blob: 629ccf34e4f6831f34bd4c408e3f9128c926558e [file] [log] [blame]
/*
* Copyright (C) 2012 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGFixupPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGGraph.h"
#include "DFGInsertionSet.h"
#include "DFGPhase.h"
namespace JSC { namespace DFG {
class FixupPhase : public Phase {
public:
FixupPhase(Graph& graph)
: Phase(graph, "fixup")
{
}
bool run()
{
for (BlockIndex blockIndex = 0; blockIndex < m_graph.m_blocks.size(); ++blockIndex)
fixupBlock(m_graph.m_blocks[blockIndex].get());
return true;
}
private:
void fixupBlock(BasicBlock* block)
{
if (!block)
return;
ASSERT(block->isReachable);
m_block = block;
for (m_indexInBlock = 0; m_indexInBlock < block->size(); ++m_indexInBlock) {
m_compileIndex = block->at(m_indexInBlock);
fixupNode(m_graph[m_compileIndex]);
}
m_insertionSet.execute(*block);
}
void fixupNode(Node& node)
{
if (!node.shouldGenerate())
return;
NodeType op = node.op();
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLogF(" %s @%u: ", Graph::opName(op), m_compileIndex);
#endif
switch (op) {
case GetById: {
if (m_graph.m_fixpointState > BeforeFixpoint)
break;
Node* nodePtr = &node;
if (!isInt32Speculation(m_graph[m_compileIndex].prediction()))
break;
if (codeBlock()->identifier(nodePtr->identifierNumber()) != globalData().propertyNames->length)
break;
ArrayProfile* arrayProfile =
m_graph.baselineCodeBlockFor(nodePtr->codeOrigin)->getArrayProfile(
nodePtr->codeOrigin.bytecodeIndex);
ArrayMode arrayMode = ArrayMode(Array::SelectUsingPredictions);
if (arrayProfile) {
arrayProfile->computeUpdatedPrediction(m_graph.baselineCodeBlockFor(node.codeOrigin));
arrayMode = ArrayMode::fromObserved(arrayProfile, Array::Read, false);
arrayMode = arrayMode.refine(
m_graph[node.child1()].prediction(),
m_graph[m_compileIndex].prediction());
if (arrayMode.supportsLength() && arrayProfile->hasDefiniteStructure()) {
m_graph.ref(nodePtr->child1());
Node checkStructure(CheckStructure, nodePtr->codeOrigin, OpInfo(m_graph.addStructureSet(arrayProfile->expectedStructure())), nodePtr->child1().index());
checkStructure.ref();
NodeIndex checkStructureIndex = m_graph.size();
m_graph.append(checkStructure);
m_insertionSet.append(m_indexInBlock, checkStructureIndex);
nodePtr = &m_graph[m_compileIndex];
}
} else {
arrayMode = arrayMode.refine(
m_graph[node.child1()].prediction(),
m_graph[m_compileIndex].prediction());
}
if (!arrayMode.supportsLength())
break;
nodePtr->setOp(GetArrayLength);
ASSERT(nodePtr->flags() & NodeMustGenerate);
nodePtr->clearFlags(NodeMustGenerate | NodeClobbersWorld);
m_graph.deref(m_compileIndex);
nodePtr->setArrayMode(arrayMode);
NodeIndex storage = checkArray(arrayMode, nodePtr->codeOrigin, nodePtr->child1().index(), NoNode, lengthNeedsStorage, nodePtr->shouldGenerate());
if (storage == NoNode)
break;
nodePtr = &m_graph[m_compileIndex];
nodePtr->children.child2() = Edge(storage);
break;
}
case GetIndexedPropertyStorage: {
ASSERT(node.arrayMode().canCSEStorage());
break;
}
case GetByVal: {
node.setArrayMode(
node.arrayMode().refine(
m_graph[node.child1()].prediction(),
m_graph[node.child2()].prediction(),
SpecNone, node.flags()));
blessArrayOperation(node.child1(), node.child2(), 2);
Node* nodePtr = &m_graph[m_compileIndex];
ArrayMode arrayMode = nodePtr->arrayMode();
if (arrayMode.type() == Array::Double
&& arrayMode.arrayClass() == Array::OriginalArray
&& arrayMode.speculation() == Array::InBounds
&& arrayMode.conversion() == Array::AsIs
&& m_graph.globalObjectFor(nodePtr->codeOrigin)->arrayPrototypeChainIsSane()
&& !(nodePtr->flags() & NodeUsedAsOther))
nodePtr->setArrayMode(arrayMode.withSpeculation(Array::SaneChain));
break;
}
case StringCharAt:
case StringCharCodeAt: {
// Currently we have no good way of refining these.
