blob: c2af24060a28208b671dc271ea9242fcd5adf772 [file] [log] [blame]
/*
* Copyright (C) 2009, 2012 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef MacroAssemblerCodeRef_h
#define MacroAssemblerCodeRef_h
#include "Disassembler.h"
#include "ExecutableAllocator.h"
#include "LLIntData.h"
#include <wtf/DataLog.h>
#include <wtf/PassRefPtr.h>
#include <wtf/RefPtr.h>
#include <wtf/UnusedParam.h>
// ASSERT_VALID_CODE_POINTER checks that ptr is a non-null pointer, and that it is a valid
// instruction address on the platform (for example, check any alignment requirements).
#if CPU(ARM_THUMB2)
// ARM/thumb instructions must be 16-bit aligned, but all code pointers to be loaded
// into the processor are decorated with the bottom bit set, indicating that this is
// thumb code (as oposed to 32-bit traditional ARM). The first test checks for both
// decorated and undectorated null, and the second test ensures that the pointer is
// decorated.
#define ASSERT_VALID_CODE_POINTER(ptr) \
ASSERT(reinterpret_cast<intptr_t>(ptr) & ~1); \
ASSERT(reinterpret_cast<intptr_t>(ptr) & 1)
#define ASSERT_VALID_CODE_OFFSET(offset) \
ASSERT(!(offset & 1)) // Must be multiple of 2.
#else
#define ASSERT_VALID_CODE_POINTER(ptr) \
ASSERT(ptr)
#define ASSERT_VALID_CODE_OFFSET(offset) // Anything goes!
#endif
#if CPU(X86) && OS(WINDOWS)
#define CALLING_CONVENTION_IS_STDCALL 1
#ifndef CDECL
#if COMPILER(MSVC)
#define CDECL __cdecl
#else
#define CDECL __attribute__ ((__cdecl))
#endif // COMPILER(MSVC)
#endif // CDECL
#else
#define CALLING_CONVENTION_IS_STDCALL 0
#endif
#if CPU(X86)
#define HAS_FASTCALL_CALLING_CONVENTION 1
#ifndef FASTCALL
#if COMPILER(MSVC)
#define FASTCALL __fastcall
#else
#define FASTCALL __attribute__ ((fastcall))
#endif // COMPILER(MSVC)
#endif // FASTCALL
#else
#define HAS_FASTCALL_CALLING_CONVENTION 0
#endif // CPU(X86)
namespace JSC {
// FunctionPtr:
//
// FunctionPtr should be used to wrap pointers to C/C++ functions in JSC
// (particularly, the stub functions).
class FunctionPtr {
public:
FunctionPtr()
: m_value(0)
{
}
template<typename returnType>
FunctionPtr(returnType(*value)())
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1>
FunctionPtr(returnType(*value)(argType1))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2>
FunctionPtr(returnType(*value)(argType1, argType2))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2, typename argType3>
FunctionPtr(returnType(*value)(argType1, argType2, argType3))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4>
FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4, typename argType5>
FunctionPtr(returnType(*value)(argType1, argType2, argType3, argType4, argType5))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
// MSVC doesn't seem to treat functions with different calling conventions as
// different types; these methods already defined for fastcall, below.
#if CALLING_CONVENTION_IS_STDCALL && !OS(WINDOWS)
template<typename returnType>
FunctionPtr(returnType (CDECL *value)())
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1>
FunctionPtr(returnType (CDECL *value)(argType1))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2>
FunctionPtr(returnType (CDECL *value)(argType1, argType2))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2, typename argType3>
FunctionPtr(returnType (CDECL *value)(argType1, argType2, argType3))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4>
FunctionPtr(returnType (CDECL *value)(argType1, argType2, argType3, argType4))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
#endif
#if HAS_FASTCALL_CALLING_CONVENTION
template<typename returnType>
FunctionPtr(returnType (FASTCALL *value)())
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1>
FunctionPtr(returnType (FASTCALL *value)(argType1))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2>
FunctionPtr(returnType (FASTCALL *value)(argType1, argType2))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2, typename argType3>
FunctionPtr(returnType (FASTCALL *value)(argType1, argType2, argType3))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
template<typename returnType, typename argType1, typename argType2, typename argType3, typename argType4>
FunctionPtr(returnType (FASTCALL *value)(argType1, argType2, argType3, argType4))
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
#endif
template<typename FunctionType>
explicit FunctionPtr(FunctionType* value)
// Using a C-ctyle cast here to avoid compiler error on RVTC:
// Error: #694: reinterpret_cast cannot cast away const or other type qualifiers
// (I guess on RVTC function pointers have a different constness to GCC/MSVC?)
