blob: 4f04ace8a66a71619f409dfabe467d6fb60a7aa1 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef gc_Heap_h
#define gc_Heap_h
#include "mozilla/Attributes.h"
#include "mozilla/PodOperations.h"
#include "mozilla/StandardInteger.h"
#include <stddef.h>
#include "jspubtd.h"
#include "jstypes.h"
#include "jsutil.h"
#include "ds/BitArray.h"
#include "js/HeapAPI.h"
struct JSCompartment;
extern "C" {
struct JSRuntime;
}
namespace js {
// Defined in vm/ForkJoin.cpp
extern bool InSequentialOrExclusiveParallelSection();
class FreeOp;
namespace gc {
struct Arena;
struct ArenaHeader;
struct Chunk;
/*
* This flag allows an allocation site to request a specific heap based upon the
* estimated lifetime or lifetime requirements of objects allocated from that
* site.
*/
enum InitialHeap {
DefaultHeap,
TenuredHeap
};
/* The GC allocation kinds. */
enum AllocKind {
FINALIZE_OBJECT0,
FINALIZE_OBJECT0_BACKGROUND,
FINALIZE_OBJECT2,
FINALIZE_OBJECT2_BACKGROUND,
FINALIZE_OBJECT4,
FINALIZE_OBJECT4_BACKGROUND,
FINALIZE_OBJECT8,
FINALIZE_OBJECT8_BACKGROUND,
FINALIZE_OBJECT12,
FINALIZE_OBJECT12_BACKGROUND,
FINALIZE_OBJECT16,
FINALIZE_OBJECT16_BACKGROUND,
FINALIZE_OBJECT_LAST = FINALIZE_OBJECT16_BACKGROUND,
FINALIZE_SCRIPT,
FINALIZE_LAZY_SCRIPT,
FINALIZE_SHAPE,
FINALIZE_BASE_SHAPE,
FINALIZE_TYPE_OBJECT,
FINALIZE_SHORT_STRING,
FINALIZE_STRING,
FINALIZE_EXTERNAL_STRING,
FINALIZE_IONCODE,
FINALIZE_LAST = FINALIZE_IONCODE
};
static const unsigned FINALIZE_LIMIT = FINALIZE_LAST + 1;
static const unsigned FINALIZE_OBJECT_LIMIT = FINALIZE_OBJECT_LAST + 1;
/*
* This must be an upper bound, but we do not need the least upper bound, so
* we just exclude non-background objects.
*/
static const size_t MAX_BACKGROUND_FINALIZE_KINDS = FINALIZE_LIMIT - FINALIZE_OBJECT_LIMIT / 2;
/*
* A GC cell is the base class for all GC things.
*/
struct Cell
{
public:
inline ArenaHeader *arenaHeader() const;
inline AllocKind tenuredGetAllocKind() const;
MOZ_ALWAYS_INLINE bool isMarked(uint32_t color = BLACK) const;
MOZ_ALWAYS_INLINE bool markIfUnmarked(uint32_t color = BLACK) const;
MOZ_ALWAYS_INLINE void unmark(uint32_t color) const;
inline JSRuntime *runtime() const;
inline Zone *tenuredZone() const;
#ifdef DEBUG
inline bool isAligned() const;
inline bool isTenured() const;
#endif
protected:
inline uintptr_t address() const;
inline Chunk *chunk() const;
};
/*
* The mark bitmap has one bit per each GC cell. For multi-cell GC things this
* wastes space but allows to avoid expensive devisions by thing's size when
* accessing the bitmap. In addition this allows to use some bits for colored
* marking during the cycle GC.
*/
const size_t ArenaCellCount = size_t(1) << (ArenaShift - CellShift);
const size_t ArenaBitmapBits = ArenaCellCount;
const size_t ArenaBitmapBytes = ArenaBitmapBits / 8;
const size_t ArenaBitmapWords = ArenaBitmapBits / JS_BITS_PER_WORD;
/*
* A FreeSpan represents a contiguous sequence of free cells in an Arena.
* |first| is the address of the first free cell in the span. |last| is the
* address of the last free cell in the span. This last cell holds a FreeSpan
* data structure for the next span unless this is the last span on the list
* of spans in the arena. For this last span |last| points to the last byte of
* the last thing in the arena and no linkage is stored there, so
* |last| == arenaStart + ArenaSize - 1. If the space at the arena end is
* fully used this last span is empty and |first| == |last + 1|.
