blob: 2b0ea3aac89200c4cbba379ee5407266d40380db [file] [log] [blame]
/*
* Copyright (C) 1999-2001 Harri Porten (porten@kde.org)
* Copyright (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2003, 2007, 2008, 2011 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef CallFrame_h
#define CallFrame_h
#include "AbstractPC.h"
#include "JSGlobalData.h"
#include "JSStack.h"
#include "MacroAssemblerCodeRef.h"
namespace JSC {
class Arguments;
class JSActivation;
class Interpreter;
class JSScope;
// Represents the current state of script execution.
// Passed as the first argument to most functions.
class ExecState : private Register {
public:
JSValue calleeAsValue() const { return this[JSStack::Callee].jsValue(); }
JSObject* callee() const { return this[JSStack::Callee].function(); }
CodeBlock* codeBlock() const { return this[JSStack::CodeBlock].Register::codeBlock(); }
JSScope* scope() const
{
ASSERT(this[JSStack::ScopeChain].Register::scope());
return this[JSStack::ScopeChain].Register::scope();
}
// Global object in which execution began.
JSGlobalObject* dynamicGlobalObject();
// Global object in which the currently executing code was defined.
// Differs from dynamicGlobalObject() during function calls across web browser frames.
JSGlobalObject* lexicalGlobalObject() const;
// Differs from lexicalGlobalObject because this will have DOM window shell rather than
// the actual DOM window, which can't be "this" for security reasons.
JSObject* globalThisValue() const;
JSGlobalData& globalData() const;
// Convenience functions for access to global data.
// It takes a few memory references to get from a call frame to the global data
// pointer, so these are inefficient, and should be used sparingly in new code.
// But they're used in many places in legacy code, so they're not going away any time soon.
void clearException() { globalData().exception = JSValue(); }
JSValue exception() const { return globalData().exception; }
bool hadException() const { return globalData().exception; }
const CommonIdentifiers& propertyNames() const { return *globalData().propertyNames; }
const MarkedArgumentBuffer& emptyList() const { return *globalData().emptyList; }
Interpreter* interpreter() { return globalData().interpreter; }
Heap* heap() { return &globalData().heap; }
#ifndef NDEBUG
void dumpCaller();
#endif
static const HashTable* arrayConstructorTable(CallFrame* callFrame) { return callFrame->globalData().arrayConstructorTable; }
static const HashTable* arrayPrototypeTable(CallFrame* callFrame) { return callFrame->globalData().arrayPrototypeTable; }
static const HashTable* booleanPrototypeTable(CallFrame* callFrame) { return callFrame->globalData().booleanPrototypeTable; }
static const HashTable* dateTable(CallFrame* callFrame) { return callFrame->globalData().dateTable; }
static const HashTable* dateConstructorTable(CallFrame* callFrame) { return callFrame->globalData().dateConstructorTable; }
static const HashTable* errorPrototypeTable(CallFrame* callFrame) { return callFrame->globalData().errorPrototypeTable; }
static const HashTable* globalObjectTable(CallFrame* callFrame) { return callFrame->globalData().globalObjectTable; }
static const HashTable* jsonTable(CallFrame* callFrame) { return callFrame->globalData().jsonTable; }
static const HashTable* mathTable(CallFrame* callFrame) { return callFrame->globalData().mathTable; }
static const HashTable* numberConstructorTable(CallFrame* callFrame) { return callFrame->globalData().numberConstructorTable; }
static const HashTable* numberPrototypeTable(CallFrame* callFrame) { return callFrame->globalData().numberPrototypeTable; }
static const HashTable* objectConstructorTable(CallFrame* callFrame) { return callFrame->globalData().objectConstructorTable; }
static const HashTable* objectPrototypeTable(CallFrame* callFrame) { return callFrame->globalData().objectPrototypeTable; }
static const HashTable* privateNamePrototypeTable(CallFrame* callFrame) { return callFrame->globalData().privateNamePrototypeTable; }
static const HashTable* regExpTable(CallFrame* callFrame) { return callFrame->globalData().regExpTable; }
static const HashTable* regExpConstructorTable(CallFrame* callFrame) { return callFrame->globalData().regExpConstructorTable; }
