blob: 9f0ce3a7749f477f2e8cc655b917aa1b8cfaf3f6 [file] [log] [blame]
/*
* Copyright (C) 2009, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2010 Patrick Gansterer <paroga@paroga.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(JIT)
#include "JIT.h"
#include "Arguments.h"
#include "CopiedSpaceInlines.h"
#include "Heap.h"
#include "JITInlines.h"
#include "JITStubCall.h"
#include "JSArray.h"
#include "JSCell.h"
#include "JSFunction.h"
#include "JSPropertyNameIterator.h"
#include "LinkBuffer.h"
namespace JSC {
#if USE(JSVALUE64)
PassRefPtr<ExecutableMemoryHandle> JIT::privateCompileCTIMachineTrampolines(JSGlobalData* globalData, TrampolineStructure *trampolines)
{
// (2) The second function provides fast property access for string length
Label stringLengthBegin = align();
// Check eax is a string
Jump string_failureCases1 = emitJumpIfNotJSCell(regT0);
Jump string_failureCases2 = branchPtr(NotEqual, Address(regT0, JSCell::structureOffset()), TrustedImmPtr(globalData->stringStructure.get()));
// Checks out okay! - get the length from the Ustring.
load32(Address(regT0, OBJECT_OFFSETOF(JSString, m_length)), regT0);
Jump string_failureCases3 = branch32(LessThan, regT0, TrustedImm32(0));
// regT0 contains a 64 bit value (is positive, is zero extended) so we don't need sign extend here.
emitFastArithIntToImmNoCheck(regT0, regT0);
ret();
// (3) Trampolines for the slow cases of op_call / op_call_eval / op_construct.
COMPILE_ASSERT(sizeof(CodeType) == 4, CodeTypeEnumMustBe32Bit);
JumpList callSlowCase;
JumpList constructSlowCase;
// VirtualCallLink Trampoline
// regT0 holds callee; callFrame is moved and partially initialized.
Label virtualCallLinkBegin = align();
callSlowCase.append(emitJumpIfNotJSCell(regT0));
callSlowCase.append(emitJumpIfNotType(regT0, regT1, JSFunctionType));
// Finish canonical initialization before JS function call.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_scope)), regT1);
emitPutCellToCallFrameHeader(regT1, JSStack::ScopeChain);
// Also initialize ReturnPC for use by lazy linking and exceptions.
preserveReturnAddressAfterCall(regT3);
emitPutToCallFrameHeader(regT3, JSStack::ReturnPC);
storePtr(callFrameRegister, &m_globalData->topCallFrame);
restoreArgumentReference();
Call callLazyLinkCall = call();
restoreReturnAddressBeforeReturn(regT3);
jump(regT0);
// VirtualConstructLink Trampoline
// regT0 holds callee; callFrame is moved and partially initialized.
Label virtualConstructLinkBegin = align();
constructSlowCase.append(emitJumpIfNotJSCell(regT0));
constructSlowCase.append(emitJumpIfNotType(regT0, regT1, JSFunctionType));
// Finish canonical initialization before JS function call.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_scope)), regT1);
emitPutCellToCallFrameHeader(regT1, JSStack::ScopeChain);
// Also initialize ReturnPC for use by lazy linking and exeptions.
preserveReturnAddressAfterCall(regT3);
emitPutToCallFrameHeader(regT3, JSStack::ReturnPC);
storePtr(callFrameRegister, &m_globalData->topCallFrame);
restoreArgumentReference();
Call callLazyLinkConstruct = call();
restoreReturnAddressBeforeReturn(regT3);
jump(regT0);
// VirtualCall Trampoline
// regT0 holds callee; regT2 will hold the FunctionExecutable.
