blob: bcd3a809c64fc3c906f85d0da6059fc7d86225d0 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "Lowering-x86.h"
#include "jit/MIR.h"
#include "Assembler-x86.h"
#include "jit/shared/Lowering-shared-inl.h"
using namespace js;
using namespace js::jit;
bool
LIRGeneratorX86::useBox(LInstruction *lir, size_t n, MDefinition *mir,
LUse::Policy policy, bool useAtStart)
{
JS_ASSERT(mir->type() == MIRType_Value);
if (!ensureDefined(mir))
return false;
lir->setOperand(n, LUse(mir->virtualRegister(), policy, useAtStart));
lir->setOperand(n + 1, LUse(VirtualRegisterOfPayload(mir), policy, useAtStart));
return true;
}
bool
LIRGeneratorX86::useBoxFixed(LInstruction *lir, size_t n, MDefinition *mir, Register reg1,
Register reg2)
{
JS_ASSERT(mir->type() == MIRType_Value);
JS_ASSERT(reg1 != reg2);
if (!ensureDefined(mir))
return false;
lir->setOperand(n, LUse(reg1, mir->virtualRegister()));
lir->setOperand(n + 1, LUse(reg2, VirtualRegisterOfPayload(mir)));
return true;
}
bool
LIRGeneratorX86::visitBox(MBox *box)
{
MDefinition *inner = box->getOperand(0);
// If the box wrapped a double, it needs a new register.
if (inner->type() == MIRType_Double)
return defineBox(new LBoxDouble(useRegisterAtStart(inner), tempCopy(inner, 0)), box);
if (box->canEmitAtUses())
return emitAtUses(box);
if (inner->isConstant())
return defineBox(new LValue(inner->toConstant()->value()), box);
LBox *lir = new LBox(use(inner), inner->type());
// Otherwise, we should not define a new register for the payload portion
// of the output, so bypass defineBox().
uint32_t vreg = getVirtualRegister();
if (vreg >= MAX_VIRTUAL_REGISTERS)
return false;
// Note that because we're using PASSTHROUGH, we do not change the type of
// the definition. We also do not define the first output as "TYPE",
// because it has no corresponding payload at (vreg + 1). Also note that
// although we copy the input's original type for the payload half of the
// definition, this is only for clarity. PASSTHROUGH definitions are
// ignored.
lir->setDef(0, LDefinition(vreg, LDefinition::GENERAL));
lir->setDef(1, LDefinition(inner->virtualRegister(), LDefinition::TypeFrom(inner->type()),
LDefinition::PASSTHROUGH));
box->setVirtualRegister(vreg);
return add(lir);
}
bool
LIRGeneratorX86::visitUnbox(MUnbox *unbox)
{
// An unbox on x86 reads in a type tag (either in memory or a register) and
// a payload. Unlike most instructions conusming a box, we ask for the type
// second, so that the result can re-use the first input.
MDefinition *inner = unbox->getOperand(0);
if (!ensureDefined(inner))
return false;
if (unbox->type() == MIRType_Double) {
LUnboxDouble *lir = new LUnboxDouble;
if (unbox->fallible() && !assignSnapshot(lir, unbox->bailoutKind()))
return false;
if (!useBox(lir, LUnboxDouble::Input, inner))
return false;
return define(lir, unbox);
}
// Swap the order we use the box pieces so we can re-use the payload register.
LUnbox *lir = new LUnbox;
lir->setOperand(0, usePayloadInRegisterAtStart(inner));
lir->setOperand(1, useType(inner, LUse::ANY));
if (unbox->fallible() && !assignSnapshot(lir, unbox->bailoutKind()))
return false;
// Note that PASSTHROUGH here is illegal, since types and payloads form two
// separate intervals. If the type becomes dead before the payload, it
// could be used as a Value without the type being recoverable. Unbox's
// purpose is to eagerly kill the definition of a type tag, so keeping both
// alive (for the purpose of gcmaps) is unappealing. Instead, we create a
// new virtual register.
return defineReuseInput(lir, unbox, 0);
}
bool
LIRGeneratorX86::visitReturn(MReturn *ret)
{
MDefinition *opd = ret->getOperand(0);
JS_ASSERT(opd->type() == MIRType_Value);
LReturn *ins = new LReturn;
ins->setOperand(0, LUse(JSReturnReg_Type));
ins->setOperand(1, LUse(JSReturnReg_Data));
return fillBoxUses(ins, 0, opd) && add(ins);
}
bool
LIRGeneratorX86::defineUntypedPhi(MPhi *phi, size_t lirIndex)
{
LPhi *type = current->getPhi(lirIndex + VREG_TYPE_OFFSET);
LPhi *payload = current->getPhi(lirIndex + VREG_DATA_OFFSET);
uint32_t typeVreg = getVirtualRegister();
if (typeVreg >= MAX_VIRTUAL_REGISTERS)
return false;
phi->setVirtualRegister(typeVreg);
uint32_t payloadVreg = getVirtualRegister();
if (payloadVreg >= MAX_VIRTUAL_REGISTERS)
return false;
JS_ASSERT(typeVreg + 1 == payloadVreg);
type->setDef(0, LDefinition(typeVreg, LDefinition::TYPE));
payload->setDef(0, LDefinition(payloadVreg, LDefinition::PAYLOAD));
annotate(type);
annotate(payload);
return true;
}
void
LIRGeneratorX86::lowerUntypedPhiInput(MPhi *phi, uint32_t inputPosition, LBlock *block, size_t lirIndex)
{
MDefinition *operand = phi->getOperand(inputPosition);
LPhi *type = block->getPhi(lirIndex + VREG_TYPE_OFFSET);
LPhi *payload = block->getPhi(lirIndex + VREG_DATA_OFFSET);
type->setOperand(inputPosition, LUse(operand->virtualRegister() + VREG_TYPE_OFFSET, LUse::ANY));
payload->setOperand(inputPosition, LUse(VirtualRegisterOfPayload(operand), LUse::ANY));
}
bool
LIRGeneratorX86::visitStoreTypedArrayElement(MStoreTypedArrayElement *ins)
{
JS_ASSERT(ins->elements()->type() == MIRType_Elements);
JS_ASSERT(ins->index()->type() == MIRType_Int32);
if (ins->isFloatArray())
JS_ASSERT(ins->value()->type() == MIRType_Double);
else
JS_ASSERT(ins->value()->type() == MIRType_Int32);
LUse elements = useRegister(ins->elements());
LAllocation index = useRegisterOrConstant(ins->index());
LAllocation value;
// For byte arrays, the value has to be in a byte register on x86.
