* const picture) { |
| int y; |
| const int width = picture->width; |
| const int height = picture->height; |
| const int has_alpha = CheckNonOpaque(a_ptr, width, height, step, rgb_stride); |
| const int is_rgb = (r_ptr < b_ptr); // otherwise it's bgr |
| |
| picture->colorspace = has_alpha ? WEBP_YUV420A : WEBP_YUV420; |
| picture->use_argb = 0; |
| |
| // disable smart conversion if source is too small (overkill). |
| if (width < kMinDimensionIterativeConversion || |
| height < kMinDimensionIterativeConversion) { |
| use_iterative_conversion = 0; |
| } |
| |
| if (!WebPPictureAllocYUVA(picture)) { |
| return 0; |
| } |
| if (has_alpha) { |
| assert(step == 4); |
| #if defined(USE_GAMMA_COMPRESSION) && defined(USE_INVERSE_ALPHA_TABLE) |
| assert(kAlphaFix + GAMMA_FIX <= 31); |
| #endif |
| } |
| |
| if (use_iterative_conversion) { |
| SharpYuvInit(VP8GetCPUInfo); |
| if (!PreprocessARGB(r_ptr, g_ptr, b_ptr, step, rgb_stride, picture)) { |
| return 0; |
| } |
| if (has_alpha) { |
| WebPExtractAlpha(a_ptr, rgb_stride, width, height, |
| picture->a, picture->a_stride); |
| } |
| } else { |
| const int uv_width = (width + 1) >> 1; |
| int use_dsp = (step == 3); // use special function in this case |
| // temporary storage for accumulated R/G/B values during conversion to U/V |
| uint16_t* const tmp_rgb = |
| (uint16_t*)WebPSafeMalloc(4 * uv_width, sizeof(*tmp_rgb)); |
| uint8_t* dst_y = picture->y; |
| uint8_t* dst_u = picture->u; |
| uint8_t* dst_v = picture->v; |
| uint8_t* dst_a = picture->a; |
| |
| VP8Random base_rg; |
| VP8Random* rg = NULL; |
| if (dithering > 0.) { |
| VP8InitRandom(&base_rg, dithering); |
| rg = &base_rg; |
| use_dsp = 0; // can't use dsp in this case |
| } |
| WebPInitConvertARGBToYUV(); |
| InitGammaTables(); |
| |
| if (tmp_rgb == NULL) { |
| return WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY); |
| } |
| |
| // Downsample Y/U/V planes, two rows at a time |
| for (y = 0; y < (height >> 1); ++y) { |
| int rows_have_alpha = has_alpha; |
| if (use_dsp) { |
| if (is_rgb) { |
| WebPConvertRGB24ToY(r_ptr, dst_y, width); |
| WebPConvertRGB24ToY(r_ptr + rgb_stride, |
| dst_y + picture->y_stride, width); |
| } else { |
| WebPConvertBGR24ToY(b_ptr, dst_y, width); |
| WebPConvertBGR24ToY(b_ptr + rgb_stride, |
| dst_y + picture->y_stride, width); |
| } |
| } else { |
| ConvertRowToY(r_ptr, g_ptr, b_ptr, step, dst_y, width, rg); |
| ConvertRowToY(r_ptr + rgb_stride, |
| g_ptr + rgb_stride, |
| b_ptr + rgb_stride, step, |
| dst_y + picture->y_stride, width, rg); |
| } |
| dst_y += 2 * picture->y_stride; |
| if (has_alpha) { |
| rows_have_alpha &= !WebPExtractAlpha(a_ptr, rgb_stride, width, 2, |
| dst_a, picture->a_stride); |
| dst_a += 2 * picture->a_stride; |
| } |
| // Collect averaged R/G/B(/A) |
| if (!rows_have_alpha) { |
| AccumulateRGB(r_ptr, g_ptr, b_ptr, step, rgb_stride, tmp_rgb, width); |
| } else { |
| AccumulateRGBA(r_ptr, g_ptr, b_ptr, a_ptr, rgb_stride, tmp_rgb, width); |
| } |
