blob: 75ef910dcc5acd00e9fd47ca3f175653fe176b6e [file] [log] [blame]
//
// Copyright 2002 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Display.cpp: Implements the egl::Display class, representing the abstract
// display on which graphics are drawn. Implements EGLDisplay.
// [EGL 1.4] section 2.1.2 page 3.
#include "libANGLE/Display.h"
#include <algorithm>
#include <iterator>
#include <map>
#include <sstream>
#include <vector>
#include <EGL/eglext.h>
#include <platform/Platform.h>
#include "anglebase/no_destructor.h"
#include "common/android_util.h"
#include "common/debug.h"
#include "common/mathutil.h"
#include "common/platform.h"
#include "common/string_utils.h"
#include "common/system_utils.h"
#include "common/utilities.h"
#include "libANGLE/Context.h"
#include "libANGLE/Device.h"
#include "libANGLE/EGLSync.h"
#include "libANGLE/Image.h"
#include "libANGLE/ResourceManager.h"
#include "libANGLE/Stream.h"
#include "libANGLE/Surface.h"
#include "libANGLE/Thread.h"
#include "libANGLE/histogram_macros.h"
#include "libANGLE/renderer/DeviceImpl.h"
#include "libANGLE/renderer/DisplayImpl.h"
#include "libANGLE/renderer/ImageImpl.h"
#include "libANGLE/trace.h"
#if defined(ANGLE_ENABLE_D3D9) || defined(ANGLE_ENABLE_D3D11)
# include <versionhelpers.h>
# include "libANGLE/renderer/d3d/DisplayD3D.h"
#endif
#if defined(ANGLE_ENABLE_OPENGL)
# if defined(ANGLE_PLATFORM_WINDOWS)
# include "libANGLE/renderer/gl/wgl/DisplayWGL.h"
# elif defined(ANGLE_USE_X11)
# include "libANGLE/renderer/gl/glx/DisplayGLX.h"
# elif defined(ANGLE_PLATFORM_APPLE)
# include "libANGLE/renderer/gl/cgl/DisplayCGL.h"
# elif defined(ANGLE_USE_OZONE)
# include "libANGLE/renderer/gl/egl/ozone/DisplayOzone.h"
# elif defined(ANGLE_PLATFORM_ANDROID)
# include "libANGLE/renderer/gl/egl/android/DisplayAndroid.h"
# else
# error Unsupported OpenGL platform.
# endif
#endif
#if defined(ANGLE_ENABLE_NULL)
# include "libANGLE/renderer/null/DisplayNULL.h"
#endif // defined(ANGLE_ENABLE_NULL)
#if defined(ANGLE_ENABLE_VULKAN)
# include "libANGLE/renderer/vulkan/DisplayVk_api.h"
#endif // defined(ANGLE_ENABLE_VULKAN)
#if defined(ANGLE_ENABLE_METAL)
# include "libANGLE/renderer/metal/DisplayMtl_api.h"
#endif // defined(ANGLE_ENABLE_METAL)
namespace egl
{
namespace
{
typedef std::map<EGLNativeWindowType, Surface *> WindowSurfaceMap;
// Get a map of all EGL window surfaces to validate that no window has more than one EGL surface
// associated with it.
static WindowSurfaceMap *GetWindowSurfaces()
{
static angle::base::NoDestructor<WindowSurfaceMap> windowSurfaces;
return windowSurfaces.get();
}
typedef std::map<EGLNativeDisplayType, Display *> ANGLEPlatformDisplayMap;
static ANGLEPlatformDisplayMap *GetANGLEPlatformDisplayMap()
{
static angle::base::NoDestructor<ANGLEPlatformDisplayMap> displays;
return displays.get();
}
typedef std::map<Device *, Display *> DevicePlatformDisplayMap;
static DevicePlatformDisplayMap *GetDevicePlatformDisplayMap()
{
static angle::base::NoDestructor<DevicePlatformDisplayMap> displays;
return displays.get();
}
rx::DisplayImpl *CreateDisplayFromDevice(Device *eglDevice, const DisplayState &state)
{
rx::DisplayImpl *impl = nullptr;
switch (eglDevice->getType())
{
#if defined(ANGLE_ENABLE_D3D11)
case EGL_D3D11_DEVICE_ANGLE:
impl = new rx::DisplayD3D(state);
break;
#endif
#if defined(ANGLE_ENABLE_D3D9)
case EGL_D3D9_DEVICE_ANGLE:
// Currently the only way to get EGLDeviceEXT representing a D3D9 device
// is to retrieve one from an already-existing EGLDisplay.
// When eglGetPlatformDisplayEXT is called with a D3D9 EGLDeviceEXT,
// the already-existing display should be returned.
// Therefore this codepath to create a new display from the device
// should never be hit.
UNREACHABLE();
break;
#endif
default:
UNREACHABLE();
break;
}
ASSERT(impl != nullptr);
return impl;
}
// On platforms with support for multiple back-ends, allow an environment variable to control
// the default. This is useful to run angle with benchmarks without having to modify the
// benchmark source. Possible values for this environment variable (ANGLE_DEFAULT_PLATFORM)
// are: vulkan, gl, d3d11, null.