Label virtualCallBegin = align();
callSlowCase.append(emitJumpIfNotJSCell(regT0));
callSlowCase.append(emitJumpIfNotType(regT0, regT1, JSFunctionType));
// Finish canonical initialization before JS function call.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_scope)), regT1);
emitPutCellToCallFrameHeader(regT1, JSStack::ScopeChain);
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
Jump hasCodeBlock1 = branch32(GreaterThanOrEqual, Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_numParametersForCall)), TrustedImm32(0));
preserveReturnAddressAfterCall(regT3);
storePtr(callFrameRegister, &m_globalData->topCallFrame);
restoreArgumentReference();
Call callCompileCall = call();
restoreReturnAddressBeforeReturn(regT3);
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
hasCodeBlock1.link(this);
loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_jitCodeForCallWithArityCheck)), regT0);
jump(regT0);
// VirtualConstruct Trampoline
// regT0 holds callee; regT2 will hold the FunctionExecutable.
Label virtualConstructBegin = align();
constructSlowCase.append(emitJumpIfNotJSCell(regT0));
constructSlowCase.append(emitJumpIfNotType(regT0, regT1, JSFunctionType));
// Finish canonical initialization before JS function call.
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_scope)), regT1);
emitPutCellToCallFrameHeader(regT1, JSStack::ScopeChain);
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
Jump hasCodeBlock2 = branch32(GreaterThanOrEqual, Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_numParametersForConstruct)), TrustedImm32(0));
preserveReturnAddressAfterCall(regT3);
storePtr(callFrameRegister, &m_globalData->topCallFrame);
restoreArgumentReference();
Call callCompileConstruct = call();
restoreReturnAddressBeforeReturn(regT3);
loadPtr(Address(regT0, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
hasCodeBlock2.link(this);
loadPtr(Address(regT2, OBJECT_OFFSETOF(FunctionExecutable, m_jitCodeForConstructWithArityCheck)), regT0);
jump(regT0);
callSlowCase.link(this);
// Finish canonical initialization before JS function call.
emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, regT2);
emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, regT2, regT2);
emitPutCellToCallFrameHeader(regT2, JSStack::ScopeChain);
// Also initialize ReturnPC and CodeBlock, like a JS function would.
preserveReturnAddressAfterCall(regT3);
emitPutToCallFrameHeader(regT3, JSStack::ReturnPC);
emitPutImmediateToCallFrameHeader(0, JSStack::CodeBlock);
storePtr(callFrameRegister, &m_globalData->topCallFrame);
restoreArgumentReference();
Call callCallNotJSFunction = call();
emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, callFrameRegister);
restoreReturnAddressBeforeReturn(regT3);
ret();
constructSlowCase.link(this);
// Finish canonical initialization before JS function call.
emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, regT2);
emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, regT2, regT2);
emitPutCellToCallFrameHeader(regT2, JSStack::ScopeChain);
// Also initialize ReturnPC and CodeBlock, like a JS function would.
preserveReturnAddressAfterCall(regT3);
emitPutToCallFrameHeader(regT3, JSStack::ReturnPC);
emitPutImmediateToCallFrameHeader(0, JSStack::CodeBlock);
storePtr(callFrameRegister, &m_globalData->topCallFrame);
restoreArgumentReference();
Call callConstructNotJSFunction = call();
emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, callFrameRegister);
restoreReturnAddressBeforeReturn(regT3);
ret();
// NativeCall Trampoline
Label nativeCallThunk = privateCompileCTINativeCall(globalData);
Label nativeConstructThunk = privateCompileCTINativeCall(globalData, true);
Call string_failureCases1Call = makeTailRecursiveCall(string_failureCases1);
Call string_failureCases2Call = makeTailRecursiveCall(string_failureCases2);
Call string_failureCases3Call = makeTailRecursiveCall(string_failureCases3);
// All trampolines constructed! copy the code, link up calls, and set the pointers on the Machine object.
