blob: c582728564aafa3988a8d3327a22f799f940a806 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef js_Utility_h
#define js_Utility_h
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Compiler.h"
#include "mozilla/Scoped.h"
#include <stdlib.h>
#include <string.h>
#ifdef JS_OOM_DO_BACKTRACES
#include <stdio.h>
#include <execinfo.h>
#endif
#include "jstypes.h"
#include "js-confdefs.h"
#include "js/TemplateLib.h"
/* The public JS engine namespace. */
namespace JS {}
/* The mozilla-shared reusable template/utility namespace. */
namespace mozilla {}
/* The private JS engine namespace. */
namespace js {}
/*
* Pattern used to overwrite freed memory. If you are accessing an object with
* this pattern, you probably have a dangling pointer.
*/
#define JS_FREE_PATTERN 0xDA
#define JS_ASSERT(expr) MOZ_ASSERT(expr)
#define JS_ASSERT_IF(cond, expr) MOZ_ASSERT_IF(cond, expr)
#define JS_NOT_REACHED(reason) MOZ_NOT_REACHED(reason)
#define JS_ALWAYS_TRUE(expr) MOZ_ALWAYS_TRUE(expr)
#define JS_ALWAYS_FALSE(expr) MOZ_ALWAYS_FALSE(expr)
#ifdef JS_DEBUG
# ifdef JS_THREADSAFE
# define JS_THREADSAFE_ASSERT(expr) JS_ASSERT(expr)
# else
# define JS_THREADSAFE_ASSERT(expr) ((void) 0)
# endif
#else
# define JS_THREADSAFE_ASSERT(expr) ((void) 0)
#endif
#if defined(JS_DEBUG)
# define JS_DIAGNOSTICS_ASSERT(expr) MOZ_ASSERT(expr)
#elif defined(JS_CRASH_DIAGNOSTICS)
# define JS_DIAGNOSTICS_ASSERT(expr) do { if (!(expr)) MOZ_CRASH(); } while(0)
#else
# define JS_DIAGNOSTICS_ASSERT(expr) ((void) 0)
#endif
#define JS_STATIC_ASSERT(cond) MOZ_STATIC_ASSERT(cond, "JS_STATIC_ASSERT")
#define JS_STATIC_ASSERT_IF(cond, expr) MOZ_STATIC_ASSERT_IF(cond, expr, "JS_STATIC_ASSERT_IF")
extern MOZ_NORETURN JS_PUBLIC_API(void)
JS_Assert(const char *s, const char *file, int ln);
/*
* Abort the process in a non-graceful manner. This will cause a core file,
* call to the debugger or other moral equivalent as well as causing the
* entire process to stop.
*/
extern JS_PUBLIC_API(void) JS_Abort(void);
/*
* Custom allocator support for SpiderMonkey
*/
#if defined JS_USE_CUSTOM_ALLOCATOR
# include "jscustomallocator.h"
#else
# ifdef JS_DEBUG
/*
* In order to test OOM conditions, when the testing function
* oomAfterAllocations COUNT is passed, we fail continuously after the NUM'th
* allocation from now.
*/
extern JS_PUBLIC_DATA(uint32_t) OOM_maxAllocations; /* set in builtins/TestingFunctions.cpp */
extern JS_PUBLIC_DATA(uint32_t) OOM_counter; /* data race, who cares. */
#ifdef JS_OOM_DO_BACKTRACES
#define JS_OOM_BACKTRACE_SIZE 32
static JS_ALWAYS_INLINE void
PrintBacktrace()
{
void* OOM_trace[JS_OOM_BACKTRACE_SIZE];
char** OOM_traceSymbols = NULL;
int32_t OOM_traceSize = 0;
int32_t OOM_traceIdx = 0;
OOM_traceSize = backtrace(OOM_trace, JS_OOM_BACKTRACE_SIZE);
OOM_traceSymbols = backtrace_symbols(OOM_trace, OOM_traceSize);
if (!OOM_traceSymbols)
return;
for (OOM_traceIdx = 0; OOM_traceIdx < OOM_traceSize; ++OOM_traceIdx) {
fprintf(stderr, "#%d %s\n", OOM_traceIdx, OOM_traceSymbols[OOM_traceIdx]);
}
// This must be free(), not js_free(), because backtrace_symbols()
// allocates with malloc().