static const HashTable* regExpPrototypeTable(CallFrame* callFrame) { return callFrame->globalData().regExpPrototypeTable; }
static const HashTable* stringTable(CallFrame* callFrame) { return callFrame->globalData().stringTable; }
static const HashTable* stringConstructorTable(CallFrame* callFrame) { return callFrame->globalData().stringConstructorTable; }
static CallFrame* create(Register* callFrameBase) { return static_cast<CallFrame*>(callFrameBase); }
Register* registers() { return this; }
CallFrame& operator=(const Register& r) { *static_cast<Register*>(this) = r; return *this; }
CallFrame* callerFrame() const { return this[JSStack::CallerFrame].callFrame(); }
#if ENABLE(JIT) || ENABLE(LLINT)
ReturnAddressPtr returnPC() const { return ReturnAddressPtr(this[JSStack::ReturnPC].vPC()); }
bool hasReturnPC() const { return !!this[JSStack::ReturnPC].vPC(); }
void clearReturnPC() { registers()[JSStack::ReturnPC] = static_cast<Instruction*>(0); }
#endif
AbstractPC abstractReturnPC(JSGlobalData& globalData) { return AbstractPC(globalData, this); }
#if USE(JSVALUE32_64)
unsigned bytecodeOffsetForNonDFGCode() const;
void setBytecodeOffsetForNonDFGCode(unsigned offset);
#else
unsigned bytecodeOffsetForNonDFGCode() const
{
ASSERT(codeBlock());
return this[JSStack::ArgumentCount].tag();
}
void setBytecodeOffsetForNonDFGCode(unsigned offset)
{
ASSERT(codeBlock());
this[JSStack::ArgumentCount].tag() = static_cast<int32_t>(offset);
}
#endif
Register* frameExtent()
{
if (!codeBlock())
return registers();
return frameExtentInternal();
}
Register* frameExtentInternal();
#if ENABLE(DFG_JIT)
InlineCallFrame* inlineCallFrame() const { return this[JSStack::ReturnPC].asInlineCallFrame(); }
unsigned codeOriginIndexForDFG() const { return this[JSStack::ArgumentCount].tag(); }
#else
// This will never be called if !ENABLE(DFG_JIT) since all calls should be guarded by
// isInlineCallFrame(). But to make it easier to write code without having a bunch of
// #if's, we make a dummy implementation available anyway.
InlineCallFrame* inlineCallFrame() const
{
ASSERT_NOT_REACHED();
return 0;
}
#endif
#if USE(JSVALUE32_64)
Instruction* currentVPC() const
{
return bitwise_cast<Instruction*>(this[JSStack::ArgumentCount].tag());
}
void setCurrentVPC(Instruction* vpc)
{
this[JSStack::ArgumentCount].tag() = bitwise_cast<int32_t>(vpc);
}
#else
Instruction* currentVPC() const;
void setCurrentVPC(Instruction* vpc);
#endif
void setCallerFrame(CallFrame* callerFrame) { static_cast<Register*>(this)[JSStack::CallerFrame] = callerFrame; }
void setScope(JSScope* scope) { static_cast<Register*>(this)[JSStack::ScopeChain] = scope; }
ALWAYS_INLINE void init(CodeBlock* codeBlock, Instruction* vPC, JSScope* scope,
CallFrame* callerFrame, int argc, JSObject* callee)
{
ASSERT(callerFrame); // Use noCaller() rather than 0 for the outer host call frame caller.
ASSERT(callerFrame == noCaller() || callerFrame->removeHostCallFrameFlag()->stack()->end() >= this);
setCodeBlock(codeBlock);
setScope(scope);
setCallerFrame(callerFrame);
setReturnPC(vPC); // This is either an Instruction* or a pointer into JIT generated code stored as an Instruction*.
setArgumentCountIncludingThis(argc); // original argument count (for the sake of the "arguments" object)
setCallee(callee);
}
// Read a register from the codeframe (or constant from the CodeBlock).
Register& r(int);
// Read a register for a non-constant
Register& uncheckedR(int);
// Access to arguments as passed. (After capture, arguments may move to a different location.)
size_t argumentCount() const { return argumentCountIncludingThis() - 1; }
size_t argumentCountIncludingThis() const { return this[JSStack::ArgumentCount].payload(); }
static int argumentOffset(int argument) { return s_firstArgumentOffset - argument; }
static int argumentOffsetIncludingThis(int argument) { return s_thisArgumentOffset - argument; }
// In the following (argument() and setArgument()), the 'argument'
// parameter is the index of the arguments of the target function of
// this frame. The index starts at 0 for the first arg, 1 for the
// second, etc.
//
// The arguments (in this case) do not include the 'this' value.
// arguments(0) will not fetch the 'this' value. To get/set 'this',
// use thisValue() and setThisValue() below.