LinkBuffer patchBuffer(*m_globalData, this, GLOBAL_THUNK_ID);
patchBuffer.link(string_failureCases1Call, FunctionPtr(cti_op_get_by_id_string_fail));
patchBuffer.link(string_failureCases2Call, FunctionPtr(cti_op_get_by_id_string_fail));
patchBuffer.link(string_failureCases3Call, FunctionPtr(cti_op_get_by_id_string_fail));
patchBuffer.link(callLazyLinkCall, FunctionPtr(cti_vm_lazyLinkCall));
patchBuffer.link(callLazyLinkConstruct, FunctionPtr(cti_vm_lazyLinkConstruct));
patchBuffer.link(callCompileCall, FunctionPtr(cti_op_call_jitCompile));
patchBuffer.link(callCompileConstruct, FunctionPtr(cti_op_construct_jitCompile));
patchBuffer.link(callCallNotJSFunction, FunctionPtr(cti_op_call_NotJSFunction));
patchBuffer.link(callConstructNotJSFunction, FunctionPtr(cti_op_construct_NotJSConstruct));
CodeRef finalCode = FINALIZE_CODE(patchBuffer, ("JIT CTI machine trampolines"));
RefPtr<ExecutableMemoryHandle> executableMemory = finalCode.executableMemory();
trampolines->ctiVirtualCallLink = patchBuffer.trampolineAt(virtualCallLinkBegin);
trampolines->ctiVirtualConstructLink = patchBuffer.trampolineAt(virtualConstructLinkBegin);
trampolines->ctiVirtualCall = patchBuffer.trampolineAt(virtualCallBegin);
trampolines->ctiVirtualConstruct = patchBuffer.trampolineAt(virtualConstructBegin);
trampolines->ctiNativeCall = patchBuffer.trampolineAt(nativeCallThunk);
trampolines->ctiNativeConstruct = patchBuffer.trampolineAt(nativeConstructThunk);
trampolines->ctiStringLengthTrampoline = patchBuffer.trampolineAt(stringLengthBegin);
return executableMemory.release();
}
JIT::Label JIT::privateCompileCTINativeCall(JSGlobalData* globalData, bool isConstruct)
{
int executableOffsetToFunction = isConstruct ? OBJECT_OFFSETOF(NativeExecutable, m_constructor) : OBJECT_OFFSETOF(NativeExecutable, m_function);
Label nativeCallThunk = align();
emitPutImmediateToCallFrameHeader(0, JSStack::CodeBlock);
storePtr(callFrameRegister, &m_globalData->topCallFrame);
#if CPU(X86_64)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, regT0);
emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, regT1, regT0);
emitPutCellToCallFrameHeader(regT1, JSStack::ScopeChain);
peek(regT1);
emitPutToCallFrameHeader(regT1, JSStack::ReturnPC);
// Calling convention: f(edi, esi, edx, ecx, ...);
// Host function signature: f(ExecState*);
move(callFrameRegister, X86Registers::edi);
subPtr(TrustedImm32(16 - sizeof(int64_t)), stackPointerRegister); // Align stack after call.
emitGetFromCallFrameHeaderPtr(JSStack::Callee, X86Registers::esi);
loadPtr(Address(X86Registers::esi, OBJECT_OFFSETOF(JSFunction, m_executable)), X86Registers::r9);
move(regT0, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
call(Address(X86Registers::r9, executableOffsetToFunction));
addPtr(TrustedImm32(16 - sizeof(int64_t)), stackPointerRegister);
#elif CPU(ARM)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, regT2);
emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, regT1, regT2);
emitPutCellToCallFrameHeader(regT1, JSStack::ScopeChain);
preserveReturnAddressAfterCall(regT3); // Callee preserved
emitPutToCallFrameHeader(regT3, JSStack::ReturnPC);
// Calling convention: f(r0 == regT0, r1 == regT1, ...);
// Host function signature: f(ExecState*);
move(callFrameRegister, ARMRegisters::r0);
emitGetFromCallFrameHeaderPtr(JSStack::Callee, ARMRegisters::r1);
move(regT2, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
loadPtr(Address(ARMRegisters::r1, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
call(Address(regT2, executableOffsetToFunction));
restoreReturnAddressBeforeReturn(regT3);
#elif CPU(MIPS)
// Load caller frame's scope chain into this callframe so that whatever we call can
// get to its global data.
emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, regT0);
emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, regT1, regT0);
emitPutCellToCallFrameHeader(regT1, JSStack::ScopeChain);
preserveReturnAddressAfterCall(regT3); // Callee preserved
emitPutToCallFrameHeader(regT3, JSStack::ReturnPC);
// Calling convention: f(a0, a1, a2, a3);
// Host function signature: f(ExecState*);
// Allocate stack space for 16 bytes (8-byte aligned)
// 16 bytes (unused) for 4 arguments
subPtr(TrustedImm32(16), stackPointerRegister);
// Setup arg0
move(callFrameRegister, MIPSRegisters::a0);
// Call
emitGetFromCallFrameHeaderPtr(JSStack::Callee, MIPSRegisters::a2);
loadPtr(Address(MIPSRegisters::a2, OBJECT_OFFSETOF(JSFunction, m_executable)), regT2);
move(regT0, callFrameRegister); // Eagerly restore caller frame register to avoid loading from stack.
