blob: e8b00fe5d7b17012723f2853e776653f21b2b01f [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
*
* ***** BEGIN LICENSE BLOCK *****
* Copyright (C) 2008 Apple Inc.
* Copyright (C) 2009, 2010 University of Szeged
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ***** END LICENSE BLOCK ***** */
#ifndef assembler_assembler_MacroAssemblerARM_h
#define assembler_assembler_MacroAssemblerARM_h
#include "assembler/wtf/Platform.h"
#if ENABLE_ASSEMBLER && WTF_CPU_ARM_TRADITIONAL
#include "ARMAssembler.h"
#include "AbstractMacroAssembler.h"
namespace JSC {
class MacroAssemblerARM : public AbstractMacroAssembler<ARMAssembler> {
static const int DoubleConditionMask = 0x0f;
static const int DoubleConditionBitSpecial = 0x8;
public:
enum Condition {
Equal = ARMAssembler::EQ,
NotEqual = ARMAssembler::NE,
Above = ARMAssembler::HI,
AboveOrEqual = ARMAssembler::CS,
Below = ARMAssembler::CC,
BelowOrEqual = ARMAssembler::LS,
GreaterThan = ARMAssembler::GT,
GreaterThanOrEqual = ARMAssembler::GE,
LessThan = ARMAssembler::LT,
LessThanOrEqual = ARMAssembler::LE,
Overflow = ARMAssembler::VS,
Signed = ARMAssembler::MI,
Zero = ARMAssembler::EQ,
NonZero = ARMAssembler::NE
};
enum DoubleCondition {
// These conditions will only evaluate to true if the comparison is ordered - i.e. neither operand is NaN.
DoubleEqual = ARMAssembler::EQ,
DoubleNotEqual = ARMAssembler::NE | DoubleConditionBitSpecial,
DoubleGreaterThan = ARMAssembler::GT,
DoubleGreaterThanOrEqual = ARMAssembler::GE,
DoubleLessThan = ARMAssembler::CC,
DoubleLessThanOrEqual = ARMAssembler::LS,
// If either operand is NaN, these conditions always evaluate to true.
DoubleEqualOrUnordered = ARMAssembler::EQ | DoubleConditionBitSpecial,
DoubleNotEqualOrUnordered = ARMAssembler::NE,
DoubleGreaterThanOrUnordered = ARMAssembler::HI,
DoubleGreaterThanOrEqualOrUnordered = ARMAssembler::CS,
DoubleLessThanOrUnordered = ARMAssembler::LT,
DoubleLessThanOrEqualOrUnordered = ARMAssembler::LE
};
static const RegisterID stackPointerRegister = ARMRegisters::sp;
static const RegisterID linkRegister = ARMRegisters::lr;
static const Scale ScalePtr = TimesFour;
static const unsigned int TotalRegisters = 16;
void add32(RegisterID src, RegisterID dest)
{
m_assembler.adds_r(dest, dest, src);
}
void add32(TrustedImm32 imm, Address address)
{
load32(address, ARMRegisters::S1);
add32(imm, ARMRegisters::S1);
store32(ARMRegisters::S1, address);
}
void add32(TrustedImm32 imm, RegisterID dest)
{
m_assembler.adds_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0));
}
void add32(Address src, RegisterID dest)
{
load32(src, ARMRegisters::S1);
add32(ARMRegisters::S1, dest);
}
void and32(Address src, RegisterID dest)
{
load32(src, ARMRegisters::S1);
and32(ARMRegisters::S1, dest);
}
void and32(RegisterID src, RegisterID dest)
{
m_assembler.ands_r(dest, dest, src);
}
void and32(Imm32 imm, RegisterID dest)
{
ARMWord w = m_assembler.getImm(imm.m_value, ARMRegisters::S0, true);
if (w & ARMAssembler::OP2_INV_IMM)
m_assembler.bics_r(dest, dest, w & ~ARMAssembler::OP2_INV_IMM);
else
m_assembler.ands_r(dest, dest, w);
}
void lshift32(RegisterID shift_amount, RegisterID dest)
{
ARMWord w = ARMAssembler::getOp2(0x1f);
ASSERT(w != ARMAssembler::INVALID_IMM);
m_assembler.and_r(ARMRegisters::S0, shift_amount, w);
m_assembler.movs_r(dest, m_assembler.lsl_r(dest, ARMRegisters::S0));
}
void lshift32(Imm32 imm, RegisterID dest)
{
m_assembler.movs_r(dest, m_assembler.lsl(dest, imm.m_value & 0x1f));
}
void mul32(RegisterID src, RegisterID dest)
{
if (src == dest) {
move(src, ARMRegisters::S0);
src = ARMRegisters::S0;
}
m_assembler.muls_r(dest, dest, src);
}
void mul32(Imm32 imm, RegisterID src, RegisterID dest)
{
move(imm, ARMRegisters::S0);
m_assembler.muls_r(dest, src, ARMRegisters::S0);
}
void neg32(RegisterID srcDest)
{
m_assembler.rsbs_r(srcDest, srcDest, ARMAssembler::getOp2(0));
}
void not32(RegisterID dest)
{
m_assembler.mvns_r(dest, dest);
}
void or32(RegisterID src, RegisterID dest)
{
m_assembler.orrs_r(dest, dest, src);
}
void or32(TrustedImm32 imm, RegisterID dest)
{
m_assembler.orrs_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0));
}
void rshift32(RegisterID shift_amount, RegisterID dest)
{
ARMWord w = ARMAssembler::getOp2(0x1f);
ASSERT(w != ARMAssembler::INVALID_IMM);
m_assembler.and_r(ARMRegisters::S0, shift_amount, w);
m_assembler.movs_r(dest, m_assembler.asr_r(dest, ARMRegisters::S0));
}
void rshift32(Imm32 imm, RegisterID dest)
{
m_assembler.movs_r(dest, m_assembler.asr(dest, imm.m_value & 0x1f));
}
void urshift32(RegisterID shift_amount, RegisterID dest)
{
ARMWord w = ARMAssembler::getOp2(0x1f);
ASSERT(w != ARMAssembler::INVALID_IMM);
m_assembler.and_r(ARMRegisters::S0, shift_amount, w);
m_assembler.movs_r(dest, m_assembler.lsr_r(dest, ARMRegisters::S0));
}
void urshift32(Imm32 imm, RegisterID dest)
{
m_assembler.movs_r(dest, m_assembler.lsr(dest, imm.m_value & 0x1f));
}
void sub32(RegisterID src, RegisterID dest)
{
m_assembler.subs_r(dest, dest, src);
}
void sub32(TrustedImm32 imm, RegisterID dest)
{
m_assembler.subs_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0));
}
void sub32(TrustedImm32 imm, Address address)
{
load32(address, ARMRegisters::S1);
sub32(imm, ARMRegisters::S1);
store32(ARMRegisters::S1, address);
}
void sub32(Address src, RegisterID dest)