*
* Thus |first| < |last| implies that we have either the last span with at least
* one element or that the span is not the last and contains at least 2
* elements. In both cases to allocate a thing from this span we need simply
* to increment |first| by the allocation size.
*
* |first| == |last| implies that we have a one element span that records the
* next span. So to allocate from it we need to update the span list head
* with a copy of the span stored at |last| address so the following
* allocations will use that span.
*
* |first| > |last| implies that we have an empty last span and the arena is
* fully used.
*
* Also only for the last span (|last| & 1)! = 0 as all allocation sizes are
* multiples of CellSize.
*/
struct FreeSpan
{
uintptr_t first;
uintptr_t last;
public:
FreeSpan() {}
FreeSpan(uintptr_t first, uintptr_t last)
: first(first), last(last) {
checkSpan();
}
/*
* To minimize the size of the arena header the first span is encoded
* there as offsets from the arena start.
*/
static size_t encodeOffsets(size_t firstOffset, size_t lastOffset) {
/* Check that we can pack the offsets into uint16_t. */
JS_STATIC_ASSERT(ArenaShift < 16);
JS_ASSERT(firstOffset <= ArenaSize);
JS_ASSERT(lastOffset < ArenaSize);
JS_ASSERT(firstOffset <= ((lastOffset + 1) & ~size_t(1)));
return firstOffset | (lastOffset << 16);
}
/*
* Encoded offsets for a full arena when its first span is the last one
* and empty.
*/
static const size_t FullArenaOffsets = ArenaSize | ((ArenaSize - 1) << 16);
static FreeSpan decodeOffsets(uintptr_t arenaAddr, size_t offsets) {
JS_ASSERT(!(arenaAddr & ArenaMask));
size_t firstOffset = offsets & 0xFFFF;
size_t lastOffset = offsets >> 16;
JS_ASSERT(firstOffset <= ArenaSize);
JS_ASSERT(lastOffset < ArenaSize);
/*
* We must not use | when calculating first as firstOffset is
* ArenaMask + 1 for the empty span.
*/
return FreeSpan(arenaAddr + firstOffset, arenaAddr | lastOffset);
}
void initAsEmpty(uintptr_t arenaAddr = 0) {
JS_ASSERT(!(arenaAddr & ArenaMask));
first = arenaAddr + ArenaSize;
last = arenaAddr | (ArenaSize - 1);
JS_ASSERT(isEmpty());
}
bool isEmpty() const {
checkSpan();
return first > last;
}
bool hasNext() const {
checkSpan();
return !(last & uintptr_t(1));
}
const FreeSpan *nextSpan() const {
JS_ASSERT(hasNext());
return reinterpret_cast<FreeSpan *>(last);
}
FreeSpan *nextSpanUnchecked(size_t thingSize) const {
#ifdef DEBUG
uintptr_t lastOffset = last & ArenaMask;
JS_ASSERT(!(lastOffset & 1));
JS_ASSERT((ArenaSize - lastOffset) % thingSize == 0);
#endif
return reinterpret_cast<FreeSpan *>(last);
}
uintptr_t arenaAddressUnchecked() const {
return last & ~ArenaMask;
}
uintptr_t arenaAddress() const {
checkSpan();
return arenaAddressUnchecked();
}
ArenaHeader *arenaHeader() const {
return reinterpret_cast<ArenaHeader *>(arenaAddress());
}
bool isSameNonEmptySpan(const FreeSpan *another) const {
JS_ASSERT(!isEmpty());
JS_ASSERT(!another->isEmpty());
return first == another->first && last == another->last;
}
bool isWithinArena(uintptr_t arenaAddr) const {
JS_ASSERT(!(arenaAddr & ArenaMask));
/* Return true for the last empty span as well. */
return arenaAddress() == arenaAddr;
}
size_t encodeAsOffsets() const {
/*
* We must use first - arenaAddress(), not first & ArenaMask as
* first == ArenaMask + 1 for an empty span.