call(Address(regT2, executableOffsetToFunction));
// Restore stack space
addPtr(TrustedImm32(16), stackPointerRegister);
restoreReturnAddressBeforeReturn(regT3);
#else
#error "JIT not supported on this platform."
UNUSED_PARAM(executableOffsetToFunction);
breakpoint();
#endif
// Check for an exception
load64(&(globalData->exception), regT2);
Jump exceptionHandler = branchTest64(NonZero, regT2);
// Return.
ret();
// Handle an exception
exceptionHandler.link(this);
// Grab the return address.
preserveReturnAddressAfterCall(regT1);
move(TrustedImmPtr(&globalData->exceptionLocation), regT2);
storePtr(regT1, regT2);
poke(callFrameRegister, OBJECT_OFFSETOF(struct JITStackFrame, callFrame) / sizeof(void*));
storePtr(callFrameRegister, &m_globalData->topCallFrame);
// Set the return address.
move(TrustedImmPtr(FunctionPtr(ctiVMThrowTrampoline).value()), regT1);
restoreReturnAddressBeforeReturn(regT1);
ret();
return nativeCallThunk;
}
JIT::CodeRef JIT::privateCompileCTINativeCall(JSGlobalData* globalData, NativeFunction)
{
return CodeRef::createSelfManagedCodeRef(globalData->jitStubs->ctiNativeCall());
}
void JIT::emit_op_mov(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
if (canBeOptimized()) {
// Use simpler approach, since the DFG thinks that the last result register
// is always set to the destination on every operation.
emitGetVirtualRegister(src, regT0);
emitPutVirtualRegister(dst);
} else {
if (m_codeBlock->isConstantRegisterIndex(src)) {
if (!getConstantOperand(src).isNumber())
store64(TrustedImm64(JSValue::encode(getConstantOperand(src))), Address(callFrameRegister, dst * sizeof(Register)));
else
store64(Imm64(JSValue::encode(getConstantOperand(src))), Address(callFrameRegister, dst * sizeof(Register)));
if (dst == m_lastResultBytecodeRegister)
killLastResultRegister();
} else if ((src == m_lastResultBytecodeRegister) || (dst == m_lastResultBytecodeRegister)) {
// If either the src or dst is the cached register go though
// get/put registers to make sure we track this correctly.
emitGetVirtualRegister(src, regT0);
emitPutVirtualRegister(dst);
} else {
// Perform the copy via regT1; do not disturb any mapping in regT0.
load64(Address(callFrameRegister, src * sizeof(Register)), regT1);
store64(regT1, Address(callFrameRegister, dst * sizeof(Register)));
}
}
}
void JIT::emit_op_end(Instruction* currentInstruction)
{
ASSERT(returnValueRegister != callFrameRegister);
emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister);
restoreReturnAddressBeforeReturn(Address(callFrameRegister, JSStack::ReturnPC * static_cast<int>(sizeof(Register))));
ret();
}
void JIT::emit_op_jmp(Instruction* currentInstruction)
{
unsigned target = currentInstruction[1].u.operand;
addJump(jump(), target);
}
void JIT::emit_op_new_object(Instruction* currentInstruction)
{
emitAllocateJSFinalObject(TrustedImmPtr(m_codeBlock->globalObject()->emptyObjectStructure()), regT0, regT1);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_new_object(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall(this, cti_op_new_object).call(currentInstruction[1].u.operand);
}
void JIT::emit_op_check_has_instance(Instruction* currentInstruction)
{
unsigned baseVal = currentInstruction[3].u.operand;
emitGetVirtualRegister(baseVal, regT0);
// Check that baseVal is a cell.
emitJumpSlowCaseIfNotJSCell(regT0, baseVal);
// Check that baseVal 'ImplementsHasInstance'.
loadPtr(Address(regT0, JSCell::structureOffset()), regT0);
addSlowCase(branchTest8(Zero, Address(regT0, Structure::typeInfoFlagsOffset()), TrustedImm32(ImplementsDefaultHasInstance)));
}
void JIT::emit_op_instanceof(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned value = currentInstruction[2].u.operand;
unsigned proto = currentInstruction[3].u.operand;
// Load the operands (baseVal, proto, and value respectively) into registers.