EGLAttrib GetDisplayTypeFromEnvironment()
{
std::string angleDefaultEnv = angle::GetEnvironmentVar("ANGLE_DEFAULT_PLATFORM");
angle::ToLower(&angleDefaultEnv);
#if defined(ANGLE_ENABLE_VULKAN)
if (angleDefaultEnv == "vulkan")
{
return EGL_PLATFORM_ANGLE_TYPE_VULKAN_ANGLE;
}
#endif
#if defined(ANGLE_ENABLE_OPENGL)
if (angleDefaultEnv == "gl")
{
return EGL_PLATFORM_ANGLE_TYPE_OPENGLES_ANGLE;
}
#endif
#if defined(ANGLE_ENABLE_D3D11)
if (angleDefaultEnv == "d3d11")
{
return EGL_PLATFORM_ANGLE_TYPE_D3D11_ANGLE;
}
#endif
#if defined(ANGLE_ENABLE_NULL)
if (angleDefaultEnv == "null")
{
return EGL_PLATFORM_ANGLE_TYPE_NULL_ANGLE;
}
#endif
#if defined(ANGLE_ENABLE_D3D11)
return EGL_PLATFORM_ANGLE_TYPE_D3D11_ANGLE;
#elif defined(ANGLE_ENABLE_D3D9)
return EGL_PLATFORM_ANGLE_TYPE_D3D9_ANGLE;
#elif defined(ANGLE_ENABLE_VULKAN) && defined(ANGLE_PLATFORM_ANDROID)
return EGL_PLATFORM_ANGLE_TYPE_VULKAN_ANGLE;
#elif defined(ANGLE_ENABLE_OPENGL)
# if defined(ANGLE_PLATFORM_ANDROID) || defined(ANGLE_USE_OZONE)
return EGL_PLATFORM_ANGLE_TYPE_OPENGLES_ANGLE;
# else
return EGL_PLATFORM_ANGLE_TYPE_OPENGL_ANGLE;
# endif
#elif defined(ANGLE_ENABLE_METAL)
return EGL_PLATFORM_ANGLE_TYPE_METAL_ANGLE;
#elif defined(ANGLE_ENABLE_VULKAN)
return EGL_PLATFORM_ANGLE_TYPE_VULKAN_ANGLE;
#elif defined(ANGLE_ENABLE_NULL)
return EGL_PLATFORM_ANGLE_TYPE_NULL_ANGLE;
#else
# error No default ANGLE platform type
#endif
}
rx::DisplayImpl *CreateDisplayFromAttribs(const AttributeMap &attribMap, const DisplayState &state)
{
rx::DisplayImpl *impl = nullptr;
EGLAttrib displayType =
attribMap.get(EGL_PLATFORM_ANGLE_TYPE_ANGLE, EGL_PLATFORM_ANGLE_TYPE_DEFAULT_ANGLE);
if (displayType == EGL_PLATFORM_ANGLE_TYPE_DEFAULT_ANGLE)
{
displayType = GetDisplayTypeFromEnvironment();
}
switch (displayType)
{
case EGL_PLATFORM_ANGLE_TYPE_DEFAULT_ANGLE:
UNREACHABLE();
break;
case EGL_PLATFORM_ANGLE_TYPE_D3D9_ANGLE:
case EGL_PLATFORM_ANGLE_TYPE_D3D11_ANGLE:
#if defined(ANGLE_ENABLE_D3D9) || defined(ANGLE_ENABLE_D3D11)
impl = new rx::DisplayD3D(state);
#else
// A D3D display was requested on a platform that doesn't support it
UNREACHABLE();
#endif
break;
case EGL_PLATFORM_ANGLE_TYPE_OPENGL_ANGLE:
#if defined(ANGLE_ENABLE_OPENGL)
# if defined(ANGLE_PLATFORM_WINDOWS)
impl = new rx::DisplayWGL(state);
# elif defined(ANGLE_USE_X11)
impl = new rx::DisplayGLX(state);
# elif defined(ANGLE_PLATFORM_APPLE)
impl = new rx::DisplayCGL(state);
# elif defined(ANGLE_USE_OZONE)
// This might work but has never been tried, so disallow for now.
impl = nullptr;
# elif defined(ANGLE_PLATFORM_ANDROID)
// No GL support on this platform, fail display creation.
impl = nullptr;
# else
# error Unsupported OpenGL platform.
# endif
#else
// No display available
UNREACHABLE();
#endif // defined(ANGLE_ENABLE_OPENGL)
break;
case EGL_PLATFORM_ANGLE_TYPE_OPENGLES_ANGLE:
#if defined(ANGLE_ENABLE_OPENGL)
# if defined(ANGLE_PLATFORM_WINDOWS)
impl = new rx::DisplayWGL(state);
# elif defined(ANGLE_USE_X11)
impl = new rx::DisplayGLX(state);
# elif defined(ANGLE_USE_OZONE)
impl = new rx::DisplayOzone(state);
# elif defined(ANGLE_PLATFORM_ANDROID)
impl = new rx::DisplayAndroid(state);
# else
// No GLES support on this platform, fail display creation.
impl = nullptr;
# endif
#endif // defined(ANGLE_ENABLE_OPENGL)
break;
case EGL_PLATFORM_ANGLE_TYPE_VULKAN_ANGLE:
#if defined(ANGLE_ENABLE_VULKAN)
# if defined(ANGLE_PLATFORM_WINDOWS)
if (rx::IsVulkanWin32DisplayAvailable())
{
impl = rx::CreateVulkanWin32Display(state);
}
# elif defined(ANGLE_PLATFORM_LINUX)
if (rx::IsVulkanXcbDisplayAvailable())
{
impl = rx::CreateVulkanXcbDisplay(state);
}
# elif defined(ANGLE_PLATFORM_ANDROID)
if (rx::IsVulkanAndroidDisplayAvailable())
{
impl = rx::CreateVulkanAndroidDisplay(state);
}
# elif defined(ANGLE_PLATFORM_FUCHSIA)
if (rx::IsVulkanFuchsiaDisplayAvailable())
{
impl = rx::CreateVulkanFuchsiaDisplay(state);
}
# elif defined(ANGLE_PLATFORM_GGP)
if (rx::IsVulkanGGPDisplayAvailable())
{
impl = rx::CreateVulkanGGPDisplay(state);
}
# elif defined(ANGLE_PLATFORM_APPLE)
if (rx::IsVulkanMacDisplayAvailable())
{
impl = rx::CreateVulkanMacDisplay(state);