if (ins->isByteArray())
value = useFixed(ins->value(), eax);
else
value = useRegisterOrNonDoubleConstant(ins->value());
return add(new LStoreTypedArrayElement(elements, index, value), ins);
}
bool
LIRGeneratorX86::visitStoreTypedArrayElementHole(MStoreTypedArrayElementHole *ins)
{
JS_ASSERT(ins->elements()->type() == MIRType_Elements);
JS_ASSERT(ins->index()->type() == MIRType_Int32);
JS_ASSERT(ins->length()->type() == MIRType_Int32);
if (ins->isFloatArray())
JS_ASSERT(ins->value()->type() == MIRType_Double);
else
JS_ASSERT(ins->value()->type() == MIRType_Int32);
LUse elements = useRegister(ins->elements());
LAllocation length = useAnyOrConstant(ins->length());
LAllocation index = useRegisterOrConstant(ins->index());
LAllocation value;
// For byte arrays, the value has to be in a byte register on x86.
if (ins->isByteArray())
value = useFixed(ins->value(), eax);
else
value = useRegisterOrNonDoubleConstant(ins->value());
return add(new LStoreTypedArrayElementHole(elements, length, index, value), ins);
}
bool
LIRGeneratorX86::visitAsmJSUnsignedToDouble(MAsmJSUnsignedToDouble *ins)
{
JS_ASSERT(ins->input()->type() == MIRType_Int32);
LUInt32ToDouble *lir = new LUInt32ToDouble(useRegisterAtStart(ins->input()), temp());
return define(lir, ins);
}
bool
LIRGeneratorX86::visitAsmJSStoreHeap(MAsmJSStoreHeap *ins)
{
LAsmJSStoreHeap *lir;
switch (ins->viewType()) {
case ArrayBufferView::TYPE_INT8: case ArrayBufferView::TYPE_UINT8:
// It's a trap! On x86, the 1-byte store can only use one of
// {al,bl,cl,dl,ah,bh,ch,dh}. That means if the register allocator
// gives us one of {edi,esi,ebp,esp}, we're out of luck. (The formatter
// will assert on us.) Ideally, we'd just ask the register allocator to
// give us one of {al,bl,cl,dl}. For now, just useFixed(al).
lir = new LAsmJSStoreHeap(useRegister(ins->ptr()),
useFixed(ins->value(), eax));
break;
case ArrayBufferView::TYPE_INT16: case ArrayBufferView::TYPE_UINT16:
case ArrayBufferView::TYPE_INT32: case ArrayBufferView::TYPE_UINT32:
case ArrayBufferView::TYPE_FLOAT32: case ArrayBufferView::TYPE_FLOAT64:
// For now, don't allow constants. The immediate operand affects
// instruction layout which affects patching.
lir = new LAsmJSStoreHeap(useRegisterAtStart(ins->ptr()),
useRegisterAtStart(ins->value()));
break;
default: JS_NOT_REACHED("unexpected array type");
}
return add(lir, ins);
}
bool
LIRGeneratorX86::visitStoreTypedArrayElementStatic(MStoreTypedArrayElementStatic *ins)
{
// The code generated for StoreTypedArrayElementStatic is identical to that
// for AsmJSStoreHeap, and the same concerns apply.
LStoreTypedArrayElementStatic *lir;
switch (ins->viewType()) {
case ArrayBufferView::TYPE_INT8: case ArrayBufferView::TYPE_UINT8:
case ArrayBufferView::TYPE_UINT8_CLAMPED:
lir = new LStoreTypedArrayElementStatic(useRegister(ins->ptr()),
useFixed(ins->value(), eax));
break;
case ArrayBufferView::TYPE_INT16: case ArrayBufferView::TYPE_UINT16:
case ArrayBufferView::TYPE_INT32: case ArrayBufferView::TYPE_UINT32:
case ArrayBufferView::TYPE_FLOAT32: case ArrayBufferView::TYPE_FLOAT64:
lir = new LStoreTypedArrayElementStatic(useRegisterAtStart(ins->ptr()),
useRegisterAtStart(ins->value()));
break;
default: JS_NOT_REACHED("unexpected array type");
}
return add(lir, ins);
}
bool
LIRGeneratorX86::visitAsmJSLoadFuncPtr(MAsmJSLoadFuncPtr *ins)
{
return define(new LAsmJSLoadFuncPtr(useRegisterAtStart(ins->index())), ins);
}
LGetPropertyCacheT *
LIRGeneratorX86::newLGetPropertyCacheT(MGetPropertyCache *ins)
{
// Since x86 doesn't have a scratch register and we need one for the
// indirect jump for dispatch-style ICs, we need a temporary in the case
// of a double output type as we can't get a scratch from the output.
LDefinition scratch;
if (ins->type() == MIRType_Double)
scratch = temp();
else
scratch = LDefinition::BogusTemp();
return new LGetPropertyCacheT(useRegister(ins->object()), scratch);
}