| // Convert to U/V |
| if (rg == NULL) { |
| WebPConvertRGBA32ToUV(tmp_rgb, dst_u, dst_v, uv_width); |
| } else { |
| ConvertRowsToUV(tmp_rgb, dst_u, dst_v, uv_width, rg); |
| } |
| dst_u += picture->uv_stride; |
| dst_v += picture->uv_stride; |
| r_ptr += 2 * rgb_stride; |
| b_ptr += 2 * rgb_stride; |
| g_ptr += 2 * rgb_stride; |
| if (has_alpha) a_ptr += 2 * rgb_stride; |
| } |
| if (height & 1) { // extra last row |
| int row_has_alpha = has_alpha; |
| if (use_dsp) { |
| if (r_ptr < b_ptr) { |
| WebPConvertRGB24ToY(r_ptr, dst_y, width); |
| } else { |
| WebPConvertBGR24ToY(b_ptr, dst_y, width); |
| } |
| } else { |
| ConvertRowToY(r_ptr, g_ptr, b_ptr, step, dst_y, width, rg); |
| } |
| if (row_has_alpha) { |
| row_has_alpha &= !WebPExtractAlpha(a_ptr, 0, width, 1, dst_a, 0); |
| } |
| // Collect averaged R/G/B(/A) |
| if (!row_has_alpha) { |
| // Collect averaged R/G/B |
| AccumulateRGB(r_ptr, g_ptr, b_ptr, step, /* rgb_stride = */ 0, |
| tmp_rgb, width); |
| } else { |
| AccumulateRGBA(r_ptr, g_ptr, b_ptr, a_ptr, /* rgb_stride = */ 0, |
| tmp_rgb, width); |
| } |
| if (rg == NULL) { |
| WebPConvertRGBA32ToUV(tmp_rgb, dst_u, dst_v, uv_width); |
| } else { |
| ConvertRowsToUV(tmp_rgb, dst_u, dst_v, uv_width, rg); |
| } |
| } |
| WebPSafeFree(tmp_rgb); |
| } |
| return 1; |
| } |
| |
| #undef SUM4 |
| #undef SUM2 |
| #undef SUM4ALPHA |
| #undef SUM2ALPHA |
| |
| //------------------------------------------------------------------------------ |
| // call for ARGB->YUVA conversion |
| |
| static int PictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace, |
| float dithering, int use_iterative_conversion) { |
| if (picture == NULL) return 0; |
| if (picture->argb == NULL) { |
| return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); |
| } else if ((colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) { |
| return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION); |
| } else { |
| const uint8_t* const argb = (const uint8_t*)picture->argb; |
| const uint8_t* const a = argb + CHANNEL_OFFSET(0); |
| const uint8_t* const r = argb + CHANNEL_OFFSET(1); |
| const uint8_t* const g = argb + CHANNEL_OFFSET(2); |
| const uint8_t* const b = argb + CHANNEL_OFFSET(3); |
| |
| picture->colorspace = WEBP_YUV420; |
| return ImportYUVAFromRGBA(r, g, b, a, 4, 4 * picture->argb_stride, |
| dithering, use_iterative_conversion, picture); |
| } |
| } |
| |
| int WebPPictureARGBToYUVADithered(WebPPicture* picture, WebPEncCSP colorspace, |
| float dithering) { |
| return PictureARGBToYUVA(picture, colorspace, dithering, 0); |
| } |
| |
| int WebPPictureARGBToYUVA(WebPPicture* picture, WebPEncCSP colorspace) { |
| return PictureARGBToYUVA(picture, colorspace, 0.f, 0); |
| } |
| |
| int WebPPictureSharpARGBToYUVA(WebPPicture* picture) { |
| return PictureARGBToYUVA(picture, WEBP_YUV420, 0.f, 1); |
| } |
| // for backward compatibility |
| int WebPPictureSmartARGBToYUVA(WebPPicture* picture) { |
| return WebPPictureSharpARGBToYUVA(picture); |