}
# else
# error Unsupported Vulkan platform.
# endif
#else
// No display available
UNREACHABLE();
#endif // defined(ANGLE_ENABLE_VULKAN)
break;
case EGL_PLATFORM_ANGLE_TYPE_METAL_ANGLE:
#if defined(ANGLE_ENABLE_METAL)
if (rx::IsMetalDisplayAvailable())
{
impl = rx::CreateMetalDisplay(state);
break;
}
#endif
// No display available
UNREACHABLE();
break;
case EGL_PLATFORM_ANGLE_TYPE_NULL_ANGLE:
#if defined(ANGLE_ENABLE_NULL)
impl = new rx::DisplayNULL(state);
#else
// No display available
UNREACHABLE();
#endif // defined(ANGLE_ENABLE_NULL)
break;
default:
UNREACHABLE();
break;
}
return impl;
}
void Display_logError(angle::PlatformMethods *platform, const char *errorMessage)
{
gl::Trace(gl::LOG_ERR, errorMessage);
}
void Display_logWarning(angle::PlatformMethods *platform, const char *warningMessage)
{
gl::Trace(gl::LOG_WARN, warningMessage);
}
void Display_logInfo(angle::PlatformMethods *platform, const char *infoMessage)
{
// Uncomment to get info spam
#if defined(ANGLE_ENABLE_DEBUG_TRACE)
gl::Trace(gl::LOG_INFO, infoMessage);
#endif
}
const std::vector<std::string> EGLStringArrayToStringVector(const char **ary)
{
std::vector<std::string> vec;
if (ary != nullptr)
{
for (; *ary != nullptr; ary++)
{
vec.push_back(std::string(*ary));
}
}
return vec;
}
void ANGLESetDefaultDisplayPlatform(angle::EGLDisplayType display)
{
angle::PlatformMethods *platformMethods = ANGLEPlatformCurrent();
ANGLEResetDisplayPlatform(display);
platformMethods->logError = Display_logError;
platformMethods->logWarning = Display_logWarning;
platformMethods->logInfo = Display_logInfo;
}
} // anonymous namespace
DisplayState::DisplayState() : label(nullptr), featuresAllDisabled(false) {}
DisplayState::~DisplayState() {}
// static
Display *Display::GetDisplayFromNativeDisplay(EGLNativeDisplayType nativeDisplay,
const AttributeMap &attribMap)
{
Display *display = nullptr;
ANGLEPlatformDisplayMap *displays = GetANGLEPlatformDisplayMap();
const auto &iter = displays->find(nativeDisplay);
if (iter != displays->end())
{
display = iter->second;
}
if (display == nullptr)
{
// Validate the native display
if (!Display::isValidNativeDisplay(nativeDisplay))
{
return nullptr;
}
display = new Display(EGL_PLATFORM_ANGLE_ANGLE, nativeDisplay, nullptr);
displays->insert(std::make_pair(nativeDisplay, display));
}
// Apply new attributes if the display is not initialized yet.
if (!display->isInitialized())
{
rx::DisplayImpl *impl = CreateDisplayFromAttribs(attribMap, display->getState());
if (impl == nullptr)
{
// No valid display implementation for these attributes
return nullptr;
}
display->setAttributes(impl, attribMap);
}
return display;
}
// static
Display *Display::GetExistingDisplayFromNativeDisplay(EGLNativeDisplayType nativeDisplay)
{
ANGLEPlatformDisplayMap *displays = GetANGLEPlatformDisplayMap();
const auto &iter = displays->find(nativeDisplay);
// Check that there is a matching display
if (iter == displays->end())
{
return nullptr;
}
return iter->second;
}
// static
Display *Display::GetDisplayFromDevice(Device *device, const AttributeMap &attribMap)
{
Display *display = nullptr;
ASSERT(Device::IsValidDevice(device));
ANGLEPlatformDisplayMap *anglePlatformDisplays = GetANGLEPlatformDisplayMap();
DevicePlatformDisplayMap *devicePlatformDisplays = GetDevicePlatformDisplayMap();
// First see if this eglDevice is in use by a Display created using ANGLE platform
for (auto &displayMapEntry : *anglePlatformDisplays)
{
egl::Display *iterDisplay = displayMapEntry.second;
if (iterDisplay->getDevice() == device)
{
display = iterDisplay;
}
}
if (display == nullptr)
{
// See if the eglDevice is in use by a Display created using the DEVICE platform
const auto &iter = devicePlatformDisplays->find(device);
if (iter != devicePlatformDisplays->end())
{
display = iter->second;
}
}
if (display == nullptr)
{
// Otherwise create a new Display
display = new Display(EGL_PLATFORM_DEVICE_EXT, 0, device);
devicePlatformDisplays->insert(std::make_pair(device, display));
}
// Apply new attributes if the display is not initialized yet.
if (!display->isInitialized())
{
rx::DisplayImpl *impl = CreateDisplayFromDevice(device, display->getState());
display->setAttributes(impl, attribMap);
}
return display;
}
Display::Display(EGLenum platform, EGLNativeDisplayType displayId, Device *eglDevice)
: mImplementation(nullptr),
mDisplayId(displayId),
mAttributeMap(),
mConfigSet(),
mContextSet(),
mStreamSet(),
mInitialized(false),
mDeviceLost(false),
mCaps(),
mDisplayExtensions(),
mDisplayExtensionString(),
mVendorString(),
mDevice(eglDevice),
mSurface(nullptr),
mPlatform(platform),
mTextureManager(nullptr),
mBlobCache(gl::kDefaultMaxProgramCacheMemoryBytes),
mMemoryProgramCache(mBlobCache),
mGlobalTextureShareGroupUsers(0)
{}
Display::~Display()
{
// TODO(jmadill): When is this called?
// terminate();
if (mPlatform == EGL_PLATFORM_ANGLE_ANGLE)
{
ANGLEPlatformDisplayMap *displays = GetANGLEPlatformDisplayMap();
ANGLEPlatformDisplayMap::iterator iter = displays->find(mDisplayId);
if (iter != displays->end())
{
displays->erase(iter);
}
}
else if (mPlatform == EGL_PLATFORM_DEVICE_EXT)
{
DevicePlatformDisplayMap *displays = GetDevicePlatformDisplayMap();
DevicePlatformDisplayMap::iterator iter = displays->find(mDevice);
if (iter != displays->end())
{
displays->erase(iter);
}
}
else
{
UNREACHABLE();
}
SafeDelete(mDevice);
SafeDelete(mImplementation);
}
void Display::setLabel(EGLLabelKHR label)
{
mState.label = label;
}
EGLLabelKHR Display::getLabel() const
{
return mState.label;
}
void Display::setAttributes(rx::DisplayImpl *impl, const AttributeMap &attribMap)
{
ASSERT(!mInitialized);
ASSERT(impl != nullptr);
SafeDelete(mImplementation);
mImplementation = impl;
mAttributeMap = attribMap;
// TODO(jmadill): Store Platform in Display and init here.
