blob: 623fbf06bc92c843e069777329610bfa9d7b5f5f [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* JS::Anchor implementation. */
#ifndef js_Anchor_h
#define js_Anchor_h
#include "mozilla/Attributes.h"
#if defined(STARBOARD)
#include "starboard/configuration.h"
#endif
class JSFunction;
class JSObject;
class JSScript;
class JSString;
namespace JS { class Value; }
namespace JS {
/*
* Protecting non-Value, non-JSObject *, non-JSString * values from collection
*
* Most of the time, the garbage collector's conservative stack scanner works
* behind the scenes, finding all live values and protecting them from being
* collected. However, when JSAPI client code obtains a pointer to data the
* scanner does not know about, owned by an object the scanner does know about,
* Care Must Be Taken.
*
* The scanner recognizes only a select set of types: pointers to JSObjects and
* similar things (JSFunctions, and so on), pointers to JSStrings, and Values.
* So while the scanner finds all live |JSString| pointers, it does not notice
* |jschar| pointers.
*
* So suppose we have:
*
* void f(JSString *str) {
* const jschar *ch = JS_GetStringCharsZ(str);
* ... do stuff with ch, but no uses of str ...;
* }
*
* After the call to |JS_GetStringCharsZ|, there are no further uses of
* |str|, which means that the compiler is within its rights to not store
* it anywhere. But because the stack scanner will not notice |ch|, there
* is no longer any live value in this frame that would keep the string
* alive. If |str| is the last reference to that |JSString|, and the
* collector runs while we are using |ch|, the string's array of |jschar|s
* may be freed out from under us.
*
* Note that there is only an issue when 1) we extract a thing X the scanner
* doesn't recognize from 2) a thing Y the scanner does recognize, and 3) if Y
* gets garbage-collected, then X gets freed. If we have code like this:
*
* void g(JSObject *obj) {
* JS::Value x;
* JS_GetProperty(obj, "x", &x);
* ... do stuff with x ...
* }
*
* there's no problem, because the value we've extracted, x, is a Value, a
* type that the conservative scanner recognizes.
*
* Conservative GC frees us from the obligation to explicitly root the types it
* knows about, but when we work with derived values like |ch|, we must root
* their owners, as the derived value alone won't keep them alive.
*
* A JS::Anchor is a kind of GC root that allows us to keep the owners of
* derived values like |ch| alive throughout the Anchor's lifetime. We could
* fix the above code as follows:
*
* void f(JSString *str) {
* JS::Anchor<JSString *> a_str(str);
* const jschar *ch = JS_GetStringCharsZ(str);
* ... do stuff with ch, but no uses of str ...;
* }
*
* This simply ensures that |str| will be live until |a_str| goes out of scope.
* As long as we don't retain a pointer to the string's characters for longer
* than that, we have avoided all garbage collection hazards.
*/
template<typename T> class AnchorPermitted;
template<> class AnchorPermitted<JSObject *> { };
template<> class AnchorPermitted<const JSObject *> { };
template<> class AnchorPermitted<JSFunction *> { };
template<> class AnchorPermitted<const JSFunction *> { };
template<> class AnchorPermitted<JSString *> { };
template<> class AnchorPermitted<const JSString *> { };
template<> class AnchorPermitted<Value> { };
template<> class AnchorPermitted<const JSScript *> { };
template<> class AnchorPermitted<JSScript *> { };
template<typename T>
class Anchor : AnchorPermitted<T>
{
public:
Anchor() { }
explicit Anchor(T t) { hold = t; }
inline ~Anchor();
T &get() { return hold; }
const T &get() const { return hold; }
void set(const T &t) { hold = t; }
void operator=(const T &t) { hold = t; }
void clear() { hold = 0; }
private:
T hold;
Anchor(const Anchor &other) MOZ_DELETE;
void operator=(const Anchor &other) MOZ_DELETE;
};
#if defined(STARBOARD)
#if SB_HAS_QUIRK(COMPILER_SAYS_GNUC_BUT_ISNT)
#define ENABLE_COMPILER_SAYS_GNUC_BUT_ISNT_WORKAROUND
#endif
#endif
template<typename T>
inline Anchor<T>::~Anchor()
{
#if defined(__GNUC__) && !defined(ENABLE_COMPILER_SAYS_GNUC_BUT_ISNT_WORKAROUND)
/*
* No code is generated for this. But because this is marked 'volatile', G++ will
* assume it has important side-effects, and won't delete it. (G++ never looks at
* the actual text and notices it's empty.) And because we have passed |hold| to
* it, GCC will keep |hold| alive until this point.
*
* The "memory" clobber operand ensures that G++ will not move prior memory
* accesses after the asm --- it's a barrier. Unfortunately, it also means that
* G++ will assume that all memory has changed after the asm, as it would for a
* call to an unknown function. I don't know of a way to avoid that consequence.
*/
asm volatile("":: "g" (hold) : "memory");
#else
/*
* An adequate portable substitute, for non-structure types.
*
* The compiler promises that, by the end of an expression statement, the
* last-stored value to a volatile object is the same as it would be in an
* unoptimized, direct implementation (the "abstract machine" whose behavior the
* language spec describes). However, the compiler is still free to reorder
* non-volatile accesses across this store --- which is what we must prevent. So
* assigning the held value to a volatile variable, as we do here, is not enough.
*
* In our case, however, garbage collection only occurs at function calls, so it
* is sufficient to ensure that the destructor's store isn't moved earlier across
* any function calls that could collect. It is hard to imagine the compiler
* analyzing the program so thoroughly that it could prove that such motion was
* safe. In practice, compilers treat calls to the collector as opaque operations
* --- in particular, as operations which could access volatile variables, across
* which this destructor must not be moved.
*
* ("Objection, your honor! *Alleged* killer whale!")
*
* The disadvantage of this approach is that it does generate code for the store.
* We do need to use Anchors in some cases where cycles are tight.
*
* Note that there is a Anchor<Value>::~Anchor() specialization in Value.h.
*/
volatile T sink;
sink = hold;
#endif /* defined(__GNUC__) && !defined(ENABLE_COMPILER_SAYS_GNUC_BUT_ISNT_WORKAROUND) */
}
} // namespace JS
#endif /* js_Anchor_h */