free(OOM_traceSymbols);
}
#define JS_OOM_EMIT_BACKTRACE() \
do {\
fprintf(stderr, "Forcing artificial memory allocation function failure:\n");\
PrintBacktrace();\
} while (0)
# else
# define JS_OOM_EMIT_BACKTRACE() do {} while(0)
#endif /* JS_OOM_DO_BACKTRACES */
# define JS_OOM_POSSIBLY_FAIL() \
do \
{ \
if (++OOM_counter > OOM_maxAllocations) { \
JS_OOM_EMIT_BACKTRACE();\
return NULL; \
} \
} while (0)
# define JS_OOM_POSSIBLY_FAIL_REPORT(cx) \
do \
{ \
if (++OOM_counter > OOM_maxAllocations) { \
JS_OOM_EMIT_BACKTRACE();\
js_ReportOutOfMemory(cx);\
return NULL; \
} \
} while (0)
# else
# define JS_OOM_POSSIBLY_FAIL() do {} while(0)
# define JS_OOM_POSSIBLY_FAIL_REPORT(cx) do {} while(0)
# endif /* JS_DEBUG */
static JS_INLINE void* js_malloc(size_t bytes)
{
JS_OOM_POSSIBLY_FAIL();
return malloc(bytes);
}
static JS_INLINE void* js_calloc(size_t bytes)
{
JS_OOM_POSSIBLY_FAIL();
return calloc(bytes, 1);
}
static JS_INLINE void* js_calloc(size_t nmemb, size_t size)
{
JS_OOM_POSSIBLY_FAIL();
return calloc(nmemb, size);
}
static JS_INLINE void* js_realloc(void* p, size_t bytes)
{
JS_OOM_POSSIBLY_FAIL();
return realloc(p, bytes);
}
static JS_INLINE void js_free(void* p)
{
free(p);
}
static JS_INLINE char* js_strdup(char* s)
{
return strdup(s);
}
#endif/* JS_USE_CUSTOM_ALLOCATOR */
JS_BEGIN_EXTERN_C
/*
* Replace bit-scanning code sequences with CPU-specific instructions to
* speedup calculations of ceiling/floor log2.
*
* With GCC 3.4 or later we can use __builtin_clz for that, see bug 327129.
*
* SWS: Added MSVC intrinsic bitscan support. See bugs 349364 and 356856.
*/
#if defined(_WIN32) && (_MSC_VER >= 1300) && (defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64))
unsigned char _BitScanForward(unsigned long * Index, unsigned long Mask);
unsigned char _BitScanReverse(unsigned long * Index, unsigned long Mask);
# pragma intrinsic(_BitScanForward,_BitScanReverse)
__forceinline static int
__BitScanForward32(unsigned int val)
{
unsigned long idx;
_BitScanForward(&idx, (unsigned long)val);
return (int)idx;
}
__forceinline static int
__BitScanReverse32(unsigned int val)
{
unsigned long idx;
_BitScanReverse(&idx, (unsigned long)val);
return (int)(31-idx);
}
# define js_bitscan_ctz32(val) __BitScanForward32(val)
# define js_bitscan_clz32(val) __BitScanReverse32(val)
#if defined(_M_AMD64) || defined(_M_X64)
unsigned char _BitScanForward64(unsigned long * Index, unsigned __int64 Mask);
unsigned char _BitScanReverse64(unsigned long * Index, unsigned __int64 Mask);
# pragma intrinsic(_BitScanForward64,_BitScanReverse64)
#endif
__forceinline static int
__BitScanForward64(unsigned __int64 val)
{
#if defined(_M_AMD64) || defined(_M_X64)
unsigned long idx;
_BitScanForward64(&idx, val);
return (int)idx;
#else
uint32_t lo = (uint32_t)val;
uint32_t hi = (uint32_t)(val >> 32);
return lo != 0 ?