const angle::PlatformMethods *platformMethods =
reinterpret_cast<const angle::PlatformMethods *>(
mAttributeMap.get(EGL_PLATFORM_ANGLE_PLATFORM_METHODS_ANGLEX, 0));
if (platformMethods != nullptr)
{
*ANGLEPlatformCurrent() = *platformMethods;
}
else
{
ANGLESetDefaultDisplayPlatform(this);
}
const char **featuresForceEnabled =
reinterpret_cast<const char **>(mAttributeMap.get(EGL_FEATURE_OVERRIDES_ENABLED_ANGLE, 0));
const char **featuresForceDisabled =
reinterpret_cast<const char **>(mAttributeMap.get(EGL_FEATURE_OVERRIDES_DISABLED_ANGLE, 0));
mState.featureOverridesEnabled = EGLStringArrayToStringVector(featuresForceEnabled);
mState.featureOverridesDisabled = EGLStringArrayToStringVector(featuresForceDisabled);
mState.featuresAllDisabled =
static_cast<bool>(mAttributeMap.get(EGL_FEATURE_ALL_DISABLED_ANGLE, 0));
}
Error Display::initialize()
{
ASSERT(mImplementation != nullptr);
mImplementation->setBlobCache(&mBlobCache);
gl::InitializeDebugAnnotations(&mAnnotator);
gl::InitializeDebugMutexIfNeeded();
SCOPED_ANGLE_HISTOGRAM_TIMER("GPU.ANGLE.DisplayInitializeMS");
ANGLE_TRACE_EVENT0("gpu.angle", "egl::Display::initialize");
if (isInitialized())
{
return NoError();
}
Error error = mImplementation->initialize(this);
if (error.isError())
{
// Log extended error message here
ERR() << "ANGLE Display::initialize error " << error.getID() << ": " << error.getMessage();
return error;
}
mCaps = mImplementation->getCaps();
mConfigSet = mImplementation->generateConfigs();
if (mConfigSet.size() == 0)
{
mImplementation->terminate();
return EglNotInitialized();
}
// OpenGL ES1 is implemented in the frontend, explicitly add ES1 support to all configs
for (auto &config : mConfigSet)
{
// TODO(geofflang): Enable the conformant bit once we pass enough tests
// config.second.conformant |= EGL_OPENGL_ES_BIT;
config.second.renderableType |= EGL_OPENGL_ES_BIT;
}
if (!mState.featuresAllDisabled)
{
initializeFrontendFeatures();
}
mFeatures.clear();
mFrontendFeatures.populateFeatureList(&mFeatures);
mImplementation->populateFeatureList(&mFeatures);
initDisplayExtensions();
initVendorString();
// Populate the Display's EGLDeviceEXT if the Display wasn't created using one
if (mPlatform != EGL_PLATFORM_DEVICE_EXT)
{
if (mDisplayExtensions.deviceQuery)
{
std::unique_ptr<rx::DeviceImpl> impl(mImplementation->createDevice());
ASSERT(impl != nullptr);
error = impl->initialize();
if (error.isError())
{
ERR() << "Failed to initialize display because device creation failed: "
<< error.getMessage();
mImplementation->terminate();
return error;
}
mDevice = new Device(this, impl.release());
}
else
{
mDevice = nullptr;
}
}
else
{
// For EGL_PLATFORM_DEVICE_EXT, mDevice should always be populated using
// an external device
ASSERT(mDevice != nullptr);
}
mInitialized = true;
return NoError();
}
Error Display::terminate(const Thread *thread)
{
if (!mInitialized)
{
return NoError();
}
mMemoryProgramCache.clear();
mBlobCache.setBlobCacheFuncs(nullptr, nullptr);
while (!mContextSet.empty())
{
ANGLE_TRY(destroyContext(thread, *mContextSet.begin()));
}
ANGLE_TRY(makeCurrent(thread, nullptr, nullptr, nullptr));
// The global texture manager should be deleted with the last context that uses it.
ASSERT(mGlobalTextureShareGroupUsers == 0 && mTextureManager == nullptr);
while (!mImageSet.empty())
{
destroyImage(*mImageSet.begin());
}
while (!mStreamSet.empty())
{
destroyStream(*mStreamSet.begin());
}
while (!mSyncSet.empty())
{
destroySync(*mSyncSet.begin());
}
while (!mState.surfaceSet.empty())
{
ANGLE_TRY(destroySurface(*mState.surfaceSet.begin()));
}
mConfigSet.clear();
if (mDevice != nullptr && mDevice->getOwningDisplay() != nullptr)
{
// Don't delete the device if it was created externally using eglCreateDeviceANGLE
// We also shouldn't set it to null in case eglInitialize() is called again later
SafeDelete(mDevice);
}
mImplementation->terminate();
mDeviceLost = false;
mInitialized = false;
gl::UninitializeDebugAnnotations();
// TODO(jmadill): Store Platform in Display and deinit here.