ASSERT(node.arrayMode() == ArrayMode(Array::String));
blessArrayOperation(node.child1(), node.child2(), 2);
break;
}
case ArrayPush: {
// May need to refine the array mode in case the value prediction contravenes
// the array prediction. For example, we may have evidence showing that the
// array is in Int32 mode, but the value we're storing is likely to be a double.
// Then we should turn this into a conversion to Double array followed by the
// push. On the other hand, we absolutely don't want to refine based on the
// base prediction. If it has non-cell garbage in it, then we want that to be
// ignored. That's because ArrayPush can't handle any array modes that aren't
// array-related - so if refine() turned this into a "Generic" ArrayPush then
// that would break things.
node.setArrayMode(
node.arrayMode().refine(
m_graph[node.child1()].prediction() & SpecCell,
SpecInt32,
m_graph[node.child2()].prediction()));
blessArrayOperation(node.child1(), Edge(), 2);
Node* nodePtr = &m_graph[m_compileIndex];
switch (nodePtr->arrayMode().type()) {
case Array::Double:
fixDoubleEdge(1);
break;
default:
break;
}
break;
}
case ArrayPop: {
blessArrayOperation(node.child1(), Edge(), 1);
break;
}
case ValueToInt32: {
if (m_graph[node.child1()].shouldSpeculateNumber()
&& node.mustGenerate()) {
node.clearFlags(NodeMustGenerate);
m_graph.deref(m_compileIndex);
}
break;
}
case BitAnd:
case BitOr:
case BitXor:
case BitRShift:
case BitLShift:
case BitURShift: {
fixIntEdge(node.children.child1());
fixIntEdge(node.children.child2());
break;
}
case CompareEq:
case CompareLess:
case CompareLessEq:
case CompareGreater:
case CompareGreaterEq:
case CompareStrictEq: {
if (Node::shouldSpeculateInteger(m_graph[node.child1()], m_graph[node.child2()]))
break;
if (!Node::shouldSpeculateNumber(m_graph[node.child1()], m_graph[node.child2()]))
break;
fixDoubleEdge(0);
fixDoubleEdge(1);
break;
}
case LogicalNot: {
if (m_graph[node.child1()].shouldSpeculateInteger())
break;
if (!m_graph[node.child1()].shouldSpeculateNumber())
break;
fixDoubleEdge(0);
break;
}
case Branch: {
if (!m_graph[node.child1()].shouldSpeculateInteger()
&& m_graph[node.child1()].shouldSpeculateNumber())
fixDoubleEdge(0);
Node& myNode = m_graph[m_compileIndex]; // reload because the graph may have changed
Edge logicalNotEdge = myNode.child1();
Node& logicalNot = m_graph[logicalNotEdge];
if (logicalNot.op() == LogicalNot
&& logicalNot.adjustedRefCount() == 1) {
Edge newChildEdge = logicalNot.child1();
if (m_graph[newChildEdge].hasBooleanResult()) {
m_graph.ref(newChildEdge);
m_graph.deref(logicalNotEdge);
myNode.children.setChild1(newChildEdge);
BlockIndex toBeTaken = myNode.notTakenBlockIndex();
BlockIndex toBeNotTaken = myNode.takenBlockIndex();
myNode.setTakenBlockIndex(toBeTaken);
myNode.setNotTakenBlockIndex(toBeNotTaken);
}
}
break;
}
case SetLocal: {
if (node.variableAccessData()->isCaptured())
break;
if (!node.variableAccessData()->shouldUseDoubleFormat())
break;
fixDoubleEdge(0);
break;
}
case ArithAdd:
case ValueAdd: {
if (m_graph.addShouldSpeculateInteger(node))
break;
if (!Node::shouldSpeculateNumberExpectingDefined(m_graph[node.child1()], m_graph[node.child2()]))
break;
fixDoubleEdge(0);
fixDoubleEdge(1);
break;
}
case ArithSub: {
if (m_graph.addShouldSpeculateInteger(node)
&& node.canSpeculateInteger())
break;
fixDoubleEdge(0);
fixDoubleEdge(1);
break;
}
case ArithNegate: {