js_bitscan_ctz32(lo) :
32 + js_bitscan_ctz32(hi);
#endif
}
__forceinline static int
__BitScanReverse64(unsigned __int64 val)
{
#if defined(_M_AMD64) || defined(_M_X64)
unsigned long idx;
_BitScanReverse64(&idx, val);
return (int)(63-idx);
#else
uint32_t lo = (uint32_t)val;
uint32_t hi = (uint32_t)(val >> 32);
return hi != 0 ?
js_bitscan_clz32(hi) :
32 + js_bitscan_clz32(lo);
#endif
}
# define js_bitscan_ctz64(val) __BitScanForward64(val)
# define js_bitscan_clz64(val) __BitScanReverse64(val)
#elif MOZ_IS_GCC
#if MOZ_GCC_VERSION_AT_LEAST(3, 4, 0)
# define USE_BUILTIN_CTZ
#endif
#elif defined(__clang__)
#if __has_builtin(__builtin_ctz)
# define USE_BUILTIN_CTZ
#endif
#endif
#if defined(USE_BUILTIN_CTZ)
JS_STATIC_ASSERT(sizeof(unsigned int) == sizeof(uint32_t));
# define js_bitscan_ctz32(val) __builtin_ctz(val)
# define js_bitscan_clz32(val) __builtin_clz(val)
JS_STATIC_ASSERT(sizeof(unsigned long long) == sizeof(uint64_t));
# define js_bitscan_ctz64(val) __builtin_ctzll(val)
# define js_bitscan_clz64(val) __builtin_clzll(val)
# undef USE_BUILTIN_CTZ
#endif
/*
** Macro version of JS_CeilingLog2: Compute the log of the least power of
** 2 greater than or equal to _n. The result is returned in _log2.
*/
/*
* Use intrinsic function or count-leading-zeros to calculate ceil(log2(_n)).
* The macro checks for "n <= 1" and not "n != 0" as js_bitscan_clz32(0) is
* undefined.
*/
# define JS_CEILING_LOG2(_log2,_n) \
JS_BEGIN_MACRO \
unsigned int j_ = (unsigned int)(_n); \
(_log2) = (j_ <= 1 ? 0 : 32 - js_bitscan_clz32(j_ - 1)); \
JS_END_MACRO
/*
** Macro version of JS_FloorLog2: Compute the log of the greatest power of
** 2 less than or equal to _n. The result is returned in _log2.
**
** This is equivalent to finding the highest set bit in the word.
*/
/*
* Use js_bitscan_clz32 or count-leading-zeros to calculate floor(log2(_n)).
* Since js_bitscan_clz32(0) is undefined, the macro set the loweset bit to 1
* to ensure 0 result when _n == 0.
*/
# define JS_FLOOR_LOG2(_log2,_n) \
JS_BEGIN_MACRO \
(_log2) = 31 - js_bitscan_clz32(((unsigned int)(_n)) | 1); \
JS_END_MACRO
#if JS_BYTES_PER_WORD == 4
# define js_FloorLog2wImpl(n) \
((size_t)(JS_BITS_PER_WORD - 1 - js_bitscan_clz32(n)))
#elif JS_BYTES_PER_WORD == 8
# define js_FloorLog2wImpl(n) \
((size_t)(JS_BITS_PER_WORD - 1 - js_bitscan_clz64(n)))
#else
# error "NOT SUPPORTED"
#endif
JS_END_EXTERN_C
/*
* Internal function.
* Compute the log of the least power of 2 greater than or equal to n. This is
* a version of JS_CeilingLog2 that operates on unsigned integers with
* CPU-dependant size.
*/
#define JS_CEILING_LOG2W(n) ((n) <= 1 ? 0 : 1 + JS_FLOOR_LOG2W((n) - 1))
/*
* Internal function.