{
load32(src, ARMRegisters::S1);
sub32(ARMRegisters::S1, dest);
}
void or32(Address address, RegisterID dest)
{
load32(address, ARMRegisters::S1);
or32(ARMRegisters::S1, dest);
}
void xor32(RegisterID src, RegisterID dest)
{
m_assembler.eors_r(dest, dest, src);
}
void xor32(TrustedImm32 imm, RegisterID dest)
{
m_assembler.eors_r(dest, dest, m_assembler.getImm(imm.m_value, ARMRegisters::S0));
}
void xor32(Address src, RegisterID dest)
{
load32(src, ARMRegisters::S1);
m_assembler.eors_r(dest, dest, ARMRegisters::S1);
}
void load8(BaseIndex address, RegisterID dest)
{
load8ZeroExtend(address, dest);
}
void load8SignExtend(ImplicitAddress address, RegisterID dest)
{
m_assembler.dataTransferN(true, true, 8, dest, address.base, address.offset);
}
void load8ZeroExtend(ImplicitAddress address, RegisterID dest)
{
m_assembler.dataTransferN(true, false, 8, dest, address.base, address.offset);
}
void load8SignExtend(BaseIndex address, RegisterID dest)
{
m_assembler.baseIndexTransferN(true, true, 8, dest,
address.base, address.index, address.scale, address.offset);
}
void load8ZeroExtend(BaseIndex address, RegisterID dest)
{
m_assembler.baseIndexTransferN(true, false, 8, dest,
address.base, address.index, address.scale, address.offset);
}
/* this is *identical* to the zero extending case*/
void load8(ImplicitAddress address, RegisterID dest)
{
load8ZeroExtend(address, dest);
}
void load16Unaligned(BaseIndex address, RegisterID dest)
{
load16(address, dest);
}
void load16SignExtend(ImplicitAddress address, RegisterID dest)
{
m_assembler.dataTransferN(true, true, 16, dest, address.base, address.offset);
}
void load16ZeroExtend(ImplicitAddress address, RegisterID dest)
{
m_assembler.dataTransferN(true, false, 16, dest, address.base, address.offset);
}
void load16SignExtend(BaseIndex address, RegisterID dest)
{
m_assembler.baseIndexTransferN(true, true, 16, dest,
address.base, address.index, address.scale, address.offset);
}
void load16ZeroExtend(BaseIndex address, RegisterID dest)
{
m_assembler.baseIndexTransferN(true, false, 16, dest,
address.base, address.index, address.scale, address.offset);
}
void load32(ImplicitAddress address, RegisterID dest)
{
m_assembler.dataTransfer32(true, dest, address.base, address.offset);
}
void load32(BaseIndex address, RegisterID dest)
{
m_assembler.baseIndexTransfer32(true, dest, address.base, address.index, static_cast<int>(address.scale), address.offset);
}
#if WTF_CPU_ARMV5_OR_LOWER
void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest);
#else
void load32WithUnalignedHalfWords(BaseIndex address, RegisterID dest)
{
load32(address, dest);
}
#endif
DataLabel32 load32WithAddressOffsetPatch(Address address, RegisterID dest)
{
ASSERT(address.base != ARMRegisters::S0);
DataLabel32 dataLabel(this);
m_assembler.ldr_un_imm(ARMRegisters::S0, 0);
m_assembler.dtr_ur(true, dest, address.base, ARMRegisters::S0);
return dataLabel;
}
DataLabel32 load64WithAddressOffsetPatch(Address address, RegisterID hi, RegisterID lo)
{
ASSERT(address.base != ARMRegisters::S0);
ASSERT(lo != ARMRegisters::S0);
DataLabel32 dataLabel(this);
m_assembler.ldr_un_imm(ARMRegisters::S0, 0);
m_assembler.add_r(ARMRegisters::S0, ARMRegisters::S0, address.base);
m_assembler.dtr_u(true, lo, ARMRegisters::S0, 0);
m_assembler.dtr_u(true, hi, ARMRegisters::S0, 4);
return dataLabel;
}
Label loadPtrWithPatchToLEA(Address address, RegisterID dest)
{
Label label(this);
load32(address, dest);
return label;
}
void load16(BaseIndex address, RegisterID dest)
{
m_assembler.add_r(ARMRegisters::S1, address.base, m_assembler.lsl(address.index, address.scale));
load16(Address(ARMRegisters::S1, address.offset), dest);
}
void load16(ImplicitAddress address, RegisterID dest)
{
if (address.offset >= 0)
m_assembler.ldrh_u(dest, address.base, m_assembler.getOffsetForHalfwordDataTransfer(address.offset, ARMRegisters::S0));
else
m_assembler.ldrh_d(dest, address.base, m_assembler.getOffsetForHalfwordDataTransfer(-address.offset, ARMRegisters::S0));
}
DataLabel32 store32WithAddressOffsetPatch(RegisterID src, Address address)
{
ASSERT(address.base != ARMRegisters::S0);
DataLabel32 dataLabel(this);
m_assembler.ldr_un_imm(ARMRegisters::S0, 0);
m_assembler.dtr_ur(false, src, address.base, ARMRegisters::S0);
return dataLabel;
}
DataLabel32 store64WithAddressOffsetPatch(RegisterID hi, RegisterID lo, Address address)
{
ASSERT(hi != ARMRegisters::S0);
ASSERT(lo != ARMRegisters::S0);
ASSERT(address.base != ARMRegisters::S0);
DataLabel32 dataLabel(this);
m_assembler.ldr_un_imm(ARMRegisters::S0, address.offset);
m_assembler.add_r(ARMRegisters::S0, ARMRegisters::S0, address.base);
m_assembler.dtr_u(false, lo, ARMRegisters::S0, 0);
m_assembler.dtr_u(false, hi, ARMRegisters::S0, 4);
return dataLabel;
}
DataLabel32 store64WithAddressOffsetPatch(Imm32 hi, RegisterID lo, Address address)
{
ASSERT(lo != ARMRegisters::S0);
ASSERT(lo != ARMRegisters::S1);
ASSERT(lo != address.base);
ASSERT(address.base != ARMRegisters::S0);
ASSERT(address.base != ARMRegisters::S1);
DataLabel32 dataLabel(this);
m_assembler.ldr_un_imm(ARMRegisters::S0, address.offset);
m_assembler.moveImm(hi.m_value, ARMRegisters::S1);
m_assembler.add_r(ARMRegisters::S0, ARMRegisters::S0, address.base);
m_assembler.dtr_u(false, lo, ARMRegisters::S0, 0);