// We use regT0 for baseVal since we will be done with this first, and we can then use it for the result.
emitGetVirtualRegister(value, regT2);
emitGetVirtualRegister(proto, regT1);
// Check that proto are cells. baseVal must be a cell - this is checked by op_check_has_instance.
emitJumpSlowCaseIfNotJSCell(regT2, value);
emitJumpSlowCaseIfNotJSCell(regT1, proto);
// Check that prototype is an object
loadPtr(Address(regT1, JSCell::structureOffset()), regT3);
addSlowCase(emitJumpIfNotObject(regT3));
// Optimistically load the result true, and start looping.
// Initially, regT1 still contains proto and regT2 still contains value.
// As we loop regT2 will be updated with its prototype, recursively walking the prototype chain.
move(TrustedImm64(JSValue::encode(jsBoolean(true))), regT0);
Label loop(this);
// Load the prototype of the object in regT2. If this is equal to regT1 - WIN!
// Otherwise, check if we've hit null - if we have then drop out of the loop, if not go again.
loadPtr(Address(regT2, JSCell::structureOffset()), regT2);
load64(Address(regT2, Structure::prototypeOffset()), regT2);
Jump isInstance = branchPtr(Equal, regT2, regT1);
emitJumpIfJSCell(regT2).linkTo(loop, this);
// We get here either by dropping out of the loop, or if value was not an Object. Result is false.
move(TrustedImm64(JSValue::encode(jsBoolean(false))), regT0);
// isInstance jumps right down to here, to skip setting the result to false (it has already set true).
isInstance.link(this);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_is_undefined(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned value = currentInstruction[2].u.operand;
emitGetVirtualRegister(value, regT0);
Jump isCell = emitJumpIfJSCell(regT0);
compare64(Equal, regT0, TrustedImm32(ValueUndefined), regT0);
Jump done = jump();
isCell.link(this);
loadPtr(Address(regT0, JSCell::structureOffset()), regT1);
Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT1, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImm32(0), regT0);
Jump notMasqueradesAsUndefined = jump();
isMasqueradesAsUndefined.link(this);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
loadPtr(Address(regT1, Structure::globalObjectOffset()), regT1);
comparePtr(Equal, regT0, regT1, regT0);
notMasqueradesAsUndefined.link(this);
done.link(this);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_is_boolean(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned value = currentInstruction[2].u.operand;
emitGetVirtualRegister(value, regT0);
xor64(TrustedImm32(static_cast<int32_t>(ValueFalse)), regT0);
test64(Zero, regT0, TrustedImm32(static_cast<int32_t>(~1)), regT0);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_is_number(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned value = currentInstruction[2].u.operand;
emitGetVirtualRegister(value, regT0);
test64(NonZero, regT0, tagTypeNumberRegister, regT0);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_is_string(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned value = currentInstruction[2].u.operand;
emitGetVirtualRegister(value, regT0);
Jump isNotCell = emitJumpIfNotJSCell(regT0);
loadPtr(Address(regT0, JSCell::structureOffset()), regT1);
compare8(Equal, Address(regT1, Structure::typeInfoTypeOffset()), TrustedImm32(StringType), regT0);
emitTagAsBoolImmediate(regT0);
Jump done = jump();
isNotCell.link(this);
move(TrustedImm32(ValueFalse), regT0);
done.link(this);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_call(Instruction* currentInstruction)
{
compileOpCall(op_call, currentInstruction, m_callLinkInfoIndex++);
}
void JIT::emit_op_call_eval(Instruction* currentInstruction)
{
compileOpCall(op_call_eval, currentInstruction, m_callLinkInfoIndex);
}
void JIT::emit_op_call_varargs(Instruction* currentInstruction)
{
compileOpCall(op_call_varargs, currentInstruction, m_callLinkInfoIndex++);