* Compute the log of the greatest power of 2 less than or equal to n.
* This is a version of JS_FloorLog2 that operates on unsigned integers with
* CPU-dependant size and requires that n != 0.
*/
static MOZ_ALWAYS_INLINE size_t
JS_FLOOR_LOG2W(size_t n)
{
JS_ASSERT(n != 0);
return js_FloorLog2wImpl(n);
}
/*
* JS_ROTATE_LEFT32
*
* There is no rotate operation in the C Language so the construct (a << 4) |
* (a >> 28) is used instead. Most compilers convert this to a rotate
* instruction but some versions of MSVC don't without a little help. To get
* MSVC to generate a rotate instruction, we have to use the _rotl intrinsic
* and use a pragma to make _rotl inline.
*
* MSVC in VS2005 will do an inline rotate instruction on the above construct.
*/
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_AMD64) || \
defined(_M_X64))
#include <stdlib.h>
#pragma intrinsic(_rotl)
#define JS_ROTATE_LEFT32(a, bits) _rotl(a, bits)
#else
#define JS_ROTATE_LEFT32(a, bits) (((a) << (bits)) | ((a) >> (32 - (bits))))
#endif
#include <new>
/*
* Low-level memory management in SpiderMonkey:
*
* ** Do not use the standard malloc/free/realloc: SpiderMonkey allows these
* to be redefined (via JS_USE_CUSTOM_ALLOCATOR) and Gecko even #define's
* these symbols.
*
* ** Do not use the builtin C++ operator new and delete: these throw on
* error and we cannot override them not to.
*
* Allocation:
*
* - If the lifetime of the allocation is tied to the lifetime of a GC-thing
* (that is, finalizing the GC-thing will free the allocation), call one of
* the following functions:
*
* JSContext::{malloc_,realloc_,calloc_,new_}
* JSRuntime::{malloc_,realloc_,calloc_,new_}
*
* These functions accumulate the number of bytes allocated which is used as
* part of the GC-triggering heuristic.
*
* The difference between the JSContext and JSRuntime versions is that the
* cx version reports an out-of-memory error on OOM. (This follows from the
* general SpiderMonkey idiom that a JSContext-taking function reports its
* own errors.)
*
* - Otherwise, use js_malloc/js_realloc/js_calloc/js_free/js_new
*
* Deallocation:
*
* - Ordinarily, use js_free/js_delete.
*
* - For deallocations during GC finalization, use one of the following
* operations on the FreeOp provided to the finalizer:
*
* FreeOp::{free_,delete_}
*
* The advantage of these operations is that the memory is batched and freed
* on another thread.
*/
#define JS_NEW_BODY(allocator, t, parms) \
void *memory = allocator(sizeof(t)); \
return memory ? new(memory) t parms : NULL;
/*
* Given a class which should provide 'new' methods, add
* JS_DECLARE_NEW_METHODS (see JSContext for a usage example). This
* adds news with up to 12 parameters. Add more versions of new below if
* you need more than 12 parameters.
*
* Note: Do not add a ; at the end of a use of JS_DECLARE_NEW_METHODS,
* or the build will break.