m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 4);
return dataLabel;
}
DataLabel32 store64WithAddressOffsetPatch(Imm32 hi, Imm32 lo, Address address)
{
ASSERT(address.base != ARMRegisters::S0);
ASSERT(address.base != ARMRegisters::S1);
DataLabel32 dataLabel(this);
m_assembler.ldr_un_imm(ARMRegisters::S0, address.offset);
m_assembler.add_r(ARMRegisters::S0, ARMRegisters::S0, address.base);
m_assembler.moveImm(lo.m_value, ARMRegisters::S1);
m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0);
/* TODO: improve this by getting another scratch register. */
m_assembler.moveImm(hi.m_value, ARMRegisters::S1);
m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 4);
return dataLabel;
}
void store32(RegisterID src, ImplicitAddress address)
{
m_assembler.dataTransfer32(false, src, address.base, address.offset);
}
void store32(RegisterID src, BaseIndex address)
{
m_assembler.baseIndexTransfer32(false, src, address.base, address.index, static_cast<int>(address.scale), address.offset);
}
void store32(TrustedImm32 imm, BaseIndex address)
{
if (imm.m_isPointer)
m_assembler.ldr_un_imm(ARMRegisters::S1, imm.m_value);
else
move(imm, ARMRegisters::S1);
store32(ARMRegisters::S1, address);
}
void store32(TrustedImm32 imm, ImplicitAddress address)
{
if (imm.m_isPointer)
m_assembler.ldr_un_imm(ARMRegisters::S1, imm.m_value);
else
move(imm, ARMRegisters::S1);
store32(ARMRegisters::S1, address);
}
void store32(RegisterID src, void* address)
{
m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address));
m_assembler.dtr_u(false, src, ARMRegisters::S0, 0);
}
void store32(TrustedImm32 imm, void* address)
{
m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address));
if (imm.m_isPointer)
m_assembler.ldr_un_imm(ARMRegisters::S1, imm.m_value);
else
m_assembler.moveImm(imm.m_value, ARMRegisters::S1);
m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0);
}
void store16(RegisterID src, ImplicitAddress address)
{
m_assembler.dataTransferN(false, false, 16, src, address.base, address.offset);
}
void store16(RegisterID src, BaseIndex address)
{
m_assembler.baseIndexTransferN(false, false, 16, src, address.base, address.index, static_cast<int>(address.scale), address.offset);
}
void store16(TrustedImm32 imm, BaseIndex address)
{
if (imm.m_isPointer)
JS_ASSERT("What are you trying to do with 16 bits of a pointer?");
else
move(imm, ARMRegisters::S1);
store16(ARMRegisters::S1, address);
}
void store16(TrustedImm32 imm, ImplicitAddress address)
{
if (imm.m_isPointer)
JS_ASSERT("What are you trying to do with 16 bits of a pointer?");
else
move(imm, ARMRegisters::S1);
store16(ARMRegisters::S1, address);
}
void store16(RegisterID src, void* address)
{
m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address));
m_assembler.mem_imm_off(false, false, 16, true, src, ARMRegisters::S0, 0);
}
void store16(TrustedImm32 imm, void* address)
{
m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address));
if (imm.m_isPointer)
JS_ASSERT("What are you trying to do with 16 bits of a pointer?");
else
m_assembler.moveImm(imm.m_value, ARMRegisters::S1);
m_assembler.mem_imm_off(false, false, 16, true, ARMRegisters::S1, ARMRegisters::S0, 0);
}
void store8(RegisterID src, ImplicitAddress address)
{
m_assembler.dataTransferN(false, false, 8, src, address.base, address.offset);
}
void store8(RegisterID src, BaseIndex address)
{
m_assembler.baseIndexTransferN(false, false, 8, src, address.base, address.index, static_cast<int>(address.scale), address.offset);
}
void store8(TrustedImm32 imm, BaseIndex address)
{
if (imm.m_isPointer)
JS_ASSERT("What are you trying to do with 8 bits of a pointer?");
else
move(imm, ARMRegisters::S1);
store8(ARMRegisters::S1, address);
}
void store8(TrustedImm32 imm, ImplicitAddress address)
{
if (imm.m_isPointer)
JS_ASSERT("What are you trying to do with 16 bits of a pointer?");
else
move(imm, ARMRegisters::S1);
store8(ARMRegisters::S1, address);
}
void store8(RegisterID src, void* address)
{
m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address));
m_assembler.mem_imm_off(false, false, 8, true, src, ARMRegisters::S0, 0);
}
void store8(TrustedImm32 imm, void* address)
{
m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address));
if (imm.m_isPointer)
JS_ASSERT("What are you trying to do with 16 bits of a pointer?");
else
m_assembler.moveImm(imm.m_value, ARMRegisters::S1);
m_assembler.mem_imm_off(false, false, 8, true, ARMRegisters::S1, ARMRegisters::S0, 0);
}
void pop(RegisterID dest)
{
m_assembler.pop_r(dest);
}
void push(RegisterID src)
{
m_assembler.push_r(src);
}
void push(Address address)
{
load32(address, ARMRegisters::S1);
push(ARMRegisters::S1);
}
void push(Imm32 imm)
{
move(imm, ARMRegisters::S0);
push(ARMRegisters::S0);
}
void move(TrustedImm32 imm, RegisterID dest)
{
if (imm.m_isPointer)
m_assembler.ldr_un_imm(dest, imm.m_value);
else
m_assembler.moveImm(imm.m_value, dest);
}
void move(RegisterID src, RegisterID dest)
{
m_assembler.mov_r(dest, src);
}
void move(TrustedImmPtr imm, RegisterID dest)
{
move(Imm32(imm), dest);
}
void swap(RegisterID reg1, RegisterID reg2)
{
m_assembler.mov_r(ARMRegisters::S0, reg1);
m_assembler.mov_r(reg1, reg2);
m_assembler.mov_r(reg2, ARMRegisters::S0);
}
void signExtend32ToPtr(RegisterID src, RegisterID dest)
{
if (src != dest)
move(src, dest);