*/
uintptr_t arenaAddr = arenaAddress();
return encodeOffsets(first - arenaAddr, last & ArenaMask);
}
/* See comments before FreeSpan for details. */
MOZ_ALWAYS_INLINE void *allocate(size_t thingSize) {
JS_ASSERT(thingSize % CellSize == 0);
checkSpan();
uintptr_t thing = first;
if (thing < last) {
/* Bump-allocate from the current span. */
first = thing + thingSize;
} else if (JS_LIKELY(thing == last)) {
/*
* Move to the next span. We use JS_LIKELY as without PGO
* compilers mis-predict == here as unlikely to succeed.
*/
*this = *reinterpret_cast<FreeSpan *>(thing);
} else {
return NULL;
}
checkSpan();
return reinterpret_cast<void *>(thing);
}
/* A version of allocate when we know that the span is not empty. */
MOZ_ALWAYS_INLINE void *infallibleAllocate(size_t thingSize) {
JS_ASSERT(thingSize % CellSize == 0);
checkSpan();
uintptr_t thing = first;
if (thing < last) {
first = thing + thingSize;
} else {
JS_ASSERT(thing == last);
*this = *reinterpret_cast<FreeSpan *>(thing);
}
checkSpan();
return reinterpret_cast<void *>(thing);
}
/*
* Allocate from a newly allocated arena. We do not move the free list
* from the arena. Rather we set the arena up as fully used during the
* initialization so to allocate we simply return the first thing in the
* arena and set the free list to point to the second.
*/
MOZ_ALWAYS_INLINE void *allocateFromNewArena(uintptr_t arenaAddr, size_t firstThingOffset,
size_t thingSize) {
JS_ASSERT(!(arenaAddr & ArenaMask));
uintptr_t thing = arenaAddr | firstThingOffset;
first = thing + thingSize;
last = arenaAddr | ArenaMask;
checkSpan();
return reinterpret_cast<void *>(thing);
}
void checkSpan() const {
#ifdef DEBUG
/* We do not allow spans at the end of the address space. */
JS_ASSERT(last != uintptr_t(-1));
JS_ASSERT(first);
JS_ASSERT(last);
JS_ASSERT(first - 1 <= last);
uintptr_t arenaAddr = arenaAddressUnchecked();
if (last & 1) {
/* The span is the last. */
JS_ASSERT((last & ArenaMask) == ArenaMask);
if (first - 1 == last) {
/* The span is last and empty. The above start != 0 check
* implies that we are not at the end of the address space.
*/
return;
}
size_t spanLength = last - first + 1;
JS_ASSERT(spanLength % CellSize == 0);
/* Start and end must belong to the same arena. */
JS_ASSERT((first & ~ArenaMask) == arenaAddr);
return;
}
/* The span is not the last and we have more spans to follow. */
JS_ASSERT(first <= last);
size_t spanLengthWithoutOneThing = last - first;
JS_ASSERT(spanLengthWithoutOneThing % CellSize == 0);
JS_ASSERT((first & ~ArenaMask) == arenaAddr);
/*
* If there is not enough space before the arena end to allocate one
* more thing, then the span must be marked as the last one to avoid
* storing useless empty span reference.
*/
size_t beforeTail = ArenaSize - (last & ArenaMask);
JS_ASSERT(beforeTail >= sizeof(FreeSpan) + CellSize);
FreeSpan *next = reinterpret_cast<FreeSpan *>(last);
/*
* The GC things on the list of free spans come from one arena
* and the spans are linked in ascending address order with
* at least one non-free thing between spans.
*/
JS_ASSERT(last < next->first);
JS_ASSERT(arenaAddr == next->arenaAddressUnchecked());
if (next->first > next->last) {
/*
* The next span is the empty span that terminates the list for
* arenas that do not have any free things at the end.
*/
JS_ASSERT(next->first - 1 == next->last);
JS_ASSERT(arenaAddr + ArenaSize == next->first);
}
#endif
}
};
/* Every arena has a header. */
struct ArenaHeader : public JS::shadow::ArenaHeader
{
friend struct FreeLists;
/*
* ArenaHeader::next has two purposes: when unallocated, it points to the
* next available Arena's header. When allocated, it points to the next
* arena of the same size class and compartment.
*/
ArenaHeader *next;
private:
/*
* The first span of free things in the arena. We encode it as the start
* and end offsets within the arena, not as FreeSpan structure, to
* minimize the header size.