| } |
| |
| //------------------------------------------------------------------------------ |
| // call for YUVA -> ARGB conversion |
| |
| int WebPPictureYUVAToARGB(WebPPicture* picture) { |
| if (picture == NULL) return 0; |
| if (picture->y == NULL || picture->u == NULL || picture->v == NULL) { |
| return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); |
| } |
| if ((picture->colorspace & WEBP_CSP_ALPHA_BIT) && picture->a == NULL) { |
| return WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER); |
| } |
| if ((picture->colorspace & WEBP_CSP_UV_MASK) != WEBP_YUV420) { |
| return WebPEncodingSetError(picture, VP8_ENC_ERROR_INVALID_CONFIGURATION); |
| } |
| // Allocate a new argb buffer (discarding the previous one). |
| if (!WebPPictureAllocARGB(picture)) return 0; |
| picture->use_argb = 1; |
| |
| // Convert |
| { |
| int y; |
| const int width = picture->width; |
| const int height = picture->height; |
| const int argb_stride = 4 * picture->argb_stride; |
| uint8_t* dst = (uint8_t*)picture->argb; |
| const uint8_t* cur_u = picture->u, *cur_v = picture->v, *cur_y = picture->y; |
| WebPUpsampleLinePairFunc upsample = |
| WebPGetLinePairConverter(ALPHA_OFFSET > 0); |
| |
| // First row, with replicated top samples. |
| upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); |
| cur_y += picture->y_stride; |
| dst += argb_stride; |
| // Center rows. |
| for (y = 1; y + 1 < height; y += 2) { |
| const uint8_t* const top_u = cur_u; |
| const uint8_t* const top_v = cur_v; |
| cur_u += picture->uv_stride; |
| cur_v += picture->uv_stride; |
| upsample(cur_y, cur_y + picture->y_stride, top_u, top_v, cur_u, cur_v, |
| dst, dst + argb_stride, width); |
| cur_y += 2 * picture->y_stride; |
| dst += 2 * argb_stride; |
| } |
| // Last row (if needed), with replicated bottom samples. |
| if (height > 1 && !(height & 1)) { |
| upsample(cur_y, NULL, cur_u, cur_v, cur_u, cur_v, dst, NULL, width); |
| } |
| // Insert alpha values if needed, in replacement for the default 0xff ones. |
| if (picture->colorspace & WEBP_CSP_ALPHA_BIT) { |
| for (y = 0; y < height; ++y) { |
| uint32_t* const argb_dst = picture->argb + y * picture->argb_stride; |
| const uint8_t* const src = picture->a + y * picture->a_stride; |
| int x; |
| for (x = 0; x < width; ++x) { |
| argb_dst[x] = (argb_dst[x] & 0x00ffffffu) | ((uint32_t)src[x] << 24); |
| } |
| } |
| } |
| } |
| return 1; |
| } |
| |
| //------------------------------------------------------------------------------ |
| // automatic import / conversion |
| |
| static int Import(WebPPicture* const picture, |
| const uint8_t* rgb, int rgb_stride, |
| int step, int swap_rb, int import_alpha) { |
| int y; |
| // swap_rb -> b,g,r,a , !swap_rb -> r,g,b,a |
| const uint8_t* r_ptr = rgb + (swap_rb ? 2 : 0); |
| const uint8_t* g_ptr = rgb + 1; |
| const uint8_t* b_ptr = rgb + (swap_rb ? 0 : 2); |
| const int width = picture->width; |
| const int height = picture->height; |
| |