}
void zeroExtend32ToPtr(RegisterID src, RegisterID dest)
{
if (src != dest)
move(src, dest);
}
Jump branch8(Condition cond, Address left, Imm32 right)
{
load8(left, ARMRegisters::S1);
return branch32(cond, ARMRegisters::S1, right);
}
Jump branch32(Condition cond, RegisterID left, RegisterID right, int useConstantPool = 0)
{
m_assembler.cmp_r(left, right);
return Jump(m_assembler.jmp(ARMCondition(cond), useConstantPool));
}
Jump branch32(Condition cond, RegisterID left, TrustedImm32 right, int useConstantPool = 0)
{
ASSERT(left != ARMRegisters::S0);
if (right.m_isPointer) {
m_assembler.ldr_un_imm(ARMRegisters::S0, right.m_value);
m_assembler.cmp_r(left, ARMRegisters::S0);
} else {
// This is a rather cute (if not confusing) pattern.
// unfortunately, it is not quite conducive to switching from
// cmp to cmn, so I'm doing so manually.
// m_assembler.cmp_r(left, m_assembler.getImm(right.m_value, ARMRegisters::S0));
// try to shoehorn the immediate into the compare instruction
ARMWord arg = m_assembler.getOp2(right.m_value);
if (arg != m_assembler.INVALID_IMM) {
m_assembler.cmp_r(left, arg);
} else {
// if it does not fit, try to shoehorn a negative in, and use a negated compare
// p.s. why couldn't arm just include the sign bit in the imm, rather than the inst.
arg = m_assembler.getOp2(-right.m_value);
if (arg != m_assembler.INVALID_IMM) {
m_assembler.cmn_r(left, arg);
} else {
// If we get here, we *need* to use a temp register and any way of loading a value
// will enable us to load a negative easily, so there is no reason to switch from
// cmp to cmn.
m_assembler.cmp_r(left, m_assembler.getImm(right.m_value, ARMRegisters::S0));
}
}
}
return Jump(m_assembler.jmp(ARMCondition(cond), useConstantPool));
}
// Like branch32, but emit a consistently-structured sequence such that the
// number of instructions emitted is constant, regardless of the argument
// values. For ARM, this is identical to branch32WithPatch, except that it
// does not generate a DataLabel32.
Jump branch32FixedLength(Condition cond, RegisterID left, TrustedImm32 right)
{
m_assembler.ldr_un_imm(ARMRegisters::S1, right.m_value);
return branch32(cond, left, ARMRegisters::S1, true);
}
// As branch32_force32, but allow the value ('right') to be patched.
Jump branch32WithPatch(Condition cond, RegisterID left, TrustedImm32 right, DataLabel32 &dataLabel)
{
ASSERT(left != ARMRegisters::S1);
dataLabel = moveWithPatch(right, ARMRegisters::S1);
return branch32(cond, left, ARMRegisters::S1, true);
}
Jump branch32WithPatch(Condition cond, Address left, TrustedImm32 right, DataLabel32 &dataLabel)
{
ASSERT(left.base != ARMRegisters::S1);
load32(left, ARMRegisters::S1);
dataLabel = moveWithPatch(right, ARMRegisters::S0);
return branch32(cond, ARMRegisters::S1, ARMRegisters::S0, true);
}
Jump branch32(Condition cond, RegisterID left, Address right)
{
/*If the load only takes a single instruction, then we could just do a load into*/
load32(right, ARMRegisters::S1);
return branch32(cond, left, ARMRegisters::S1);
}
Jump branch32(Condition cond, Address left, RegisterID right)
{
load32(left, ARMRegisters::S1);
return branch32(cond, ARMRegisters::S1, right);
}
Jump branch32(Condition cond, Address left, TrustedImm32 right)
{
load32(left, ARMRegisters::S1);
return branch32(cond, ARMRegisters::S1, right);
}
Jump branch32(Condition cond, BaseIndex left, TrustedImm32 right)
{
load32(left, ARMRegisters::S1);
return branch32(cond, ARMRegisters::S1, right);
}
Jump branch32WithUnalignedHalfWords(Condition cond, BaseIndex left, TrustedImm32 right)
{
load32WithUnalignedHalfWords(left, ARMRegisters::S1);
return branch32(cond, ARMRegisters::S1, right);
}
Jump branch16(Condition cond, BaseIndex left, RegisterID right)
{
(void)(cond);
(void)(left);
(void)(right);
ASSERT_NOT_REACHED();
return jump();
}
Jump branch16(Condition cond, BaseIndex left, Imm32 right)
{
load16(left, ARMRegisters::S0);
move(right, ARMRegisters::S1);
m_assembler.cmp_r(ARMRegisters::S0, ARMRegisters::S1);
return m_assembler.jmp(ARMCondition(cond));
}
Jump branchTest8(Condition cond, Address address, Imm32 mask = Imm32(-1))
{
load8(address, ARMRegisters::S1);
return branchTest32(cond, ARMRegisters::S1, mask);
}
Jump branchTest32(Condition cond, RegisterID reg, RegisterID mask)
{
ASSERT((cond == Zero) || (cond == NonZero));
m_assembler.tst_r(reg, mask);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchTest32(Condition cond, RegisterID reg, Imm32 mask = Imm32(-1))
{
ASSERT((cond == Zero) || (cond == NonZero));
ARMWord w = m_assembler.getImm(mask.m_value, ARMRegisters::S0, true);
if (w & ARMAssembler::OP2_INV_IMM)
m_assembler.bics_r(ARMRegisters::S0, reg, w & ~ARMAssembler::OP2_INV_IMM);
else
m_assembler.tst_r(reg, w);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchTest32(Condition cond, Address address, Imm32 mask = Imm32(-1))
{
load32(address, ARMRegisters::S1);
return branchTest32(cond, ARMRegisters::S1, mask);
}
Jump branchTest32(Condition cond, BaseIndex address, Imm32 mask = Imm32(-1))
{
load32(address, ARMRegisters::S1);
return branchTest32(cond, ARMRegisters::S1, mask);
}
Jump jump()
{
return Jump(m_assembler.jmp());
}
void jump(RegisterID target)
{
m_assembler.bx(target);
}
void jump(Address address)
{
load32(address, ARMRegisters::pc);
}