*/
size_t firstFreeSpanOffsets;
/*
* One of AllocKind constants or FINALIZE_LIMIT when the arena does not
* contain any GC things and is on the list of empty arenas in the GC
* chunk. The latter allows to quickly check if the arena is allocated
* during the conservative GC scanning without searching the arena in the
* list.
*
* We use 8 bits for the allocKind so the compiler can use byte-level memory
* instructions to access it.
*/
size_t allocKind : 8;
/*
* When collecting we sometimes need to keep an auxillary list of arenas,
* for which we use the following fields. This happens for several reasons:
*
* When recursive marking uses too much stack the marking is delayed and the
* corresponding arenas are put into a stack. To distinguish the bottom of
* the stack from the arenas not present in the stack we use the
* markOverflow flag to tag arenas on the stack.
*
* Delayed marking is also used for arenas that we allocate into during an
* incremental GC. In this case, we intend to mark all the objects in the
* arena, and it's faster to do this marking in bulk.
*
* When sweeping we keep track of which arenas have been allocated since the
* end of the mark phase. This allows us to tell whether a pointer to an
* unmarked object is yet to be finalized or has already been reallocated.
* We set the allocatedDuringIncremental flag for this and clear it at the
* end of the sweep phase.
*
* To minimize the ArenaHeader size we record the next linkage as
* arenaAddress() >> ArenaShift and pack it with the allocKind field and the
* flags.
*/
public:
size_t hasDelayedMarking : 1;
size_t allocatedDuringIncremental : 1;
size_t markOverflow : 1;
size_t auxNextLink : JS_BITS_PER_WORD - 8 - 1 - 1 - 1;
static void staticAsserts() {
/* We must be able to fit the allockind into uint8_t. */
JS_STATIC_ASSERT(FINALIZE_LIMIT <= 255);
/*
* auxNextLink packing assumes that ArenaShift has enough bits
* to cover allocKind and hasDelayedMarking.
*/
JS_STATIC_ASSERT(ArenaShift >= 8 + 1 + 1 + 1);
}
inline uintptr_t address() const;
inline Chunk *chunk() const;
bool allocated() const {
JS_ASSERT(allocKind <= size_t(FINALIZE_LIMIT));
return allocKind < size_t(FINALIZE_LIMIT);
}
void init(Zone *zoneArg, AllocKind kind) {
JS_ASSERT(!allocated());
JS_ASSERT(!markOverflow);
JS_ASSERT(!allocatedDuringIncremental);
JS_ASSERT(!hasDelayedMarking);
zone = zoneArg;
JS_STATIC_ASSERT(FINALIZE_LIMIT <= 255);
allocKind = size_t(kind);
/* See comments in FreeSpan::allocateFromNewArena. */
firstFreeSpanOffsets = FreeSpan::FullArenaOffsets;
}
void setAsNotAllocated() {
allocKind = size_t(FINALIZE_LIMIT);
markOverflow = 0;
allocatedDuringIncremental = 0;
hasDelayedMarking = 0;
auxNextLink = 0;
}
inline uintptr_t arenaAddress() const;
inline Arena *getArena();
AllocKind getAllocKind() const {
JS_ASSERT(allocated());
return AllocKind(allocKind);
}
inline size_t getThingSize() const;
bool hasFreeThings() const {
return firstFreeSpanOffsets != FreeSpan::FullArenaOffsets;
}
inline bool isEmpty() const;
void setAsFullyUsed() {
firstFreeSpanOffsets = FreeSpan::FullArenaOffsets;
}
inline FreeSpan getFirstFreeSpan() const;
inline void setFirstFreeSpan(const FreeSpan *span);
#ifdef DEBUG
void checkSynchronizedWithFreeList() const;
#endif
inline ArenaHeader *getNextDelayedMarking() const;
inline void setNextDelayedMarking(ArenaHeader *aheader);
inline void unsetDelayedMarking();
inline ArenaHeader *getNextAllocDuringSweep() const;
inline void setNextAllocDuringSweep(ArenaHeader *aheader);
inline void unsetAllocDuringSweep();
};
struct Arena
{
/*
* Layout of an arena:
* An arena is 4K in size and 4K-aligned. It starts with the ArenaHeader
* descriptor followed by some pad bytes. The remainder of the arena is
* filled with the array of T things. The pad bytes ensure that the thing
* array ends exactly at the end of the arena.