JSValue argument(size_t argument)
{
if (argument >= argumentCount())
return jsUndefined();
return this[argumentOffset(argument)].jsValue();
}
void setArgument(size_t argument, JSValue value)
{
this[argumentOffset(argument)] = value;
}
static int thisArgumentOffset() { return argumentOffsetIncludingThis(0); }
JSValue thisValue() { return this[thisArgumentOffset()].jsValue(); }
void setThisValue(JSValue value) { this[thisArgumentOffset()] = value; }
JSValue argumentAfterCapture(size_t argument);
static int offsetFor(size_t argumentCountIncludingThis) { return argumentCountIncludingThis + JSStack::CallFrameHeaderSize; }
// FIXME: Remove these.
int hostThisRegister() { return thisArgumentOffset(); }
JSValue hostThisValue() { return thisValue(); }
static CallFrame* noCaller() { return reinterpret_cast<CallFrame*>(HostCallFrameFlag); }
bool hasHostCallFrameFlag() const { return reinterpret_cast<intptr_t>(this) & HostCallFrameFlag; }
CallFrame* addHostCallFrameFlag() const { return reinterpret_cast<CallFrame*>(reinterpret_cast<intptr_t>(this) | HostCallFrameFlag); }
CallFrame* removeHostCallFrameFlag() { return reinterpret_cast<CallFrame*>(reinterpret_cast<intptr_t>(this) & ~HostCallFrameFlag); }
void setArgumentCountIncludingThis(int count) { static_cast<Register*>(this)[JSStack::ArgumentCount].payload() = count; }
void setCallee(JSObject* callee) { static_cast<Register*>(this)[JSStack::Callee] = Register::withCallee(callee); }
void setCodeBlock(CodeBlock* codeBlock) { static_cast<Register*>(this)[JSStack::CodeBlock] = codeBlock; }
void setReturnPC(void* value) { static_cast<Register*>(this)[JSStack::ReturnPC] = (Instruction*)value; }
#if ENABLE(DFG_JIT)
bool isInlineCallFrame();
void setInlineCallFrame(InlineCallFrame* inlineCallFrame) { static_cast<Register*>(this)[JSStack::ReturnPC] = inlineCallFrame; }
// Call this to get the semantically correct JS CallFrame* for the
// currently executing function.
CallFrame* trueCallFrame(AbstractPC);
// Call this to get the semantically correct JS CallFrame* corresponding
// to the caller. This resolves issues surrounding inlining and the
// HostCallFrameFlag stuff.
CallFrame* trueCallerFrame();
CodeBlock* someCodeBlockForPossiblyInlinedCode();
#else
bool isInlineCallFrame() { return false; }
CallFrame* trueCallFrame(AbstractPC) { return this; }
CallFrame* trueCallerFrame() { return callerFrame()->removeHostCallFrameFlag(); }
CodeBlock* someCodeBlockForPossiblyInlinedCode() { return codeBlock(); }
#endif
CallFrame* callerFrameNoFlags() { return callerFrame()->removeHostCallFrameFlag(); }
// Call this to get the true call frame (accounted for inlining and any
// other optimizations), when you have entered into VM code through one
// of the "blessed" entrypoints (JITStubs or DFGOperations). This means
// that if you're pretty much anywhere in the VM you can safely call this;
// though if you were to magically get an ExecState* by, say, interrupting
// a thread that is running JS code and brutishly scraped the call frame
// register, calling this method would probably lead to horrible things
// happening.
CallFrame* trueCallFrameFromVMCode() { return trueCallFrame(AbstractPC()); }
private:
static const intptr_t HostCallFrameFlag = 1;
static const int s_thisArgumentOffset = -1 - JSStack::CallFrameHeaderSize;
static const int s_firstArgumentOffset = s_thisArgumentOffset - 1;
#ifndef NDEBUG
JSStack* stack();
#endif
#if ENABLE(DFG_JIT)
bool isInlineCallFrameSlow();
#endif
ExecState();
~ExecState();
// The following are for internal use in debugging and verification
// code only and not meant as an API for general usage:
size_t argIndexForRegister(Register* reg)
{
// The register at 'offset' number of slots from the frame pointer
// i.e.
// reg = frame[offset];
// ==> reg = frame + offset;
// ==> offset = reg - frame;
int offset = reg - this->registers();
// The offset is defined (based on argumentOffset()) to be:
// offset = s_firstArgumentOffset - argIndex;
// Hence:
// argIndex = s_firstArgumentOffset - offset;
size_t argIndex = s_firstArgumentOffset - offset;
return argIndex;
}
JSValue getArgumentUnsafe(size_t argIndex)
{
// User beware! This method does not verify that there is a valid
// argument at the specified argIndex. This is used for debugging
// and verification code only. The caller is expected to know what
// he/she is doing when calling this method.
return this[argumentOffset(argIndex)].jsValue();
}
friend class JSStack;
friend class VMInspector;
};
} // namespace JSC
#endif // CallFrame_h