ANGLEResetDisplayPlatform(this);
return NoError();
}
std::vector<const Config *> Display::getConfigs(const egl::AttributeMap &attribs) const
{
return mConfigSet.filter(attribs);
}
std::vector<const Config *> Display::chooseConfig(const egl::AttributeMap &attribs) const
{
egl::AttributeMap attribsWithDefaults = AttributeMap();
// Insert default values for attributes that have either an Exact or Mask selection criteria,
// and a default value that matters (e.g. isn't EGL_DONT_CARE):
attribsWithDefaults.insert(EGL_COLOR_BUFFER_TYPE, EGL_RGB_BUFFER);
attribsWithDefaults.insert(EGL_LEVEL, 0);
attribsWithDefaults.insert(EGL_RENDERABLE_TYPE, EGL_OPENGL_ES_BIT);
attribsWithDefaults.insert(EGL_SURFACE_TYPE, EGL_WINDOW_BIT);
attribsWithDefaults.insert(EGL_TRANSPARENT_TYPE, EGL_NONE);
if (getExtensions().pixelFormatFloat)
{
attribsWithDefaults.insert(EGL_COLOR_COMPONENT_TYPE_EXT,
EGL_COLOR_COMPONENT_TYPE_FIXED_EXT);
}
// Add the caller-specified values (Note: the poorly-named insert() method will replace any
// of the default values from above):
for (auto attribIter = attribs.begin(); attribIter != attribs.end(); attribIter++)
{
attribsWithDefaults.insert(attribIter->first, attribIter->second);
}
return mConfigSet.filter(attribsWithDefaults);
}
Error Display::createWindowSurface(const Config *configuration,
EGLNativeWindowType window,
const AttributeMap &attribs,
Surface **outSurface)
{
if (mImplementation->testDeviceLost())
{
ANGLE_TRY(restoreLostDevice());
}
SurfacePointer surface(new WindowSurface(mImplementation, configuration, window, attribs),
this);
ANGLE_TRY(surface->initialize(this));
ASSERT(outSurface != nullptr);
*outSurface = surface.release();
mState.surfaceSet.insert(*outSurface);
WindowSurfaceMap *windowSurfaces = GetWindowSurfaces();
ASSERT(windowSurfaces && windowSurfaces->find(window) == windowSurfaces->end());
windowSurfaces->insert(std::make_pair(window, *outSurface));
mSurface = *outSurface;
return NoError();
}
Error Display::createPbufferSurface(const Config *configuration,
const AttributeMap &attribs,
Surface **outSurface)
{
ASSERT(isInitialized());
if (mImplementation->testDeviceLost())
{
ANGLE_TRY(restoreLostDevice());
}
SurfacePointer surface(new PbufferSurface(mImplementation, configuration, attribs), this);
ANGLE_TRY(surface->initialize(this));
ASSERT(outSurface != nullptr);
*outSurface = surface.release();
mState.surfaceSet.insert(*outSurface);
return NoError();
}
Error Display::createPbufferFromClientBuffer(const Config *configuration,
EGLenum buftype,
EGLClientBuffer clientBuffer,
const AttributeMap &attribs,
Surface **outSurface)
{
ASSERT(isInitialized());
if (mImplementation->testDeviceLost())
{
ANGLE_TRY(restoreLostDevice());
}
SurfacePointer surface(
new PbufferSurface(mImplementation, configuration, buftype, clientBuffer, attribs), this);
ANGLE_TRY(surface->initialize(this));
ASSERT(outSurface != nullptr);
*outSurface = surface.release();
mState.surfaceSet.insert(*outSurface);
return NoError();
}
Error Display::createPixmapSurface(const Config *configuration,
NativePixmapType nativePixmap,
const AttributeMap &attribs,
Surface **outSurface)
{
ASSERT(isInitialized());
if (mImplementation->testDeviceLost())
{
ANGLE_TRY(restoreLostDevice());
}
SurfacePointer surface(new PixmapSurface(mImplementation, configuration, nativePixmap, attribs),
this);
ANGLE_TRY(surface->initialize(this));
ASSERT(outSurface != nullptr);
*outSurface = surface.release();
mState.surfaceSet.insert(*outSurface);
return NoError();
}
Error Display::createImage(const gl::Context *context,
EGLenum target,
EGLClientBuffer buffer,
const AttributeMap &attribs,
Image **outImage)
{
ASSERT(isInitialized());
if (mImplementation->testDeviceLost())
{
ANGLE_TRY(restoreLostDevice());
}
egl::ImageSibling *sibling = nullptr;
if (IsTextureTarget(target))
{
sibling = context->getTexture({egl_gl::EGLClientBufferToGLObjectHandle(buffer)});
}
else if (IsRenderbufferTarget(target))
{
sibling = context->getRenderbuffer({egl_gl::EGLClientBufferToGLObjectHandle(buffer)});
}
else if (IsExternalImageTarget(target))
{
sibling = new ExternalImageSibling(mImplementation, context, target, buffer, attribs);
}
else
{
UNREACHABLE();
}
ASSERT(sibling != nullptr);
angle::UniqueObjectPointer<Image, Display> imagePtr(
new Image(mImplementation, context, target, sibling, attribs), this);
ANGLE_TRY(imagePtr->initialize(this));
Image *image = imagePtr.release();
ASSERT(outImage != nullptr);
*outImage = image;
// Add this image to the list of all images and hold a ref to it.
image->addRef();
mImageSet.insert(image);
return NoError();
}
Error Display::createStream(const AttributeMap &attribs, Stream **outStream)
{
ASSERT(isInitialized());
Stream *stream = new Stream(this, attribs);
ASSERT(stream != nullptr);
mStreamSet.insert(stream);
ASSERT(outStream != nullptr);
*outStream = stream;
return NoError();
}
Error Display::createContext(const Config *configuration,
gl::Context *shareContext,
EGLenum clientType,
const AttributeMap &attribs,
gl::Context **outContext)
{
ASSERT(isInitialized());
if (mImplementation->testDeviceLost())
{
ANGLE_TRY(restoreLostDevice());
}
// This display texture sharing will allow the first context to create the texture share group.
bool usingDisplayTextureShareGroup =
attribs.get(EGL_DISPLAY_TEXTURE_SHARE_GROUP_ANGLE, EGL_FALSE) == EGL_TRUE;
gl::TextureManager *shareTextures = nullptr;
if (usingDisplayTextureShareGroup)
{
ASSERT((mTextureManager == nullptr) == (mGlobalTextureShareGroupUsers == 0));
if (mTextureManager == nullptr)
{
mTextureManager = new gl::TextureManager();
}
mGlobalTextureShareGroupUsers++;
shareTextures = mTextureManager;
}
gl::MemoryProgramCache *cachePointer = &mMemoryProgramCache;
// Check context creation attributes to see if we are using EGL_ANGLE_program_cache_control.