*
* +-------------+-----+----+----+-----+----+
* | ArenaHeader | pad | T0 | T1 | ... | Tn |
* +-------------+-----+----+----+-----+----+
*
* <----------------------------------------> = ArenaSize bytes
* <-------------------> = first thing offset
*/
ArenaHeader aheader;
uint8_t data[ArenaSize - sizeof(ArenaHeader)];
private:
static JS_FRIEND_DATA(const uint32_t) ThingSizes[];
static JS_FRIEND_DATA(const uint32_t) FirstThingOffsets[];
public:
static void staticAsserts();
static size_t thingSize(AllocKind kind) {
return ThingSizes[kind];
}
static size_t firstThingOffset(AllocKind kind) {
return FirstThingOffsets[kind];
}
static size_t thingsPerArena(size_t thingSize) {
JS_ASSERT(thingSize % CellSize == 0);
/* We should be able to fit FreeSpan in any GC thing. */
JS_ASSERT(thingSize >= sizeof(FreeSpan));
return (ArenaSize - sizeof(ArenaHeader)) / thingSize;
}
static size_t thingsSpan(size_t thingSize) {
return thingsPerArena(thingSize) * thingSize;
}
static bool isAligned(uintptr_t thing, size_t thingSize) {
/* Things ends at the arena end. */
uintptr_t tailOffset = (ArenaSize - thing) & ArenaMask;
return tailOffset % thingSize == 0;
}
uintptr_t address() const {
return aheader.address();
}
uintptr_t thingsStart(AllocKind thingKind) {
return address() | firstThingOffset(thingKind);
}
uintptr_t thingsEnd() {
return address() + ArenaSize;
}
template <typename T>
bool finalize(FreeOp *fop, AllocKind thingKind, size_t thingSize);
};
inline size_t
ArenaHeader::getThingSize() const
{
JS_ASSERT(allocated());
return Arena::thingSize(getAllocKind());
}
/* The chunk header (located at the end of the chunk to preserve arena alignment). */
struct ChunkInfo
{
Chunk *next;
Chunk **prevp;
/* Free arenas are linked together with aheader.next. */
ArenaHeader *freeArenasHead;
#if JS_BITS_PER_WORD == 32
/*
* Calculating sizes and offsets is simpler if sizeof(ChunkInfo) is
* architecture-independent.
*/
char padding[16];
#endif
/*
* Decommitted arenas are tracked by a bitmap in the chunk header. We use
* this offset to start our search iteration close to a decommitted arena
* that we can allocate.
*/
uint32_t lastDecommittedArenaOffset;
/* Number of free arenas, either committed or decommitted. */
uint32_t numArenasFree;
/* Number of free, committed arenas. */
uint32_t numArenasFreeCommitted;
/* Number of GC cycles this chunk has survived. */
uint32_t age;
/* This is findable from any address in the Chunk by aligning to 1MiB. */
JSRuntime *runtime;
};
/*
* Calculating ArenasPerChunk:
*
* In order to figure out how many Arenas will fit in a chunk, we need to know
* how much extra space is available after we allocate the header data. This
* is a problem because the header size depends on the number of arenas in the
* chunk. The two dependent fields are bitmap and decommittedArenas.
*
* For the mark bitmap, we know that each arena will use a fixed number of full
* bytes: ArenaBitmapBytes. The full size of the header data is this number
* multiplied by the eventual number of arenas we have in the header. We,
* conceptually, distribute this header data among the individual arenas and do
* not include it in the header. This way we do not have to worry about its
* variable size: it gets attached to the variable number we are computing.
*
* For the decommitted arena bitmap, we only have 1 bit per arena, so this
* technique will not work. Instead, we observe that we do not have enough
* header info to fill 8 full arenas: it is currently 4 on 64bit, less on
* 32bit. Thus, with current numbers, we need 64 bytes for decommittedArenas.
* This will not become 63 bytes unless we double the data required in the
* header. Therefore, we just compute the number of bytes required to track
* every possible arena and do not worry about slop bits, since there are too
* few to usefully allocate.
*
* To actually compute the number of arenas we can allocate in a chunk, we
* divide the amount of available space less the header info (not including
* the mark bitmap which is distributed into the arena size) by the size of
* the arena (with the mark bitmap bytes it uses).