if (m_graph.negateShouldSpeculateInteger(node))
break;
fixDoubleEdge(0);
break;
}
case ArithMin:
case ArithMax:
case ArithMod: {
if (Node::shouldSpeculateIntegerForArithmetic(m_graph[node.child1()], m_graph[node.child2()])
&& node.canSpeculateInteger())
break;
fixDoubleEdge(0);
fixDoubleEdge(1);
break;
}
case ArithMul: {
if (m_graph.mulShouldSpeculateInteger(node))
break;
fixDoubleEdge(0);
fixDoubleEdge(1);
break;
}
case ArithDiv: {
if (Node::shouldSpeculateIntegerForArithmetic(m_graph[node.child1()], m_graph[node.child2()])
&& node.canSpeculateInteger()) {
if (isX86())
break;
fixDoubleEdge(0);
fixDoubleEdge(1);
Node& oldDivision = m_graph[m_compileIndex];
Node newDivision = oldDivision;
newDivision.setRefCount(2);
newDivision.predict(SpecDouble);
NodeIndex newDivisionIndex = m_graph.size();
oldDivision.setOp(DoubleAsInt32);
oldDivision.children.initialize(Edge(newDivisionIndex, DoubleUse), Edge(), Edge());
m_graph.append(newDivision);
m_insertionSet.append(m_indexInBlock, newDivisionIndex);
break;
}
fixDoubleEdge(0);
fixDoubleEdge(1);
break;
}
case ArithAbs: {
if (m_graph[node.child1()].shouldSpeculateIntegerForArithmetic()
&& node.canSpeculateInteger())
break;
fixDoubleEdge(0);
break;
}
case ArithSqrt: {
fixDoubleEdge(0);
break;
}
case PutByVal:
case PutByValAlias: {
Edge child1 = m_graph.varArgChild(node, 0);
Edge child2 = m_graph.varArgChild(node, 1);
Edge child3 = m_graph.varArgChild(node, 2);
node.setArrayMode(
node.arrayMode().refine(
m_graph[child1].prediction(),
m_graph[child2].prediction(),
m_graph[child3].prediction()));
blessArrayOperation(child1, child2, 3);
Node* nodePtr = &m_graph[m_compileIndex];
switch (nodePtr->arrayMode().modeForPut().type()) {
case Array::Double:
fixDoubleEdge(2);
break;
case Array::Int8Array:
case Array::Int16Array:
case Array::Int32Array:
case Array::Uint8Array:
case Array::Uint8ClampedArray:
case Array::Uint16Array:
case Array::Uint32Array:
if (!m_graph[child3].shouldSpeculateInteger())
fixDoubleEdge(2);
break;
case Array::Float32Array:
case Array::Float64Array:
fixDoubleEdge(2);
break;
default:
break;
}
break;
}
case NewArray: {
for (unsigned i = m_graph.varArgNumChildren(node); i--;) {
node.setIndexingType(
leastUpperBoundOfIndexingTypeAndType(
node.indexingType(), m_graph[m_graph.varArgChild(node, i)].prediction()));
}
if (node.indexingType() == ArrayWithDouble) {
for (unsigned i = m_graph.varArgNumChildren(node); i--;)
fixDoubleEdge(i);
}
break;
}
default:
break;
}
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
if (!(node.flags() & NodeHasVarArgs)) {
dataLogF("new children: ");
node.dumpChildren(WTF::dataFile());
}
dataLogF("\n");
#endif
}
NodeIndex addNode(const Node& node, bool shouldGenerate)
{
NodeIndex nodeIndex = m_graph.size();
m_graph.append(node);
m_insertionSet.append(m_indexInBlock, nodeIndex);
if (shouldGenerate)
m_graph[nodeIndex].ref();
return nodeIndex;
}
NodeIndex checkArray(ArrayMode arrayMode, CodeOrigin codeOrigin, NodeIndex array, NodeIndex index, bool (*storageCheck)(const ArrayMode&) = canCSEStorage, bool shouldGenerate = true)
{
ASSERT(arrayMode.isSpecific());
m_graph.ref(array);
Structure* structure = arrayMode.originalArrayStructure(m_graph, codeOrigin);
if (arrayMode.doesConversion()) {
if (index != NoNode)
m_graph.ref(index);
if (structure) {
if (m_indexInBlock > 0) {
// If the previous node was a CheckStructure inserted because of stuff
// that the array profile told us, then remove it.