*/
#define JS_DECLARE_NEW_METHODS(NEWNAME, ALLOCATOR, QUALIFIERS)\
template <class T>\
QUALIFIERS T *NEWNAME() {\
JS_NEW_BODY(ALLOCATOR, T, ())\
}\
\
template <class T, class P1>\
QUALIFIERS T *NEWNAME(P1 p1) {\
JS_NEW_BODY(ALLOCATOR, T, (p1))\
}\
\
template <class T, class P1, class P2>\
QUALIFIERS T *NEWNAME(P1 p1, P2 p2) {\
JS_NEW_BODY(ALLOCATOR, T, (p1, p2))\
}\
\
template <class T, class P1, class P2, class P3>\
QUALIFIERS T *NEWNAME(P1 p1, P2 p2, P3 p3) {\
JS_NEW_BODY(ALLOCATOR, T, (p1, p2, p3))\
}\
\
template <class T, class P1, class P2, class P3, class P4>\
QUALIFIERS T *NEWNAME(P1 p1, P2 p2, P3 p3, P4 p4) {\
JS_NEW_BODY(ALLOCATOR, T, (p1, p2, p3, p4))\
}\
\
template <class T, class P1, class P2, class P3, class P4, class P5>\
QUALIFIERS T *NEWNAME(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {\
JS_NEW_BODY(ALLOCATOR, T, (p1, p2, p3, p4, p5))\
}\
\
template <class T, class P1, class P2, class P3, class P4, class P5, class P6>\
QUALIFIERS T *NEWNAME(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6) {\
JS_NEW_BODY(ALLOCATOR, T, (p1, p2, p3, p4, p5, p6))\
}\
\
template <class T, class P1, class P2, class P3, class P4, class P5, class P6, class P7>\
QUALIFIERS T *NEWNAME(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7) {\
JS_NEW_BODY(ALLOCATOR, T, (p1, p2, p3, p4, p5, p6, p7))\
}\
\
template <class T, class P1, class P2, class P3, class P4, class P5, class P6, class P7, class P8>\
QUALIFIERS T *NEWNAME(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7, P8 p8) {\
JS_NEW_BODY(ALLOCATOR, T, (p1, p2, p3, p4, p5, p6, p7, p8))\
}\
\
template <class T, class P1, class P2, class P3, class P4, class P5, class P6, class P7, class P8, class P9>\
QUALIFIERS T *NEWNAME(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7, P8 p8, P9 p9) {\
JS_NEW_BODY(ALLOCATOR, T, (p1, p2, p3, p4, p5, p6, p7, p8, p9))\
}\
\
template <class T, class P1, class P2, class P3, class P4, class P5, class P6, class P7, class P8, class P9, class P10>\
QUALIFIERS T *NEWNAME(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7, P8 p8, P9 p9, P10 p10) {\
JS_NEW_BODY(ALLOCATOR, T, (p1, p2, p3, p4, p5, p6, p7, p8, p9, p10))\
}\
\
template <class T, class P1, class P2, class P3, class P4, class P5, class P6, class P7, class P8, class P9, class P10, class P11>\
QUALIFIERS T *NEWNAME(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7, P8 p8, P9 p9, P10 p10, P11 p11) {\
JS_NEW_BODY(ALLOCATOR, T, (p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11))\
}\
\
template <class T, class P1, class P2, class P3, class P4, class P5, class P6, class P7, class P8, class P9, class P10, class P11, class P12>\
QUALIFIERS T *NEWNAME(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5, P6 p6, P7 p7, P8 p8, P9 p9, P10 p10, P11 p11, P12 p12) {\
JS_NEW_BODY(ALLOCATOR, T, (p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12))\
}\
JS_DECLARE_NEW_METHODS(js_new, js_malloc, static JS_ALWAYS_INLINE)
template <class T>
static JS_ALWAYS_INLINE void
js_delete(T *p)
{
if (p) {
p->~T();
js_free(p);
}
}
template<class T>
static JS_ALWAYS_INLINE void
js_delete_poison(T *p)
{
if (p) {
p->~T();
memset(p, 0x3B, sizeof(T));
js_free(p);
}
}
template <class T>
static JS_ALWAYS_INLINE T *
js_pod_malloc()
{
return (T *)js_malloc(sizeof(T));
}
template <class T>
static JS_ALWAYS_INLINE T *
js_pod_calloc()
{
return (T *)js_calloc(sizeof(T));
}
template <class T>
static JS_ALWAYS_INLINE T *
js_pod_malloc(size_t numElems)
{
if (numElems & js::tl::MulOverflowMask<sizeof(T)>::result)
return NULL;
return (T *)js_malloc(numElems * sizeof(T));
}
template <class T>
static JS_ALWAYS_INLINE T *
js_pod_calloc(size_t numElems)
{
if (numElems & js::tl::MulOverflowMask<sizeof(T)>::result)
return NULL;
return (T *)js_calloc(numElems * sizeof(T));
}
namespace js {
template<typename T>
struct ScopedFreePtrTraits
{
typedef T* type;
static T* empty() { return NULL; }
static void release(T* ptr) { js_free(ptr); }
};
SCOPED_TEMPLATE(ScopedJSFreePtr, ScopedFreePtrTraits)