*/
const size_t BytesPerArenaWithHeader = ArenaSize + ArenaBitmapBytes;
const size_t ChunkDecommitBitmapBytes = ChunkSize / ArenaSize / JS_BITS_PER_BYTE;
const size_t ChunkBytesAvailable = ChunkSize - sizeof(ChunkInfo) - ChunkDecommitBitmapBytes;
const size_t ArenasPerChunk = ChunkBytesAvailable / BytesPerArenaWithHeader;
/* A chunk bitmap contains enough mark bits for all the cells in a chunk. */
struct ChunkBitmap
{
volatile uintptr_t bitmap[ArenaBitmapWords * ArenasPerChunk];
public:
ChunkBitmap() { }
MOZ_ALWAYS_INLINE void getMarkWordAndMask(const Cell *cell, uint32_t color,
uintptr_t **wordp, uintptr_t *maskp)
{
GetGCThingMarkWordAndMask(cell, color, wordp, maskp);
}
MOZ_ALWAYS_INLINE bool isMarked(const Cell *cell, uint32_t color) {
uintptr_t *word, mask;
getMarkWordAndMask(cell, color, &word, &mask);
return *word & mask;
}
MOZ_ALWAYS_INLINE bool markIfUnmarked(const Cell *cell, uint32_t color) {
uintptr_t *word, mask;
getMarkWordAndMask(cell, BLACK, &word, &mask);
if (*word & mask)
return false;
*word |= mask;
if (color != BLACK) {
/*
* We use getMarkWordAndMask to recalculate both mask and word as
* doing just mask << color may overflow the mask.
*/
getMarkWordAndMask(cell, color, &word, &mask);
if (*word & mask)
return false;
*word |= mask;
}
return true;
}
MOZ_ALWAYS_INLINE void unmark(const Cell *cell, uint32_t color) {
uintptr_t *word, mask;
getMarkWordAndMask(cell, color, &word, &mask);
*word &= ~mask;
}
void clear() {
memset((void *)bitmap, 0, sizeof(bitmap));
}
uintptr_t *arenaBits(ArenaHeader *aheader) {
/*
* We assume that the part of the bitmap corresponding to the arena
* has the exact number of words so we do not need to deal with a word
* that covers bits from two arenas.
*/
JS_STATIC_ASSERT(ArenaBitmapBits == ArenaBitmapWords * JS_BITS_PER_WORD);
uintptr_t *word, unused;
getMarkWordAndMask(reinterpret_cast<Cell *>(aheader->address()), BLACK, &word, &unused);
return word;
}
};
JS_STATIC_ASSERT(ArenaBitmapBytes * ArenasPerChunk == sizeof(ChunkBitmap));
JS_STATIC_ASSERT(js::gc::ChunkMarkBitmapBits == ArenaBitmapBits * ArenasPerChunk);
typedef BitArray<ArenasPerChunk> PerArenaBitmap;
const size_t ChunkPadSize = ChunkSize
- (sizeof(Arena) * ArenasPerChunk)
- sizeof(ChunkBitmap)
- sizeof(PerArenaBitmap)
- sizeof(ChunkInfo);
JS_STATIC_ASSERT(ChunkPadSize < BytesPerArenaWithHeader);
/*
* Chunks contain arenas and associated data structures (mark bitmap, delayed
* marking state).
*/
struct Chunk
{
Arena arenas[ArenasPerChunk];
/* Pad to full size to ensure cache alignment of ChunkInfo. */
uint8_t padding[ChunkPadSize];
ChunkBitmap bitmap;
PerArenaBitmap decommittedArenas;
ChunkInfo info;
static Chunk *fromAddress(uintptr_t addr) {
addr &= ~ChunkMask;
return reinterpret_cast<Chunk *>(addr);
}
static bool withinArenasRange(uintptr_t addr) {
uintptr_t offset = addr & ChunkMask;
return offset < ArenasPerChunk * ArenaSize;
}
static size_t arenaIndex(uintptr_t addr) {
JS_ASSERT(withinArenasRange(addr));
return (addr & ChunkMask) >> ArenaShift;
}
uintptr_t address() const {
uintptr_t addr = reinterpret_cast<uintptr_t>(this);
JS_ASSERT(!(addr & ChunkMask));
return addr;
}
bool unused() const {
return info.numArenasFree == ArenasPerChunk;
}
bool hasAvailableArenas() const {
return info.numArenasFree != 0;
}
inline void addToAvailableList(Zone *zone);
inline void insertToAvailableList(Chunk **insertPoint);
inline void removeFromAvailableList();
ArenaHeader *allocateArena(JS::Zone *zone, AllocKind kind);
void releaseArena(ArenaHeader *aheader);
static Chunk *allocate(JSRuntime *rt);
/* Must be called with the GC lock taken. */
static inline void release(JSRuntime *rt, Chunk *chunk);
static inline void releaseList(JSRuntime *rt, Chunk *chunkListHead);
/* Must be called with the GC lock taken. */
inline void prepareToBeFreed(JSRuntime *rt);
/*
* Assuming that the info.prevp points to the next field of the previous
* chunk in a doubly-linked list, get that chunk.