| if (abs(rgb_stride) < (import_alpha ? 4 : 3) * width) return 0; |
| |
| if (!picture->use_argb) { |
| const uint8_t* a_ptr = import_alpha ? rgb + 3 : NULL; |
| return ImportYUVAFromRGBA(r_ptr, g_ptr, b_ptr, a_ptr, step, rgb_stride, |
| 0.f /* no dithering */, 0, picture); |
| } |
| if (!WebPPictureAlloc(picture)) return 0; |
| |
| VP8LDspInit(); |
| WebPInitAlphaProcessing(); |
| |
| if (import_alpha) { |
| // dst[] byte order is {a,r,g,b} for big-endian, {b,g,r,a} for little endian |
| uint32_t* dst = picture->argb; |
| const int do_copy = (ALPHA_OFFSET == 3) && swap_rb; |
| assert(step == 4); |
| if (do_copy) { |
| for (y = 0; y < height; ++y) { |
| memcpy(dst, rgb, width * 4); |
| rgb += rgb_stride; |
| dst += picture->argb_stride; |
| } |
| } else { |
| for (y = 0; y < height; ++y) { |
| #ifdef WORDS_BIGENDIAN |
| // BGRA or RGBA input order. |
| const uint8_t* a_ptr = rgb + 3; |
| WebPPackARGB(a_ptr, r_ptr, g_ptr, b_ptr, width, dst); |
| r_ptr += rgb_stride; |
| g_ptr += rgb_stride; |
| b_ptr += rgb_stride; |
| #else |
| // RGBA input order. Need to swap R and B. |
| VP8LConvertBGRAToRGBA((const uint32_t*)rgb, width, (uint8_t*)dst); |
| #endif |
| rgb += rgb_stride; |
| dst += picture->argb_stride; |
| } |
| } |
| } else { |
| uint32_t* dst = picture->argb; |
| assert(step >= 3); |
| for (y = 0; y < height; ++y) { |
| WebPPackRGB(r_ptr, g_ptr, b_ptr, width, step, dst); |
| r_ptr += rgb_stride; |
| g_ptr += rgb_stride; |
| b_ptr += rgb_stride; |
| dst += picture->argb_stride; |
| } |
| } |
| return 1; |
| } |
| |
| // Public API |
| |
| #if !defined(WEBP_REDUCE_CSP) |
| |
| int WebPPictureImportBGR(WebPPicture* picture, |
| const uint8_t* bgr, int bgr_stride) { |
| return (picture != NULL && bgr != NULL) |
| ? Import(picture, bgr, bgr_stride, 3, 1, 0) |
| : 0; |
| } |
| |
| int WebPPictureImportBGRA(WebPPicture* picture, |
| const uint8_t* bgra, int bgra_stride) { |
| return (picture != NULL && bgra != NULL) |
| ? Import(picture, bgra, bgra_stride, 4, 1, 1) |
| : 0; |
| } |
| |
| |
| int WebPPictureImportBGRX(WebPPicture* picture, |
| const uint8_t* bgrx, int bgrx_stride) { |
| return (picture != NULL && bgrx != NULL) |
| ? Import(picture, bgrx, bgrx_stride, 4, 1, 0) |
| : 0; |
| } |
| |
| #endif // WEBP_REDUCE_CSP |
| |
| int WebPPictureImportRGB(WebPPicture* picture, |
| const uint8_t* rgb, int rgb_stride) { |
| return (picture != NULL && rgb != NULL) |
| ? Import(picture, rgb, rgb_stride, 3, 0, 0) |
| : 0; |
| } |
| |
| int WebPPictureImportRGBA(WebPPicture* picture, |
| const uint8_t* rgba, int rgba_stride) { |
| return (picture != NULL && rgba != NULL) |
| ? Import(picture, rgba, rgba_stride, 4, 0, 1) |
| : 0; |
| } |
| |
| int WebPPictureImportRGBX(WebPPicture* picture, |
| const uint8_t* rgbx, int rgbx_stride) { |
| return (picture != NULL && rgbx != NULL) |
| ? Import(picture, rgbx, rgbx_stride, 4, 0, 0) |
| : 0; |
| } |
| |
| //------------------------------------------------------------------------------ |