Jump branchAdd32(Condition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
add32(src, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchAdd32(Condition cond, Imm32 imm, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
add32(imm, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchAdd32(Condition cond, Address src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
add32(src, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
void mull32(RegisterID src1, RegisterID src2, RegisterID dest)
{
if (src1 == dest) {
move(src1, ARMRegisters::S0);
src1 = ARMRegisters::S0;
}
m_assembler.mull_r(ARMRegisters::S1, dest, src2, src1);
m_assembler.cmp_r(ARMRegisters::S1, m_assembler.asr(dest, 31));
}
Jump branchMul32(Condition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
if (cond == Overflow) {
mull32(src, dest, dest);
cond = NonZero;
}
else
mul32(src, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchMul32(Condition cond, Imm32 imm, RegisterID src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
if (cond == Overflow) {
move(imm, ARMRegisters::S0);
mull32(ARMRegisters::S0, src, dest);
cond = NonZero;
}
else
mul32(imm, src, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchSub32(Condition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
sub32(src, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchSub32(Condition cond, Imm32 imm, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
sub32(imm, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchSub32(Condition cond, Address src, RegisterID dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
sub32(src, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchSub32(Condition cond, Imm32 imm, Address dest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
sub32(imm, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchNeg32(Condition cond, RegisterID srcDest)
{
ASSERT((cond == Overflow) || (cond == Signed) || (cond == Zero) || (cond == NonZero));
neg32(srcDest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
Jump branchOr32(Condition cond, RegisterID src, RegisterID dest)
{
ASSERT((cond == Signed) || (cond == Zero) || (cond == NonZero));
or32(src, dest);
return Jump(m_assembler.jmp(ARMCondition(cond)));
}
// Encode a NOP using "MOV rX, rX", where 'X' is defined by 'tag', and is
// in the range r0-r14.
void nop(int tag)
{
ASSERT((tag >= 0) && (tag <= 14));
m_assembler.mov_r(tag, tag);
}
void breakpoint()
{
m_assembler.bkpt(0);
}
Call nearCall()
{
#if WTF_ARM_ARCH_VERSION >= 5
Call call(m_assembler.loadBranchTarget(ARMRegisters::S1, ARMAssembler::AL, true), Call::LinkableNear);
m_assembler.blx(ARMRegisters::S1);
return call;
#else
prepareCall();
return Call(m_assembler.jmp(ARMAssembler::AL, true), Call::LinkableNear);
#endif
}
Call call(RegisterID target)
{
m_assembler.blx(target);
JmpSrc jmpSrc;
return Call(jmpSrc, Call::None);
}
void call(Address address)
{
call32(address.base, address.offset);
}
void ret()
{
m_assembler.bx(linkRegister);
}
void set32(Condition cond, Address left, RegisterID right, RegisterID dest)
{
load32(left, ARMRegisters::S1);
set32(cond, ARMRegisters::S1, right, dest);
}
void set32(Condition cond, RegisterID left, Address right, RegisterID dest)
{
load32(right, ARMRegisters::S1);
set32(cond, left, ARMRegisters::S1, dest);
}
void set32(Condition cond, RegisterID left, RegisterID right, RegisterID dest)
{
m_assembler.cmp_r(left, right);
m_assembler.mov_r(dest, ARMAssembler::getOp2(0));
m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond));
}
void set32(Condition cond, RegisterID left, Imm32 right, RegisterID dest)
{
m_assembler.cmp_r(left, m_assembler.getImm(right.m_value, ARMRegisters::S0));
m_assembler.mov_r(dest, ARMAssembler::getOp2(0));
m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond));
}
void set32(Condition cond, Address left, Imm32 right, RegisterID dest)
{
load32(left, ARMRegisters::S1);
set32(cond, ARMRegisters::S1, right, dest);
}
void set8(Condition cond, RegisterID left, RegisterID right, RegisterID dest)
{
// ARM doesn't have byte registers
set32(cond, left, right, dest);
}
void set8(Condition cond, Address left, RegisterID right, RegisterID dest)
{
// ARM doesn't have byte registers
load32(left, ARMRegisters::S1);
set32(cond, ARMRegisters::S1, right, dest);
}
void set8(Condition cond, RegisterID left, Imm32 right, RegisterID dest)
{
// ARM doesn't have byte registers
set32(cond, left, right, dest);
}
void setTest32(Condition cond, Address address, Imm32 mask, RegisterID dest)
{
load32(address, ARMRegisters::S1);
if (mask.m_value == -1)
m_assembler.cmp_r(0, ARMRegisters::S1);
else
m_assembler.tst_r(ARMRegisters::S1, m_assembler.getImm(mask.m_value, ARMRegisters::S0));
m_assembler.mov_r(dest, ARMAssembler::getOp2(0));
m_assembler.mov_r(dest, ARMAssembler::getOp2(1), ARMCondition(cond));
}
void setTest8(Condition cond, Address address, Imm32 mask, RegisterID dest)
{
// ARM doesn't have byte registers
setTest32(cond, address, mask, dest);
}
void add32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
m_assembler.add_r(dest, src, m_assembler.getImm(imm.m_value, ARMRegisters::S0));
}
void lea(Address address, RegisterID dest)
{
m_assembler.add_r(dest, address.base, m_assembler.getImm(address.offset, ARMRegisters::S0));
}
void lea(BaseIndex address, RegisterID dest)