template <typename T>
struct ScopedDeletePtrTraits : public ScopedFreePtrTraits<T>
{
static void release(T *ptr) { js_delete(ptr); }
};
SCOPED_TEMPLATE(ScopedJSDeletePtr, ScopedDeletePtrTraits)
template <typename T>
struct ScopedReleasePtrTraits : public ScopedFreePtrTraits<T>
{
static void release(T *ptr) { if (ptr) ptr->release(); }
};
SCOPED_TEMPLATE(ScopedReleasePtr, ScopedReleasePtrTraits)
} /* namespace js */
namespace js {
/*
* "Move" References
*
* Some types can be copied much more efficiently if we know the original's
* value need not be preserved --- that is, if we are doing a "move", not a
* "copy". For example, if we have:
*
* Vector<T> u;
* Vector<T> v(u);
*
* the constructor for v must apply a copy constructor to each element of u ---
* taking time linear in the length of u. However, if we know we will not need u
* any more once v has been initialized, then we could initialize v very
* efficiently simply by stealing u's dynamically allocated buffer and giving it
* to v --- a constant-time operation, regardless of the size of u.
*
* Moves often appear in container implementations. For example, when we append
* to a vector, we may need to resize its buffer. This entails moving each of
* its extant elements from the old, smaller buffer to the new, larger buffer.
* But once the elements have been migrated, we're just going to throw away the
* old buffer; we don't care if they still have their values. So if the vector's
* element type can implement "move" more efficiently than "copy", the vector
* resizing should by all means use a "move" operation. Hash tables also need to
* be resized.
*
* The details of the optimization, and whether it's worth applying, vary from
* one type to the next. And while some constructor calls are moves, many really
* are copies, and can't be optimized this way. So we need:
*
* 1) a way for a particular invocation of a copy constructor to say that it's
* really a move, and that the value of the original isn't important
* afterwards (althought it must still be safe to destroy); and
*
* 2) a way for a type (like Vector) to announce that it can be moved more
* efficiently than it can be copied, and provide an implementation of that
* move operation.
*
* The Move(T &) function takes a reference to a T, and returns an MoveRef<T>
* referring to the same value; that's 1). An MoveRef<T> is simply a reference
* to a T, annotated to say that a copy constructor applied to it may move that
* T, instead of copying it. Finally, a constructor that accepts an MoveRef<T>
* should perform a more efficient move, instead of a copy, providing 2).
*
* So, where we might define a copy constructor for a class C like this:
*
* C(const C &rhs) { ... copy rhs to this ... }
*
* we would declare a move constructor like this:
*
* C(MoveRef<C> rhs) { ... move rhs to this ... }
*
* And where we might perform a copy like this:
*
* C c2(c1);
*
* we would perform a move like this:
*
* C c2(Move(c1))
*
* Note that MoveRef<T> implicitly converts to T &, so you can pass an
* MoveRef<T> to an ordinary copy constructor for a type that doesn't support a
* special move constructor, and you'll just get a copy. This means that
* templates can use Move whenever they know they won't use the original value
* any more, even if they're not sure whether the type at hand has a specialized
* move constructor. If it doesn't, the MoveRef<T> will just convert to a T &,
* and the ordinary copy constructor will apply.
*
* A class with a move constructor can also provide a move assignment operator,
* which runs this's destructor, and then applies the move constructor to
* *this's memory. A typical definition:
*
* C &operator=(MoveRef<C> rhs) {
* this->~C();
* new(this) C(rhs);
* return *this;
* }
*
* With that in place, one can write move assignments like this:
*
* c2 = Move(c1);
*
* This destroys c1, moves c1's value to c2, and leaves c1 in an undefined but
* destructible state.
