blob: 0a95fceabef1bfade021e709fc2726f7d9d03d98 [file] [log] [blame]
/*
* Copyright (c) 2009, Jay Loden, Giampaolo Rodola'. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* Helper functions related to fetching process information. Used by _psutil_osx
* module methods.
*/
#include <Python.h>
#include <assert.h>
#include <errno.h>
#include <limits.h> /* for INT_MAX */
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <sys/sysctl.h>
#include <libproc.h>
#include "process_info.h"
#include "../../_psutil_common.h"
/*
* Return 1 if PID exists in the current process list, else 0.
*/
int
psutil_pid_exists(long pid)
{
int kill_ret;
// save some time if it's an invalid PID
if (pid < 0) {
return 0;
}
// if kill returns success of permission denied we know it's a valid PID
kill_ret = kill(pid , 0);
if ( (0 == kill_ret) || (EPERM == errno) ) {
return 1;
}
// otherwise return 0 for PID not found
return 0;
}
/*
* Returns a list of all BSD processes on the system. This routine
* allocates the list and puts it in *procList and a count of the
* number of entries in *procCount. You are responsible for freeing
* this list (use "free" from System framework).
* On success, the function returns 0.
* On error, the function returns a BSD errno value.
*/
int
psutil_get_proc_list(kinfo_proc **procList, size_t *procCount)
{
/* Declaring mib as const requires use of a cast since the
* sysctl prototype doesn't include the const modifier. */
static const int mib3[3] = { CTL_KERN, KERN_PROC, KERN_PROC_ALL };
size_t size, size2;
void *ptr;
int err, lim = 8; /* some limit */
assert( procList != NULL);
assert(*procList == NULL);
assert(procCount != NULL);
*procCount = 0;
/* We start by calling sysctl with ptr == NULL and size == 0.
* That will succeed, and set size to the appropriate length.
* We then allocate a buffer of at least that size and call
* sysctl with that buffer. If that succeeds, we're done.
* If that call fails with ENOMEM, we throw the buffer away
* and try again.
* Note that the loop calls sysctl with NULL again. This is
* is necessary because the ENOMEM failure case sets size to
* the amount of data returned, not the amount of data that
* could have been returned.
*/
while (lim-- > 0) {
size = 0;
if (sysctl((int *)mib3, 3, NULL, &size, NULL, 0) == -1) {
return errno;
}
size2 = size + (size >> 3); /* add some */
if (size2 > size) {
ptr = malloc(size2);
if (ptr == NULL) {
ptr = malloc(size);
} else {
size = size2;
}
}
else {
ptr = malloc(size);
}
if (ptr == NULL) {
return ENOMEM;
}
if (sysctl((int *)mib3, 3, ptr, &size, NULL, 0) == -1) {
err = errno;
free(ptr);
if (err != ENOMEM) {
return err;
}
} else {
*procList = (kinfo_proc *)ptr;
*procCount = size / sizeof(kinfo_proc);
return 0;
}
}
return ENOMEM;
}
/* Read the maximum argument size for processes */
int
psutil_get_argmax()
{
int argmax;
int mib[] = { CTL_KERN, KERN_ARGMAX };
size_t size = sizeof(argmax);
if (sysctl(mib, 2, &argmax, &size, NULL, 0) == 0) {
return argmax;
}
return 0;
}
/* return process args as a python list */
PyObject*
psutil_get_arg_list(long pid)
{
int mib[3];
int nargs;
int len;
char *procargs = NULL;
char *arg_ptr;
char *arg_end;
char *curr_arg;
size_t argmax;
PyObject *arg = NULL;
PyObject *arglist = NULL;
//special case for PID 0 (kernel_task) where cmdline cannot be fetched
if (pid == 0) {
return Py_BuildValue("[]");
}
/* read argmax and allocate memory for argument space. */
argmax = psutil_get_argmax();
if (! argmax) {
PyErr_SetFromErrno(PyExc_OSError);
goto error;
}
procargs = (char *)malloc(argmax);
if (NULL == procargs) {
PyErr_SetFromErrno(PyExc_OSError);
goto error;
}
/* read argument space */
mib[0] = CTL_KERN;
mib[1] = KERN_PROCARGS2;
mib[2] = pid;
if (sysctl(mib, 3, procargs, &argmax, NULL, 0) < 0) {
if (EINVAL == errno) { // invalid == access denied OR nonexistent PID
if ( psutil_pid_exists(pid) ) {
AccessDenied();
} else {
NoSuchProcess();
}
}
goto error;
}
arg_end = &procargs[argmax];
/* copy the number of arguments to nargs */
memcpy(&nargs, procargs, sizeof(nargs));
arg_ptr = procargs + sizeof(nargs);
len = strlen(arg_ptr);
arg_ptr += len + 1;
if (arg_ptr == arg_end) {
free(procargs);
return Py_BuildValue("[]");
}
// skip ahead to the first argument
for (; arg_ptr < arg_end; arg_ptr++) {
if (*arg_ptr != '\0') {
break;
}
}
/* iterate through arguments */
curr_arg = arg_ptr;
arglist = Py_BuildValue("[]");
if (!arglist)
goto error;
while (arg_ptr < arg_end && nargs > 0) {
if (*arg_ptr++ == '\0') {
arg = Py_BuildValue("s", curr_arg);
if (!arg)
goto error;
if (PyList_Append(arglist, arg))
goto error;
Py_DECREF(arg);
// iterate to next arg and decrement # of args
curr_arg = arg_ptr;
nargs--;
}
}
free(procargs);
return arglist;
error:
Py_XDECREF(arg);
Py_XDECREF(arglist);
if (procargs != NULL)
free(procargs);
return NULL;
}
int
psutil_get_kinfo_proc(pid_t pid, struct kinfo_proc *kp)
{
int mib[4];
size_t len;
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = pid;
// fetch the info with sysctl()
len = sizeof(struct kinfo_proc);
// now read the data from sysctl
if (sysctl(mib, 4, kp, &len, NULL, 0) == -1) {
// raise an exception and throw errno as the error
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
/*
* sysctl succeeds but len is zero, happens when process has gone away
*/
if (len == 0) {
NoSuchProcess();
return -1;
}
return 0;
}
/*
* A thin wrapper around proc_pidinfo()
*/
int
psutil_proc_pidinfo(long pid, int flavor, void *pti, int size)
{
int ret = proc_pidinfo((int)pid, flavor, 0, pti, size);
if (ret == 0) {
if (! psutil_pid_exists(pid)) {
NoSuchProcess();
return 0;
}
else {
AccessDenied();
return 0;
}
}
else if (ret != size) {
AccessDenied();
return 0;
}
else {
return 1;
}
}