{
/* This could be better? */
move(address.index, ARMRegisters::S1);
if (address.scale != 0)
lshift32(Imm32(address.scale), ARMRegisters::S1);
if (address.offset)
add32(Imm32(address.offset), ARMRegisters::S1);
add32(address.base, ARMRegisters::S1);
move(ARMRegisters::S1, dest);
}
void add32(TrustedImm32 imm, AbsoluteAddress address)
{
m_assembler.ldr_un_imm(ARMRegisters::S1, reinterpret_cast<ARMWord>(address.m_ptr));
m_assembler.dtr_u(true, ARMRegisters::S1, ARMRegisters::S1, 0);
add32(imm, ARMRegisters::S1);
m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address.m_ptr));
m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0);
}
void sub32(TrustedImm32 imm, AbsoluteAddress address)
{
m_assembler.ldr_un_imm(ARMRegisters::S1, reinterpret_cast<ARMWord>(address.m_ptr));
m_assembler.dtr_u(true, ARMRegisters::S1, ARMRegisters::S1, 0);
sub32(imm, ARMRegisters::S1);
m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address.m_ptr));
m_assembler.dtr_u(false, ARMRegisters::S1, ARMRegisters::S0, 0);
}
void load32(const void* address, RegisterID dest)
{
m_assembler.ldr_un_imm(ARMRegisters::S0, reinterpret_cast<ARMWord>(address));
m_assembler.dtr_u(true, dest, ARMRegisters::S0, 0);
}
Jump branch32(Condition cond, AbsoluteAddress left, RegisterID right)
{
load32(left.m_ptr, ARMRegisters::S1);
return branch32(cond, ARMRegisters::S1, right);
}
Jump branch32(Condition cond, AbsoluteAddress left, TrustedImm32 right)
{
load32(left.m_ptr, ARMRegisters::S1);
return branch32(cond, ARMRegisters::S1, right);
}
Call call()
{
#if WTF_ARM_ARCH_VERSION >= 5
Call call(m_assembler.loadBranchTarget(ARMRegisters::S1, ARMAssembler::AL, true), Call::Linkable);
m_assembler.blx(ARMRegisters::S1);
return call;
#else
prepareCall();
return Call(m_assembler.jmp(ARMAssembler::AL, true), Call::Linkable);
#endif
}
Call tailRecursiveCall()
{
return Call::fromTailJump(jump());
}
Call makeTailRecursiveCall(Jump oldJump)
{
return Call::fromTailJump(oldJump);
}
DataLabelPtr moveWithPatch(TrustedImmPtr initialValue, RegisterID dest)
{
DataLabelPtr dataLabel(this);
m_assembler.ldr_un_imm(dest, reinterpret_cast<ARMWord>(initialValue.m_value));
return dataLabel;
}
DataLabel32 moveWithPatch(TrustedImm32 initialValue, RegisterID dest)
{
DataLabel32 dataLabel(this);
m_assembler.ldr_un_imm(dest, initialValue.m_value);
return dataLabel;
}
Jump branchPtrWithPatch(Condition cond, RegisterID left, DataLabelPtr& dataLabel, ImmPtr initialRightValue = ImmPtr(0))
{
dataLabel = moveWithPatch(initialRightValue, ARMRegisters::S1);
Jump jump = branch32(cond, left, ARMRegisters::S1, true);
return jump;
}
Jump branchPtrWithPatch(Condition cond, Address left, DataLabelPtr& dataLabel, ImmPtr initialRightValue = ImmPtr(0))
{
load32(left, ARMRegisters::S1);
dataLabel = moveWithPatch(initialRightValue, ARMRegisters::S0);
Jump jump = branch32(cond, ARMRegisters::S0, ARMRegisters::S1, true);
return jump;
}
DataLabelPtr storePtrWithPatch(TrustedImmPtr initialValue, ImplicitAddress address)
{
DataLabelPtr dataLabel = moveWithPatch(initialValue, ARMRegisters::S1);
store32(ARMRegisters::S1, address);
return dataLabel;
}
DataLabelPtr storePtrWithPatch(ImplicitAddress address)
{
return storePtrWithPatch(ImmPtr(0), address);
}
// Floating point operators
bool supportsFloatingPoint() const
{
return s_isVFPPresent;
}
bool supportsFloatingPointTruncate() const
{
return true;
}
bool supportsFloatingPointSqrt() const
{
return s_isVFPPresent;
}
void moveDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fcpyd_r(dest, src);
}
void loadDouble(ImplicitAddress address, FPRegisterID dest)
{
// Load a double from base+offset.
m_assembler.doubleTransfer(true, dest, address.base, address.offset);
}
void loadDouble(BaseIndex address, FPRegisterID dest)
{
m_assembler.baseIndexFloatTransfer(true, true, dest,
address.base, address.index,
address.scale, address.offset);
}
DataLabelPtr loadDouble(const void* address, FPRegisterID dest)
{
DataLabelPtr label = moveWithPatch(ImmPtr(address), ARMRegisters::S0);
m_assembler.doubleTransfer(true, dest, ARMRegisters::S0, 0);
return label;
}
void fastLoadDouble(RegisterID lo, RegisterID hi, FPRegisterID fpReg) {
m_assembler.vmov64(false, true, lo, hi, fpReg);
}
void loadFloat(ImplicitAddress address, FPRegisterID dest)
{
ASSERT((address.offset & 0x3) == 0);
// as long as this is a sane mapping, (*2) should just work
m_assembler.floatTransfer(true, floatShadow(dest), address.base, address.offset);
m_assembler.vcvt(m_assembler.FloatReg32, m_assembler.FloatReg64, floatShadow(dest), dest);
}
void loadFloat(BaseIndex address, FPRegisterID dest)
{
FPRegisterID dest_s = floatShadow(dest);
m_assembler.baseIndexFloatTransfer(true, false, dest_s,
address.base, address.index,
address.scale, address.offset);
m_assembler.vcvt(m_assembler.FloatReg32, m_assembler.FloatReg64, dest_s, dest);
}
DataLabelPtr loadFloat(const void* address, FPRegisterID dest)
{
FPRegisterID dest_s = floatShadow(dest);
DataLabelPtr label = moveWithPatch(ImmPtr(address), ARMRegisters::S0);
m_assembler.fmem_imm_off(true, false, true, dest_s, ARMRegisters::S0, 0);
m_assembler.vcvt(m_assembler.FloatReg32, m_assembler.FloatReg64, dest_s, dest);
return label;
}
void storeDouble(FPRegisterID src, ImplicitAddress address)
{
// Store a double at base+offset.