*
* This header file defines MoveRef and Move in the js namespace. It's up to
* individual containers to annotate moves as such, by calling Move; and it's up
* to individual types to define move constructors.
*
* One hint: if you're writing a move constructor where the type has members
* that should be moved themselves, it's much nicer to write this:
*
* C(MoveRef<C> c) : x(c->x), y(c->y) { }
*
* than the equivalent:
*
* C(MoveRef<C> c) { new(&x) X(c->x); new(&y) Y(c->y); }
*
* especially since GNU C++ fails to notice that this does indeed initialize x
* and y, which may matter if they're const.
*/
template<typename T>
class MoveRef {
public:
typedef T Referent;
explicit MoveRef(T &t) : pointer(&t) { }
T &operator*() const { return *pointer; }
T *operator->() const { return pointer; }
operator T& () const { return *pointer; }
private:
T *pointer;
};
template<typename T>
MoveRef<T> Move(T &t) { return MoveRef<T>(t); }
template<typename T>
MoveRef<T> Move(const T &t) { return MoveRef<T>(const_cast<T &>(t)); }
/* Useful for implementing containers that assert non-reentrancy */
class ReentrancyGuard
{
/* ReentrancyGuard is not copyable. */
ReentrancyGuard(const ReentrancyGuard &);
void operator=(const ReentrancyGuard &);
#ifdef JS_DEBUG
bool &entered;
#endif
public:
template <class T>
#ifdef JS_DEBUG
ReentrancyGuard(T &obj)
: entered(obj.entered)
#else
ReentrancyGuard(T &/*obj*/)
#endif
{
#ifdef JS_DEBUG
JS_ASSERT(!entered);
entered = true;
#endif
}
~ReentrancyGuard()
{
#ifdef JS_DEBUG
entered = false;
#endif
}
};
template <class T>
JS_ALWAYS_INLINE static void
Swap(T &t, T &u)
{
T tmp(Move(t));
t = Move(u);
u = Move(tmp);
}
/*
* Round x up to the nearest power of 2. This function assumes that the most
* significant bit of x is not set, which would lead to overflow.
*/
JS_ALWAYS_INLINE size_t
RoundUpPow2(size_t x)
{
return size_t(1) << JS_CEILING_LOG2W(x);
}
/* Integral types for all hash functions. */
typedef uint32_t HashNumber;
const unsigned HashNumberSizeBits = 32;
namespace detail {
/*
* Given a raw hash code, h, return a number that can be used to select a hash
* bucket.
*
* This function aims to produce as uniform an output distribution as possible,
* especially in the most significant (leftmost) bits, even though the input
* distribution may be highly nonrandom, given the constraints that this must
* be deterministic and quick to compute.
*
* Since the leftmost bits of the result are best, the hash bucket index is
* computed by doing ScrambleHashCode(h) / (2^32/N) or the equivalent
* right-shift, not ScrambleHashCode(h) % N or the equivalent bit-mask.
*
* FIXME: OrderedHashTable uses a bit-mask; see bug 775896.
*/
inline HashNumber
ScrambleHashCode(HashNumber h)
{
/*
* Simply returning h would not cause any hash tables to produce wrong
* answers. But it can produce pathologically bad performance: The caller
* right-shifts the result, keeping only the highest bits. The high bits of
* hash codes are very often completely entropy-free. (So are the lowest
* bits.)
*
* So we use Fibonacci hashing, as described in Knuth, The Art of Computer
* Programming, 6.4. This mixes all the bits of the input hash code h.
*
* The value of goldenRatio is taken from the hex
* expansion of the golden ratio, which starts 1.9E3779B9....
* This value is especially good if values with consecutive hash codes
* are stored in a hash table; see Knuth for details.
*/
static const HashNumber goldenRatio = 0x9E3779B9U;
return h * goldenRatio;
}
} /* namespace detail */
} /* namespace js */
namespace JS {
/*
* Methods for poisoning GC heap pointer words and checking for poisoned words.