}
void JIT::emit_op_construct(Instruction* currentInstruction)
{
compileOpCall(op_construct, currentInstruction, m_callLinkInfoIndex++);
}
void JIT::emit_op_tear_off_activation(Instruction* currentInstruction)
{
int activation = currentInstruction[1].u.operand;
Jump activationNotCreated = branchTest64(Zero, addressFor(activation));
JITStubCall stubCall(this, cti_op_tear_off_activation);
stubCall.addArgument(activation, regT2);
stubCall.call();
activationNotCreated.link(this);
}
void JIT::emit_op_tear_off_arguments(Instruction* currentInstruction)
{
int arguments = currentInstruction[1].u.operand;
int activation = currentInstruction[2].u.operand;
Jump argsNotCreated = branchTest64(Zero, Address(callFrameRegister, sizeof(Register) * (unmodifiedArgumentsRegister(arguments))));
JITStubCall stubCall(this, cti_op_tear_off_arguments);
stubCall.addArgument(unmodifiedArgumentsRegister(arguments), regT2);
stubCall.addArgument(activation, regT2);
stubCall.call();
argsNotCreated.link(this);
}
void JIT::emit_op_ret(Instruction* currentInstruction)
{
ASSERT(callFrameRegister != regT1);
ASSERT(regT1 != returnValueRegister);
ASSERT(returnValueRegister != callFrameRegister);
// Return the result in %eax.
emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister);
// Grab the return address.
emitGetFromCallFrameHeaderPtr(JSStack::ReturnPC, regT1);
// Restore our caller's "r".
emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, callFrameRegister);
// Return.
restoreReturnAddressBeforeReturn(regT1);
ret();
}
void JIT::emit_op_ret_object_or_this(Instruction* currentInstruction)
{
ASSERT(callFrameRegister != regT1);
ASSERT(regT1 != returnValueRegister);
ASSERT(returnValueRegister != callFrameRegister);
// Return the result in %eax.
emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueRegister);
Jump notJSCell = emitJumpIfNotJSCell(returnValueRegister);
loadPtr(Address(returnValueRegister, JSCell::structureOffset()), regT2);
Jump notObject = emitJumpIfNotObject(regT2);
// Grab the return address.
emitGetFromCallFrameHeaderPtr(JSStack::ReturnPC, regT1);
// Restore our caller's "r".
emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, callFrameRegister);
// Return.
restoreReturnAddressBeforeReturn(regT1);
ret();
// Return 'this' in %eax.
notJSCell.link(this);
notObject.link(this);
emitGetVirtualRegister(currentInstruction[2].u.operand, returnValueRegister);
// Grab the return address.
emitGetFromCallFrameHeaderPtr(JSStack::ReturnPC, regT1);
// Restore our caller's "r".
emitGetFromCallFrameHeaderPtr(JSStack::CallerFrame, callFrameRegister);
// Return.
restoreReturnAddressBeforeReturn(regT1);
ret();
}
void JIT::emit_op_to_primitive(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
emitGetVirtualRegister(src, regT0);
Jump isImm = emitJumpIfNotJSCell(regT0);
addSlowCase(branchPtr(NotEqual, Address(regT0, JSCell::structureOffset()), TrustedImmPtr(m_globalData->stringStructure.get())));
isImm.link(this);
if (dst != src)
emitPutVirtualRegister(dst);
}
void JIT::emit_op_strcat(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_strcat);
stubCall.addArgument(TrustedImm32(currentInstruction[2].u.operand));
stubCall.addArgument(TrustedImm32(currentInstruction[3].u.operand));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_ensure_property_exists(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_ensure_property_exists);
stubCall.addArgument(TrustedImm32(currentInstruction[1].u.operand));
stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_not(Instruction* currentInstruction)
{
emitGetVirtualRegister(currentInstruction[2].u.operand, regT0);
// Invert against JSValue(false); if the value was tagged as a boolean, then all bits will be
// clear other than the low bit (which will be 0 or 1 for false or true inputs respectively).