m_assembler.doubleTransfer(false, src, address.base, address.offset);
}
void storeDouble(FPRegisterID src, BaseIndex address)
{
m_assembler.baseIndexFloatTransfer(false, true, src,
address.base, address.index,
address.scale, address.offset);
}
void storeDouble(ImmDouble imm, Address address)
{
store32(Imm32(imm.u.s.lsb), address);
store32(Imm32(imm.u.s.msb), Address(address.base, address.offset + 4));
}
void storeDouble(ImmDouble imm, BaseIndex address)
{
store32(Imm32(imm.u.s.lsb), address);
store32(Imm32(imm.u.s.msb),
BaseIndex(address.base, address.index, address.scale, address.offset + 4));
}
void fastStoreDouble(FPRegisterID fpReg, RegisterID lo, RegisterID hi) {
m_assembler.vmov64(true, true, lo, hi, fpReg);
}
// the StoreFloat functions take an FPRegisterID that is really of the corresponding Double register.
// but the double has already been converted into a float
void storeFloat(FPRegisterID src, ImplicitAddress address)
{
m_assembler.floatTransfer(false, floatShadow(src), address.base, address.offset);
}
void storeFloat(FPRegisterID src, BaseIndex address)
{
m_assembler.baseIndexFloatTransfer(false, false, floatShadow(src),
address.base, address.index,
address.scale, address.offset);
}
void storeFloat(ImmDouble imm, Address address)
{
union {
float f;
uint32_t u32;
} u;
u.f = imm.u.d;
store32(Imm32(u.u32), address);
}
void storeFloat(ImmDouble imm, BaseIndex address)
{
union {
float f;
uint32_t u32;
} u;
u.f = imm.u.d;
store32(Imm32(u.u32), address);
}
void addDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.faddd_r(dest, dest, src);
}
void addDouble(Address src, FPRegisterID dest)
{
loadDouble(src, ARMRegisters::SD0);
addDouble(ARMRegisters::SD0, dest);
}
void divDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fdivd_r(dest, dest, src);
}
void divDouble(Address src, FPRegisterID dest)
{
ASSERT_NOT_REACHED(); // Untested
loadDouble(src, ARMRegisters::SD0);
divDouble(ARMRegisters::SD0, dest);
}
void subDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fsubd_r(dest, dest, src);
}
void subDouble(Address src, FPRegisterID dest)
{
loadDouble(src, ARMRegisters::SD0);
subDouble(ARMRegisters::SD0, dest);
}
void mulDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fmuld_r(dest, dest, src);
}
void mulDouble(Address src, FPRegisterID dest)
{
loadDouble(src, ARMRegisters::SD0);
mulDouble(ARMRegisters::SD0, dest);
}
void negDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fnegd_r(dest, src);
}
void absDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fabsd_r(dest, src);
}
void sqrtDouble(FPRegisterID src, FPRegisterID dest)
{
m_assembler.fsqrtd_r(dest, src);
}
void convertInt32ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.fmsr_r(floatShadow(dest), src);
m_assembler.fsitod_r(dest, floatShadow(dest));
}
void convertUInt32ToDouble(RegisterID src, FPRegisterID dest)
{
m_assembler.fmsr_r(floatShadow(dest), src);
m_assembler.fuitod_r(dest, floatShadow(dest));
}
void convertInt32ToDouble(Address src, FPRegisterID dest)
{
// flds does not worth the effort here
load32(src, ARMRegisters::S1);
convertInt32ToDouble(ARMRegisters::S1, dest);
}
void convertInt32ToDouble(AbsoluteAddress src, FPRegisterID dest)
{
ASSERT_NOT_REACHED(); // Untested
// flds does not worth the effort here
m_assembler.ldr_un_imm(ARMRegisters::S1, (ARMWord)src.m_ptr);
m_assembler.dtr_u(true, ARMRegisters::S1, ARMRegisters::S1, 0);
convertInt32ToDouble(ARMRegisters::S1, dest);
}
void convertDoubleToFloat(FPRegisterID src, FPRegisterID dest)
{
m_assembler.vcvt(m_assembler.FloatReg64, m_assembler.FloatReg32, src, floatShadow(dest));
}
Jump branchDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right)
{
m_assembler.fcmpd_r(left, right);
m_assembler.fmstat();
if (cond & DoubleConditionBitSpecial)
m_assembler.cmp_r(ARMRegisters::S0, ARMRegisters::S0, ARMAssembler::VS);
return Jump(m_assembler.jmp(static_cast<ARMAssembler::Condition>(cond & ~DoubleConditionMask)));
}
// Truncates 'src' to an integer, and places the resulting 'dest'.
// If the result is not representable as a 32 bit value, branch.
// May also branch for some values that are representable in 32 bits
Jump branchTruncateDoubleToInt32(FPRegisterID src, RegisterID dest)
{
m_assembler.ftosizd_r(floatShadow(ARMRegisters::SD0), src);
// If FTOSIZD (VCVT.S32.F64) can't fit the result into a 32-bit
// integer, it saturates at INT_MAX or INT_MIN. Testing this is
// probably quicker than testing FPSCR for exception.
m_assembler.fmrs_r(dest, floatShadow(ARMRegisters::SD0));
m_assembler.cmn_r(dest, ARMAssembler::getOp2(-0x7fffffff));
m_assembler.cmp_r(dest, ARMAssembler::getOp2(0x80000000), ARMCondition(NonZero));
return Jump(m_assembler.jmp(ARMCondition(Zero)));
}
// Convert 'src' to an integer, and places the resulting 'dest'.