* These are in this file for use in Value methods and so forth.
*
* If the moving GC hazard analysis is in use and detects a non-rooted stack
* pointer to a GC thing, one byte of that pointer is poisoned to refer to an
* invalid location. For both 32 bit and 64 bit systems, the fourth byte of the
* pointer is overwritten, to reduce the likelihood of accidentally changing
* a live integer value.
*/
inline void PoisonPtr(void *v)
{
#if defined(JSGC_ROOT_ANALYSIS) && defined(JS_DEBUG)
uint8_t *ptr = (uint8_t *) v + 3;
*ptr = JS_FREE_PATTERN;
#endif
}
template <typename T>
inline bool IsPoisonedPtr(T *v)
{
#if defined(JSGC_ROOT_ANALYSIS) && defined(JS_DEBUG)
uint32_t mask = uintptr_t(v) & 0xff000000;
return mask == uint32_t(JS_FREE_PATTERN << 24);
#else
return false;
#endif
}
}
/*
* This is SpiderMonkey's equivalent to |nsMallocSizeOfFun|.
*/
typedef size_t(*JSMallocSizeOfFun)(const void *p);
/* sixgill annotation defines */
#ifndef HAVE_STATIC_ANNOTATIONS
# define HAVE_STATIC_ANNOTATIONS
# ifdef XGILL_PLUGIN
# define STATIC_PRECONDITION(COND) __attribute__((precondition(#COND)))
# define STATIC_PRECONDITION_ASSUME(COND) __attribute__((precondition_assume(#COND)))
# define STATIC_POSTCONDITION(COND) __attribute__((postcondition(#COND)))
# define STATIC_POSTCONDITION_ASSUME(COND) __attribute__((postcondition_assume(#COND)))
# define STATIC_INVARIANT(COND) __attribute__((invariant(#COND)))
# define STATIC_INVARIANT_ASSUME(COND) __attribute__((invariant_assume(#COND)))
# define STATIC_PASTE2(X,Y) X ## Y
# define STATIC_PASTE1(X,Y) STATIC_PASTE2(X,Y)
# define STATIC_ASSERT(COND) \
JS_BEGIN_MACRO \
__attribute__((assert_static(#COND), unused)) \
int STATIC_PASTE1(assert_static_, __COUNTER__); \
JS_END_MACRO
# define STATIC_ASSUME(COND) \
JS_BEGIN_MACRO \
__attribute__((assume_static(#COND), unused)) \
int STATIC_PASTE1(assume_static_, __COUNTER__); \
JS_END_MACRO
# define STATIC_ASSERT_RUNTIME(COND) \
JS_BEGIN_MACRO \
__attribute__((assert_static_runtime(#COND), unused)) \
int STATIC_PASTE1(assert_static_runtime_, __COUNTER__); \
JS_END_MACRO
# else /* XGILL_PLUGIN */
# define STATIC_PRECONDITION(COND) /* nothing */
# define STATIC_PRECONDITION_ASSUME(COND) /* nothing */
# define STATIC_POSTCONDITION(COND) /* nothing */
# define STATIC_POSTCONDITION_ASSUME(COND) /* nothing */
# define STATIC_INVARIANT(COND) /* nothing */
# define STATIC_INVARIANT_ASSUME(COND) /* nothing */
# define STATIC_ASSERT(COND) JS_BEGIN_MACRO /* nothing */ JS_END_MACRO
# define STATIC_ASSUME(COND) JS_BEGIN_MACRO /* nothing */ JS_END_MACRO
# define STATIC_ASSERT_RUNTIME(COND) JS_BEGIN_MACRO /* nothing */ JS_END_MACRO
# endif /* XGILL_PLUGIN */
# define STATIC_SKIP_INFERENCE STATIC_INVARIANT(skip_inference())
#endif /* HAVE_STATIC_ANNOTATIONS */
#endif /* js_Utility_h */