Node& previousNode = m_graph[m_block->at(m_indexInBlock - 1)];
if (previousNode.op() == CheckStructure
&& previousNode.child1() == array
&& previousNode.codeOrigin == codeOrigin)
previousNode.setOpAndDefaultFlags(Phantom);
}
Node arrayify(ArrayifyToStructure, codeOrigin, OpInfo(structure), OpInfo(arrayMode.asWord()), array, index);
arrayify.ref();
NodeIndex arrayifyIndex = m_graph.size();
m_graph.append(arrayify);
m_insertionSet.append(m_indexInBlock, arrayifyIndex);
} else {
Node arrayify(Arrayify, codeOrigin, OpInfo(arrayMode.asWord()), array, index);
arrayify.ref();
NodeIndex arrayifyIndex = m_graph.size();
m_graph.append(arrayify);
m_insertionSet.append(m_indexInBlock, arrayifyIndex);
}
} else {
if (structure) {
Node checkStructure(CheckStructure, codeOrigin, OpInfo(m_graph.addStructureSet(structure)), array);
checkStructure.ref();
NodeIndex checkStructureIndex = m_graph.size();
m_graph.append(checkStructure);
m_insertionSet.append(m_indexInBlock, checkStructureIndex);
} else {
Node checkArray(CheckArray, codeOrigin, OpInfo(arrayMode.asWord()), array);
checkArray.ref();
NodeIndex checkArrayIndex = m_graph.size();
m_graph.append(checkArray);
m_insertionSet.append(m_indexInBlock, checkArrayIndex);
}
}
if (!storageCheck(arrayMode))
return NoNode;
if (shouldGenerate)
m_graph.ref(array);
if (arrayMode.usesButterfly())
return addNode(Node(GetButterfly, codeOrigin, array), shouldGenerate);
return addNode(Node(GetIndexedPropertyStorage, codeOrigin, OpInfo(arrayMode.asWord()), array), shouldGenerate);
}
void blessArrayOperation(Edge base, Edge index, unsigned storageChildIdx)
{
if (m_graph.m_fixpointState > BeforeFixpoint)
return;
Node* nodePtr = &m_graph[m_compileIndex];
switch (nodePtr->arrayMode().type()) {
case Array::ForceExit: {
Node forceExit(ForceOSRExit, nodePtr->codeOrigin);
forceExit.ref();
NodeIndex forceExitIndex = m_graph.size();
m_graph.append(forceExit);
m_insertionSet.append(m_indexInBlock, forceExitIndex);
return;
}
case Array::SelectUsingPredictions:
case Array::Unprofiled:
ASSERT_NOT_REACHED();
return;
case Array::Generic:
return;
default: {
NodeIndex storage = checkArray(nodePtr->arrayMode(), nodePtr->codeOrigin, base.index(), index.indexUnchecked());
if (storage == NoNode)
return;
m_graph.child(m_graph[m_compileIndex], storageChildIdx) = Edge(storage);
return;
} }
}
void fixIntEdge(Edge& edge)
{
Node& node = m_graph[edge];
if (node.op() != ValueToInt32)
return;
if (!m_graph[node.child1()].shouldSpeculateInteger())
return;
Edge oldEdge = edge;
Edge newEdge = node.child1();
m_graph.ref(newEdge);
m_graph.deref(oldEdge);
edge = newEdge;
}
void fixDoubleEdge(unsigned childIndex)
{
Node& source = m_graph[m_compileIndex];
Edge& edge = m_graph.child(source, childIndex);
if (!m_graph[edge].shouldSpeculateInteger()) {
edge.setUseKind(DoubleUse);
return;
}
NodeIndex resultIndex = (NodeIndex)m_graph.size();
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLogF("(replacing @%u->@%u with @%u->@%u) ",
m_compileIndex, edge.index(), m_compileIndex, resultIndex);
#endif
// Fix the edge up here because it's a reference that will be clobbered by
// the append() below.
NodeIndex oldIndex = edge.index();
edge = Edge(resultIndex, DoubleUse);
m_graph.append(Node(Int32ToDouble, source.codeOrigin, oldIndex));
m_insertionSet.append(m_indexInBlock, resultIndex);
Node& int32ToDouble = m_graph[resultIndex];
int32ToDouble.predict(SpecDouble);
int32ToDouble.ref();
}
BasicBlock* m_block;
unsigned m_indexInBlock;
NodeIndex m_compileIndex;
InsertionSet<NodeIndex> m_insertionSet;
};
bool performFixup(Graph& graph)
{
SamplingRegion samplingRegion("DFG Fixup Phase");
return runPhase<FixupPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)