*/
Chunk *getPrevious() {
JS_ASSERT(info.prevp);
return fromPointerToNext(info.prevp);
}
/* Get the chunk from a pointer to its info.next field. */
static Chunk *fromPointerToNext(Chunk **nextFieldPtr) {
uintptr_t addr = reinterpret_cast<uintptr_t>(nextFieldPtr);
JS_ASSERT((addr & ChunkMask) == offsetof(Chunk, info.next));
return reinterpret_cast<Chunk *>(addr - offsetof(Chunk, info.next));
}
private:
inline void init(JSRuntime *rt);
/* Search for a decommitted arena to allocate. */
unsigned findDecommittedArenaOffset();
ArenaHeader* fetchNextDecommittedArena();
public:
/* Unlink and return the freeArenasHead. */
inline ArenaHeader* fetchNextFreeArena(JSRuntime *rt);
inline void addArenaToFreeList(JSRuntime *rt, ArenaHeader *aheader);
};
JS_STATIC_ASSERT(sizeof(Chunk) == ChunkSize);
JS_STATIC_ASSERT(js::gc::ChunkMarkBitmapOffset == offsetof(Chunk, bitmap));
JS_STATIC_ASSERT(js::gc::ChunkRuntimeOffset == offsetof(Chunk, info) + offsetof(ChunkInfo, runtime));
inline uintptr_t
ArenaHeader::address() const
{
uintptr_t addr = reinterpret_cast<uintptr_t>(this);
JS_ASSERT(!(addr & ArenaMask));
JS_ASSERT(Chunk::withinArenasRange(addr));
return addr;
}
inline Chunk *
ArenaHeader::chunk() const
{
return Chunk::fromAddress(address());
}
inline uintptr_t
ArenaHeader::arenaAddress() const
{
return address();
}
inline Arena *
ArenaHeader::getArena()
{
return reinterpret_cast<Arena *>(arenaAddress());
}
inline bool
ArenaHeader::isEmpty() const
{
/* Arena is empty if its first span covers the whole arena. */
JS_ASSERT(allocated());
size_t firstThingOffset = Arena::firstThingOffset(getAllocKind());
return firstFreeSpanOffsets == FreeSpan::encodeOffsets(firstThingOffset, ArenaMask);
}
FreeSpan
ArenaHeader::getFirstFreeSpan() const
{
#ifdef DEBUG
checkSynchronizedWithFreeList();
#endif
return FreeSpan::decodeOffsets(arenaAddress(), firstFreeSpanOffsets);
}
void
ArenaHeader::setFirstFreeSpan(const FreeSpan *span)
{
JS_ASSERT(span->isWithinArena(arenaAddress()));
firstFreeSpanOffsets = span->encodeAsOffsets();
}
inline ArenaHeader *
ArenaHeader::getNextDelayedMarking() const
{
JS_ASSERT(hasDelayedMarking);
return &reinterpret_cast<Arena *>(auxNextLink << ArenaShift)->aheader;
}
inline void
ArenaHeader::setNextDelayedMarking(ArenaHeader *aheader)
{
JS_ASSERT(!(uintptr_t(aheader) & ArenaMask));
JS_ASSERT(!auxNextLink && !hasDelayedMarking);
hasDelayedMarking = 1;
auxNextLink = aheader->arenaAddress() >> ArenaShift;
}
inline void
ArenaHeader::unsetDelayedMarking()
{
JS_ASSERT(hasDelayedMarking);
hasDelayedMarking = 0;
auxNextLink = 0;
}
inline ArenaHeader *
ArenaHeader::getNextAllocDuringSweep() const
{
JS_ASSERT(allocatedDuringIncremental);
return &reinterpret_cast<Arena *>(auxNextLink << ArenaShift)->aheader;
}
inline void
ArenaHeader::setNextAllocDuringSweep(ArenaHeader *aheader)
{
JS_ASSERT(!auxNextLink && !allocatedDuringIncremental);
allocatedDuringIncremental = 1;