// If not, keep caching enabled for EGL_ANDROID_blob_cache, which can have its callbacks set
// at any time.
bool usesProgramCacheControl =
mAttributeMap.contains(EGL_CONTEXT_PROGRAM_BINARY_CACHE_ENABLED_ANGLE);
if (usesProgramCacheControl)
{
bool programCacheControlEnabled =
(mAttributeMap.get(EGL_CONTEXT_PROGRAM_BINARY_CACHE_ENABLED_ANGLE, GL_FALSE) ==
GL_TRUE);
// A program cache size of zero indicates it should be disabled.
if (!programCacheControlEnabled || mMemoryProgramCache.maxSize() == 0)
{
cachePointer = nullptr;
}
}
gl::Context *context =
new gl::Context(this, configuration, shareContext, shareTextures, cachePointer, clientType,
attribs, mDisplayExtensions, GetClientExtensions());
if (shareContext != nullptr)
{
shareContext->setShared();
}
ASSERT(context != nullptr);
mContextSet.insert(context);
ASSERT(outContext != nullptr);
*outContext = context;
return NoError();
}
Error Display::createSync(const gl::Context *currentContext,
EGLenum type,
const AttributeMap &attribs,
Sync **outSync)
{
ASSERT(isInitialized());
if (mImplementation->testDeviceLost())
{
ANGLE_TRY(restoreLostDevice());
}
angle::UniqueObjectPointer<egl::Sync, Display> syncPtr(new Sync(mImplementation, type, attribs),
this);
ANGLE_TRY(syncPtr->initialize(this, currentContext));
Sync *sync = syncPtr.release();
sync->addRef();
mSyncSet.insert(sync);
*outSync = sync;
return NoError();
}
Error Display::makeCurrent(const Thread *thread,
egl::Surface *drawSurface,
egl::Surface *readSurface,
gl::Context *context)
{
if (!mInitialized)
{
return NoError();
}
gl::Context *previousContext = thread->getContext();
if (previousContext)
{
ANGLE_TRY(previousContext->unMakeCurrent(this));
}
ANGLE_TRY(mImplementation->makeCurrent(drawSurface, readSurface, context));
if (context != nullptr)
{
ANGLE_TRY(context->makeCurrent(this, drawSurface, readSurface));
}
return NoError();
}
Error Display::restoreLostDevice()
{
for (ContextSet::iterator ctx = mContextSet.begin(); ctx != mContextSet.end(); ctx++)
{
if ((*ctx)->isResetNotificationEnabled())
{
// If reset notifications have been requested, application must delete all contexts
// first
return EglContextLost();
}
}
return mImplementation->restoreLostDevice(this);
}
Error Display::destroySurface(Surface *surface)
{
if (surface->getType() == EGL_WINDOW_BIT)
{
WindowSurfaceMap *windowSurfaces = GetWindowSurfaces();
ASSERT(windowSurfaces);
bool surfaceRemoved = false;
for (WindowSurfaceMap::iterator iter = windowSurfaces->begin();
iter != windowSurfaces->end(); iter++)
{
if (iter->second == surface)
{
windowSurfaces->erase(iter);
surfaceRemoved = true;
break;
}
}
ASSERT(surfaceRemoved);
}
mState.surfaceSet.erase(surface);
ANGLE_TRY(surface->onDestroy(this));
return NoError();
}
void Display::destroyImage(egl::Image *image)
{
auto iter = mImageSet.find(image);
ASSERT(iter != mImageSet.end());
(*iter)->release(this);
mImageSet.erase(iter);
}
void Display::destroyStream(egl::Stream *stream)
{
mStreamSet.erase(stream);
SafeDelete(stream);
}
Error Display::destroyContext(const Thread *thread, gl::Context *context)
{
gl::Context *currentContext = thread->getContext();
Surface *currentDrawSurface = thread->getCurrentDrawSurface();
Surface *currentReadSurface = thread->getCurrentReadSurface();
bool changeContextForDeletion = context != currentContext;
// Make the context being deleted current during it's deletion. This allows it to delete
// any resources it's holding.
if (changeContextForDeletion)
{
ANGLE_TRY(makeCurrent(thread, nullptr, nullptr, context));
}
if (context->usingDisplayTextureShareGroup())
{
ASSERT(mGlobalTextureShareGroupUsers >= 1 && mTextureManager != nullptr);
if (mGlobalTextureShareGroupUsers == 1)
{
// If this is the last context using the global share group, destroy the global
// texture manager so that the textures can be destroyed while a context still
// exists
mTextureManager->release(context);
mTextureManager = nullptr;
}
mGlobalTextureShareGroupUsers--;
}
ANGLE_TRY(context->onDestroy(this));
mContextSet.erase(context);
SafeDelete(context);
// Set the previous context back to current
if (changeContextForDeletion)
{
ANGLE_TRY(makeCurrent(thread, currentDrawSurface, currentReadSurface, currentContext));
}
return NoError();
}
void Display::destroySync(egl::Sync *sync)
{
auto iter = mSyncSet.find(sync);
ASSERT(iter != mSyncSet.end());
(*iter)->release(this);
mSyncSet.erase(iter);
}
bool Display::isDeviceLost() const
{
ASSERT(isInitialized());
return mDeviceLost;
}
bool Display::testDeviceLost()
{
ASSERT(isInitialized());
if (!mDeviceLost && mImplementation->testDeviceLost())
{
notifyDeviceLost();
}
return mDeviceLost;
}
void Display::notifyDeviceLost()
{
if (mDeviceLost)
{
return;
}
for (ContextSet::iterator context = mContextSet.begin(); context != mContextSet.end();
context++)
{
(*context)->markContextLost(gl::GraphicsResetStatus::UnknownContextReset);
}
mDeviceLost = true;