: m_value((void*)value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
void* value() const { return m_value; }
void* executableAddress() const { return m_value; }
private:
void* m_value;
};
// ReturnAddressPtr:
//
// ReturnAddressPtr should be used to wrap return addresses generated by processor
// 'call' instructions exectued in JIT code. We use return addresses to look up
// exception and optimization information, and to repatch the call instruction
// that is the source of the return address.
class ReturnAddressPtr {
public:
ReturnAddressPtr()
: m_value(0)
{
}
explicit ReturnAddressPtr(void* value)
: m_value(value)
{
ASSERT_VALID_CODE_POINTER(m_value);
}
explicit ReturnAddressPtr(FunctionPtr function)
: m_value(function.value())
{
ASSERT_VALID_CODE_POINTER(m_value);
}
void* value() const { return m_value; }
private:
void* m_value;
};
// MacroAssemblerCodePtr:
//
// MacroAssemblerCodePtr should be used to wrap pointers to JIT generated code.
class MacroAssemblerCodePtr {
public:
MacroAssemblerCodePtr()
: m_value(0)
{
}
explicit MacroAssemblerCodePtr(void* value)
#if CPU(ARM_THUMB2)
// Decorate the pointer as a thumb code pointer.
: m_value(reinterpret_cast<char*>(value) + 1)
#else
: m_value(value)
#endif
{
ASSERT_VALID_CODE_POINTER(m_value);
}
static MacroAssemblerCodePtr createFromExecutableAddress(void* value)
{
ASSERT_VALID_CODE_POINTER(value);
MacroAssemblerCodePtr result;
result.m_value = value;
return result;
}
#if ENABLE(LLINT)
static MacroAssemblerCodePtr createLLIntCodePtr(LLIntCode codeId)
{
return createFromExecutableAddress(LLInt::getCodePtr(codeId));
}
#endif
explicit MacroAssemblerCodePtr(ReturnAddressPtr ra)
: m_value(ra.value())
{
ASSERT_VALID_CODE_POINTER(m_value);
}
void* executableAddress() const { return m_value; }
#if CPU(ARM_THUMB2)
// To use this pointer as a data address remove the decoration.
void* dataLocation() const { ASSERT_VALID_CODE_POINTER(m_value); return reinterpret_cast<char*>(m_value) - 1; }
#else
void* dataLocation() const { ASSERT_VALID_CODE_POINTER(m_value); return m_value; }
#endif
bool operator!() const
{
return !m_value;
}
private:
void* m_value;
};
// MacroAssemblerCodeRef:
//
// A reference to a section of JIT generated code. A CodeRef consists of a
// pointer to the code, and a ref pointer to the pool from within which it
// was allocated.
class MacroAssemblerCodeRef {
private:
// This is private because it's dangerous enough that we want uses of it
// to be easy to find - hence the static create method below.
explicit MacroAssemblerCodeRef(MacroAssemblerCodePtr codePtr)
: m_codePtr(codePtr)
{
ASSERT(m_codePtr);
}
public:
MacroAssemblerCodeRef()
{
}
MacroAssemblerCodeRef(PassRefPtr<ExecutableMemoryHandle> executableMemory)
: m_codePtr(executableMemory->start())
, m_executableMemory(executableMemory)
{
ASSERT(m_executableMemory->isManaged());
ASSERT(m_executableMemory->start());
ASSERT(m_codePtr);
}
// Use this only when you know that the codePtr refers to code that is
// already being kept alive through some other means. Typically this means
// that codePtr is immortal.
static MacroAssemblerCodeRef createSelfManagedCodeRef(MacroAssemblerCodePtr codePtr)
{
return MacroAssemblerCodeRef(codePtr);
}
#if ENABLE(LLINT)
// Helper for creating self-managed code refs from LLInt.
static MacroAssemblerCodeRef createLLIntCodeRef(LLIntCode codeId)
{
return createSelfManagedCodeRef(MacroAssemblerCodePtr::createFromExecutableAddress(LLInt::getCodePtr(codeId)));
}
#endif
ExecutableMemoryHandle* executableMemory() const
{
return m_executableMemory.get();
}
MacroAssemblerCodePtr code() const
{
return m_codePtr;
}
size_t size() const
{
if (!m_executableMemory)
return 0;
return m_executableMemory->sizeInBytes();
}
bool tryToDisassemble(const char* prefix) const
{
return JSC::tryToDisassemble(m_codePtr, size(), prefix, WTF::dataFile());
}
bool operator!() const { return !m_codePtr; }
private:
MacroAssemblerCodePtr m_codePtr;
RefPtr<ExecutableMemoryHandle> m_executableMemory;
};
} // namespace JSC
#endif // MacroAssemblerCodeRef_h