auxNextLink = aheader->arenaAddress() >> ArenaShift;
}
inline void
ArenaHeader::unsetAllocDuringSweep()
{
JS_ASSERT(allocatedDuringIncremental);
allocatedDuringIncremental = 0;
auxNextLink = 0;
}
static void
AssertValidColor(const void *thing, uint32_t color)
{
#ifdef DEBUG
ArenaHeader *aheader = reinterpret_cast<const Cell *>(thing)->arenaHeader();
JS_ASSERT_IF(color, color < aheader->getThingSize() / CellSize);
#endif
}
inline ArenaHeader *
Cell::arenaHeader() const
{
JS_ASSERT(isTenured());
uintptr_t addr = address();
addr &= ~ArenaMask;
return reinterpret_cast<ArenaHeader *>(addr);
}
inline JSRuntime *
Cell::runtime() const
{
JS_ASSERT(InSequentialOrExclusiveParallelSection());
return chunk()->info.runtime;
}
AllocKind
Cell::tenuredGetAllocKind() const
{
return arenaHeader()->getAllocKind();
}
bool
Cell::isMarked(uint32_t color /* = BLACK */) const
{
JS_ASSERT(isTenured());
AssertValidColor(this, color);
return chunk()->bitmap.isMarked(this, color);
}
bool
Cell::markIfUnmarked(uint32_t color /* = BLACK */) const
{
JS_ASSERT(isTenured());
AssertValidColor(this, color);
return chunk()->bitmap.markIfUnmarked(this, color);
}
void
Cell::unmark(uint32_t color) const
{
JS_ASSERT(isTenured());
JS_ASSERT(color != BLACK);
AssertValidColor(this, color);
chunk()->bitmap.unmark(this, color);
}
Zone *
Cell::tenuredZone() const
{
JS_ASSERT(InSequentialOrExclusiveParallelSection());
JS_ASSERT(isTenured());
return arenaHeader()->zone;
}
#ifdef DEBUG
bool
Cell::isAligned() const
{
return Arena::isAligned(address(), arenaHeader()->getThingSize());
}
bool
Cell::isTenured() const
{
#ifdef JSGC_GENERATIONAL
JS::shadow::Runtime *rt = js::gc::GetGCThingRuntime(this);
return uintptr_t(this) < rt->gcNurseryStart_ || uintptr_t(this) >= rt->gcNurseryEnd_;
#endif
return true;
}
#endif
inline uintptr_t
Cell::address() const
{
uintptr_t addr = uintptr_t(this);
JS_ASSERT(addr % CellSize == 0);
JS_ASSERT(Chunk::withinArenasRange(addr));
return addr;
}
Chunk *
Cell::chunk() const
{
uintptr_t addr = uintptr_t(this);
JS_ASSERT(addr % CellSize == 0);
addr &= ~(ChunkSize - 1);
return reinterpret_cast<Chunk *>(addr);
}
inline bool
InFreeList(ArenaHeader *aheader, void *thing)
{
if (!aheader->hasFreeThings())
return false;
FreeSpan firstSpan(aheader->getFirstFreeSpan());
uintptr_t addr = reinterpret_cast<uintptr_t>(thing);
for (const FreeSpan *span = &firstSpan;;) {
/* If the thing comes before the current span, it's not free. */
if (addr < span->first)
return false;
/*
* If we find it inside the span, it's dead. We use here "<=" and not
* "<" even for the last span as we know that thing is inside the
* arena. Thus, for the last span thing < span->end.
*/
if (addr <= span->last)
return true;
/*
* The last possible empty span is an the end of the arena. Here
* span->end < thing < thingsEnd and so we must have more spans.
*/
span = span->nextSpan();
}
}
} /* namespace gc */
} /* namespace js */
#endif /* gc_Heap_h */