}
void Display::setBlobCacheFuncs(EGLSetBlobFuncANDROID set, EGLGetBlobFuncANDROID get)
{
mBlobCache.setBlobCacheFuncs(set, get);
mImplementation->setBlobCacheFuncs(set, get);
}
// static
EGLClientBuffer Display::GetNativeClientBuffer(const AHardwareBuffer *buffer)
{
return angle::android::AHardwareBufferToClientBuffer(buffer);
}
Error Display::waitClient(const gl::Context *context)
{
return mImplementation->waitClient(context);
}
Error Display::waitNative(const gl::Context *context, EGLint engine)
{
return mImplementation->waitNative(context, engine);
}
const Caps &Display::getCaps() const
{
return mCaps;
}
bool Display::isInitialized() const
{
return mInitialized;
}
bool Display::isValidConfig(const Config *config) const
{
return mConfigSet.contains(config);
}
bool Display::isValidContext(const gl::Context *context) const
{
return mContextSet.find(const_cast<gl::Context *>(context)) != mContextSet.end();
}
bool Display::isValidSurface(const Surface *surface) const
{
return mState.surfaceSet.find(const_cast<Surface *>(surface)) != mState.surfaceSet.end();
}
bool Display::isValidImage(const Image *image) const
{
return mImageSet.find(const_cast<Image *>(image)) != mImageSet.end();
}
bool Display::isValidStream(const Stream *stream) const
{
return mStreamSet.find(const_cast<Stream *>(stream)) != mStreamSet.end();
}
bool Display::isValidSync(const Sync *sync) const
{
return mSyncSet.find(const_cast<Sync *>(sync)) != mSyncSet.end();
}
bool Display::hasExistingWindowSurface(EGLNativeWindowType window)
{
WindowSurfaceMap *windowSurfaces = GetWindowSurfaces();
ASSERT(windowSurfaces);
return windowSurfaces->find(window) != windowSurfaces->end();
}
static ClientExtensions GenerateClientExtensions()
{
ClientExtensions extensions;
extensions.clientExtensions = true;
extensions.platformBase = true;
extensions.platformANGLE = true;
#if defined(ANGLE_ENABLE_D3D9) || defined(ANGLE_ENABLE_D3D11)
extensions.platformANGLED3D = true;
extensions.platformDevice = true;
#endif
#if defined(ANGLE_ENABLE_D3D11)
# if defined(ANGLE_ENABLE_WINDOWS_UWP)
extensions.platformANGLED3D11ON12 = true;
# else
extensions.platformANGLED3D11ON12 = IsWindows10OrGreater();
# endif
#endif
#if defined(ANGLE_ENABLE_OPENGL)
extensions.platformANGLEOpenGL = true;
// Selecting context virtualization is currently only supported in the OpenGL backend.
extensions.platformANGLEContextVirtualization = true;
#endif
#if defined(ANGLE_ENABLE_NULL)
extensions.platformANGLENULL = true;
#endif
#if defined(ANGLE_ENABLE_D3D11)
extensions.deviceCreation = true;
extensions.deviceCreationD3D11 = true;
extensions.experimentalPresentPath = true;
#endif
#if defined(ANGLE_ENABLE_VULKAN)
extensions.platformANGLEVulkan = true;
#endif
#if defined(ANGLE_ENABLE_SWIFTSHADER)
extensions.platformANGLEDeviceTypeSwiftShader = true;
#endif
#if defined(ANGLE_ENABLE_METAL)
extensions.platformANGLEMetal = true;
#endif
#if defined(ANGLE_USE_X11)
extensions.x11Visual = true;
#endif
extensions.clientGetAllProcAddresses = true;
extensions.debug = true;
extensions.explicitContext = true;
extensions.featureControlANGLE = true;
return extensions;
}
template <typename T>
static std::string GenerateExtensionsString(const T &extensions)
{
std::vector<std::string> extensionsVector = extensions.getStrings();
std::ostringstream stream;
std::copy(extensionsVector.begin(), extensionsVector.end(),
std::ostream_iterator<std::string>(stream, " "));
return stream.str();
}
// static
const ClientExtensions &Display::GetClientExtensions()
{
static const ClientExtensions clientExtensions = GenerateClientExtensions();
return clientExtensions;
}
// static
const std::string &Display::GetClientExtensionString()
{
static const angle::base::NoDestructor<std::string> clientExtensionsString(
GenerateExtensionsString(GetClientExtensions()));
return *clientExtensionsString;
}
void Display::initDisplayExtensions()
{
mDisplayExtensions = mImplementation->getExtensions();
// Some extensions are always available because they are implemented in the EGL layer.
mDisplayExtensions.createContext = true;
mDisplayExtensions.createContextNoError = true;
mDisplayExtensions.createContextWebGLCompatibility = true;
mDisplayExtensions.createContextBindGeneratesResource = true;
mDisplayExtensions.createContextClientArrays = true;
mDisplayExtensions.pixelFormatFloat = true;
// Force EGL_KHR_get_all_proc_addresses on.
mDisplayExtensions.getAllProcAddresses = true;
// Enable program cache control since it is not back-end dependent.
mDisplayExtensions.programCacheControl = true;
// Request extension is implemented in the ANGLE frontend
mDisplayExtensions.createContextExtensionsEnabled = true;
// Blob cache extension is provided by the ANGLE frontend
mDisplayExtensions.blobCache = true;
// The EGL_ANDROID_recordable extension is provided by the ANGLE frontend, and will always
// say that ANativeWindow is not recordable.