// If the result is not representable as a 32 bit value, branch.
// May also branch for some values that are representable in 32 bits
// (specifically, in this case, 0).
void branchConvertDoubleToInt32(FPRegisterID src, RegisterID dest, JumpList& failureCases, FPRegisterID fpTemp)
{
m_assembler.ftosid_r(floatShadow(ARMRegisters::SD0), src);
m_assembler.fmrs_r(dest, floatShadow(ARMRegisters::SD0));
// Convert the integer result back to float & compare to the original value - if not equal or unordered (NaN) then jump.
m_assembler.fsitod_r(ARMRegisters::SD0, floatShadow(ARMRegisters::SD0));
failureCases.append(branchDouble(DoubleNotEqualOrUnordered, src, ARMRegisters::SD0));
// If the result is zero, it might have been -0.0, and 0.0 equals to -0.0
failureCases.append(branchTest32(Zero, dest));
}
void zeroDouble(FPRegisterID srcDest)
{
m_assembler.mov_r(ARMRegisters::S0, ARMAssembler::getOp2(0));
convertInt32ToDouble(ARMRegisters::S0, srcDest);
}
void ensureSpace(int space)
{
m_assembler.ensureSpace(space);
}
void forceFlushConstantPool()
{
m_assembler.forceFlushConstantPool();
}
int flushCount()
{
return m_assembler.flushCount();
}
protected:
ARMAssembler::Condition ARMCondition(Condition cond)
{
return static_cast<ARMAssembler::Condition>(cond);
}
void ensureSpace(int insnSpace, int constSpace)
{
m_assembler.ensureSpace(insnSpace, constSpace);
}
int sizeOfConstantPool()
{
return m_assembler.sizeOfConstantPool();
}
#if WTF_ARM_ARCH_VERSION < 5
void prepareCall()
{
#if WTF_ARM_ARCH_VERSION < 5
ensureSpace(2 * sizeof(ARMWord), sizeof(ARMWord));
m_assembler.mov_r(linkRegister, ARMRegisters::pc);
#endif
}
#endif
#if WTF_ARM_ARCH_VERSION < 5
void call32(RegisterID base, int32_t offset)
{
#if WTF_ARM_ARCH_VERSION >= 5
int targetReg = ARMRegisters::S1;
#else
int targetReg = ARMRegisters::pc;
#endif
int tmpReg = ARMRegisters::S1;
if (base == ARMRegisters::sp)
offset += 4;
if (offset >= 0) {
if (offset <= 0xfff) {
prepareCall();
m_assembler.dtr_u(true, targetReg, base, offset);
} else if (offset <= 0xfffff) {
m_assembler.add_r(tmpReg, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8));
prepareCall();
m_assembler.dtr_u(true, targetReg, tmpReg, offset & 0xfff);
} else {
ARMWord reg = m_assembler.getImm(offset, tmpReg);
prepareCall();
m_assembler.dtr_ur(true, targetReg, base, reg);
}
} else {
offset = -offset;
if (offset <= 0xfff) {
prepareCall();
m_assembler.dtr_d(true, targetReg, base, offset);
} else if (offset <= 0xfffff) {
m_assembler.sub_r(tmpReg, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8));
prepareCall();
m_assembler.dtr_d(true, targetReg, tmpReg, offset & 0xfff);
} else {
ARMWord reg = m_assembler.getImm(offset, tmpReg);
prepareCall();
m_assembler.dtr_dr(true, targetReg, base, reg);
}
}
#if WTF_ARM_ARCH_VERSION >= 5
m_assembler.blx(targetReg);
#endif
}
#else
void call32(RegisterID base, int32_t offset)
{
// TODO: Why is SP special?
if (base == ARMRegisters::sp)
offset += 4;
// Branch to the address stored in base+offset, using one of the
// following sequences:
// ----
// LDR ip, [base, ±offset]
// BLX ip
// ----
// ADD/SUB ip, base, #(offset & 0xff000)
// LDR ip, [ip, #(offset & 0xfff)]
// BLX ip
// ----
// LDR ip, =offset
// LDR ip, [base, ±ip]
// BLX ip
if (offset >= 0) {
if (offset <= 0xfff) {
m_assembler.dtr_u(true, ARMRegisters::S0, base, offset);
} else if (offset <= 0xfffff) {
m_assembler.add_r(ARMRegisters::S0, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8));
m_assembler.dtr_u(true, ARMRegisters::S0, ARMRegisters::S0, offset & 0xfff);
} else {
m_assembler.moveImm(offset, ARMRegisters::S0);
m_assembler.dtr_ur(true, ARMRegisters::S0, base, ARMRegisters::S0);
}
} else {
offset = -offset;
if (offset <= 0xfff) {
m_assembler.dtr_d(true, ARMRegisters::S0, base, offset);
} else if (offset <= 0xfffff) {
m_assembler.sub_r(ARMRegisters::S0, base, ARMAssembler::OP2_IMM | (offset >> 12) | (10 << 8));
m_assembler.dtr_d(true, ARMRegisters::S0, ARMRegisters::S0, offset & 0xfff);
} else {
m_assembler.moveImm(offset, ARMRegisters::S0);
m_assembler.dtr_dr(true, ARMRegisters::S0, base, ARMRegisters::S0);
}
}
m_assembler.blx(ARMRegisters::S0);
}
#endif
private:
friend class LinkBuffer;
friend class RepatchBuffer;
static void linkCall(void* code, Call call, FunctionPtr function)
{
ARMAssembler::linkCall(code, call.m_jmp, function.value());
}
static void repatchCall(CodeLocationCall call, CodeLocationLabel destination)
{
ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress());
}
static void repatchCall(CodeLocationCall call, FunctionPtr destination)
{
ARMAssembler::relinkCall(call.dataLocation(), destination.executableAddress());
}
static const bool s_isVFPPresent;
};
}
#endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)
#endif /* assembler_assembler_MacroAssemblerARM_h */