mDisplayExtensions.recordable = true;
// All backends support specific context versions
mDisplayExtensions.createContextBackwardsCompatible = true;
mDisplayExtensionString = GenerateExtensionsString(mDisplayExtensions);
}
bool Display::isValidNativeWindow(EGLNativeWindowType window) const
{
return mImplementation->isValidNativeWindow(window);
}
Error Display::validateClientBuffer(const Config *configuration,
EGLenum buftype,
EGLClientBuffer clientBuffer,
const AttributeMap &attribs) const
{
return mImplementation->validateClientBuffer(configuration, buftype, clientBuffer, attribs);
}
Error Display::validateImageClientBuffer(const gl::Context *context,
EGLenum target,
EGLClientBuffer clientBuffer,
const egl::AttributeMap &attribs) const
{
return mImplementation->validateImageClientBuffer(context, target, clientBuffer, attribs);
}
bool Display::isValidDisplay(const egl::Display *display)
{
const ANGLEPlatformDisplayMap *anglePlatformDisplayMap = GetANGLEPlatformDisplayMap();
for (const auto &displayPair : *anglePlatformDisplayMap)
{
if (displayPair.second == display)
{
return true;
}
}
const DevicePlatformDisplayMap *devicePlatformDisplayMap = GetDevicePlatformDisplayMap();
for (const auto &displayPair : *devicePlatformDisplayMap)
{
if (displayPair.second == display)
{
return true;
}
}
return false;
}
bool Display::isValidNativeDisplay(EGLNativeDisplayType display)
{
// TODO(jmadill): handle this properly
if (display == EGL_DEFAULT_DISPLAY)
{
return true;
}
#if defined(ANGLE_PLATFORM_WINDOWS) && !defined(ANGLE_ENABLE_WINDOWS_UWP)
if (display == EGL_SOFTWARE_DISPLAY_ANGLE || display == EGL_D3D11_ELSE_D3D9_DISPLAY_ANGLE ||
display == EGL_D3D11_ONLY_DISPLAY_ANGLE)
{
return true;
}
return (WindowFromDC(static_cast<HDC>(display)) != nullptr);
#else
return true;
#endif
}
void Display::initVendorString()
{
mVendorString = mImplementation->getVendorString();
}
void Display::initializeFrontendFeatures()
{
// Enable on all Impls
ANGLE_FEATURE_CONDITION((&mFrontendFeatures), loseContextOnOutOfMemory, true);
ANGLE_FEATURE_CONDITION((&mFrontendFeatures), scalarizeVecAndMatConstructorArgs, true);
mImplementation->initializeFrontendFeatures(&mFrontendFeatures);
rx::OverrideFeaturesWithDisplayState(&mFrontendFeatures, mState);
}
const DisplayExtensions &Display::getExtensions() const
{
return mDisplayExtensions;
}
const std::string &Display::getExtensionString() const
{
return mDisplayExtensionString;
}
const std::string &Display::getVendorString() const
{
return mVendorString;
}
Device *Display::getDevice() const
{
return mDevice;
}
Surface *Display::getWGLSurface() const
{
return mSurface;
}
gl::Version Display::getMaxSupportedESVersion() const
{
return mImplementation->getMaxSupportedESVersion();
}
EGLint Display::programCacheGetAttrib(EGLenum attrib) const
{
switch (attrib)
{
case EGL_PROGRAM_CACHE_KEY_LENGTH_ANGLE:
return static_cast<EGLint>(BlobCache::kKeyLength);
case EGL_PROGRAM_CACHE_SIZE_ANGLE:
return static_cast<EGLint>(mMemoryProgramCache.entryCount());
default:
UNREACHABLE();
return 0;
}
}
Error Display::programCacheQuery(EGLint index,
void *key,
EGLint *keysize,
void *binary,
EGLint *binarysize)
{
ASSERT(index >= 0 && index < static_cast<EGLint>(mMemoryProgramCache.entryCount()));
const BlobCache::Key *programHash = nullptr;
BlobCache::Value programBinary;
// TODO(jmadill): Make this thread-safe.
bool result =
mMemoryProgramCache.getAt(static_cast<size_t>(index), &programHash, &programBinary);
if (!result)
{
return EglBadAccess() << "Program binary not accessible.";
}
ASSERT(keysize && binarysize);
if (key)
{
ASSERT(*keysize == static_cast<EGLint>(BlobCache::kKeyLength));
memcpy(key, programHash->data(), BlobCache::kKeyLength);
}
if (binary)
{
// Note: we check the size here instead of in the validation code, since we need to
// access the cache as atomically as possible. It's possible that the cache contents
// could change between the validation size check and the retrieval.
if (programBinary.size() > static_cast<size_t>(*binarysize))
{
return EglBadAccess() << "Program binary too large or changed during access.";
}
memcpy(binary, programBinary.data(), programBinary.size());
}
*binarysize = static_cast<EGLint>(programBinary.size());
*keysize = static_cast<EGLint>(BlobCache::kKeyLength);
return NoError();
}
Error Display::programCachePopulate(const void *key,
EGLint keysize,
const void *binary,
EGLint binarysize)
{
ASSERT(keysize == static_cast<EGLint>(BlobCache::kKeyLength));
BlobCache::Key programHash;
memcpy(programHash.data(), key, BlobCache::kKeyLength);
mMemoryProgramCache.putBinary(programHash, reinterpret_cast<const uint8_t *>(binary),
static_cast<size_t>(binarysize));
return NoError();
}
EGLint Display::programCacheResize(EGLint limit, EGLenum mode)
{
switch (mode)
{
case EGL_PROGRAM_CACHE_RESIZE_ANGLE:
{
size_t initialSize = mMemoryProgramCache.size();
mMemoryProgramCache.resize(static_cast<size_t>(limit));
return static_cast<EGLint>(initialSize);
}
case EGL_PROGRAM_CACHE_TRIM_ANGLE:
return static_cast<EGLint>(mMemoryProgramCache.trim(static_cast<size_t>(limit)));
default:
UNREACHABLE();
return 0;
}
}
const char *Display::queryStringi(const EGLint name, const EGLint index)
{
const char *result = nullptr;
switch (name)
{
case EGL_FEATURE_NAME_ANGLE:
result = mFeatures[index]->name;
break;
case EGL_FEATURE_CATEGORY_ANGLE:
result = angle::FeatureCategoryToString(mFeatures[index]->category);
break;
case EGL_FEATURE_DESCRIPTION_ANGLE:
result = mFeatures[index]->description;
break;
case EGL_FEATURE_BUG_ANGLE:
result = mFeatures[index]->bug;
break;
case EGL_FEATURE_STATUS_ANGLE:
result = angle::FeatureStatusToString(mFeatures[index]->enabled);
break;
case EGL_FEATURE_CONDITION_ANGLE:
result = mFeatures[index]->condition;
break;
default:
UNREACHABLE();
return nullptr;
}
return result;
}
EGLAttrib Display::queryAttrib(const EGLint attribute)
{
EGLAttrib value = 0;
switch (attribute)
{
case EGL_DEVICE_EXT:
value = reinterpret_cast<EGLAttrib>(mDevice);
break;
case EGL_FEATURE_COUNT_ANGLE:
value = mFeatures.size();
break;
default:
UNREACHABLE();
}
return value;
}
} // namespace egl