// Then invert against JSValue(true), which will add the tag back in, and flip the low bit.
xor64(TrustedImm32(static_cast<int32_t>(ValueFalse)), regT0);
addSlowCase(branchTestPtr(NonZero, regT0, TrustedImm32(static_cast<int32_t>(~1))));
xor64(TrustedImm32(static_cast<int32_t>(ValueTrue)), regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_jfalse(Instruction* currentInstruction)
{
unsigned target = currentInstruction[2].u.operand;
emitGetVirtualRegister(currentInstruction[1].u.operand, regT0);
addJump(branch64(Equal, regT0, TrustedImm64(JSValue::encode(jsNumber(0)))), target);
Jump isNonZero = emitJumpIfImmediateInteger(regT0);
addJump(branch64(Equal, regT0, TrustedImm64(JSValue::encode(jsBoolean(false)))), target);
addSlowCase(branch64(NotEqual, regT0, TrustedImm64(JSValue::encode(jsBoolean(true)))));
isNonZero.link(this);
}
void JIT::emit_op_jeq_null(Instruction* currentInstruction)
{
unsigned src = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitGetVirtualRegister(src, regT0);
Jump isImmediate = emitJumpIfNotJSCell(regT0);
// First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure.
loadPtr(Address(regT0, JSCell::structureOffset()), regT2);
Jump isNotMasqueradesAsUndefined = branchTest8(Zero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
addJump(branchPtr(Equal, Address(regT2, Structure::globalObjectOffset()), regT0), target);
Jump masqueradesGlobalObjectIsForeign = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
and64(TrustedImm32(~TagBitUndefined), regT0);
addJump(branch64(Equal, regT0, TrustedImm64(JSValue::encode(jsNull()))), target);
isNotMasqueradesAsUndefined.link(this);
masqueradesGlobalObjectIsForeign.link(this);
};
void JIT::emit_op_jneq_null(Instruction* currentInstruction)
{
unsigned src = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitGetVirtualRegister(src, regT0);
Jump isImmediate = emitJumpIfNotJSCell(regT0);
// First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure.
loadPtr(Address(regT0, JSCell::structureOffset()), regT2);
addJump(branchTest8(Zero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)), target);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
addJump(branchPtr(NotEqual, Address(regT2, Structure::globalObjectOffset()), regT0), target);
Jump wasNotImmediate = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
and64(TrustedImm32(~TagBitUndefined), regT0);
addJump(branch64(NotEqual, regT0, TrustedImm64(JSValue::encode(jsNull()))), target);
wasNotImmediate.link(this);
}
void JIT::emit_op_jneq_ptr(Instruction* currentInstruction)
{
unsigned src = currentInstruction[1].u.operand;
Special::Pointer ptr = currentInstruction[2].u.specialPointer;
unsigned target = currentInstruction[3].u.operand;
emitGetVirtualRegister(src, regT0);
addJump(branchPtr(NotEqual, regT0, TrustedImmPtr(actualPointerFor(m_codeBlock, ptr))), target);
}
void JIT::emit_op_eq(Instruction* currentInstruction)
{
emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1);
emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2);
compare32(Equal, regT1, regT0, regT0);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_jtrue(Instruction* currentInstruction)
{
unsigned target = currentInstruction[2].u.operand;
emitGetVirtualRegister(currentInstruction[1].u.operand, regT0);
Jump isZero = branch64(Equal, regT0, TrustedImm64(JSValue::encode(jsNumber(0))));
addJump(emitJumpIfImmediateInteger(regT0), target);
addJump(branch64(Equal, regT0, TrustedImm64(JSValue::encode(jsBoolean(true)))), target);
addSlowCase(branch64(NotEqual, regT0, TrustedImm64(JSValue::encode(jsBoolean(false)))));
isZero.link(this);
}
void JIT::emit_op_neq(Instruction* currentInstruction)
{
emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1);
emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2);
compare32(NotEqual, regT1, regT0, regT0);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_bitxor(Instruction* currentInstruction)
{
emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1);
emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2);
xor64(regT1, regT0);
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_bitor(Instruction* currentInstruction)
{
emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1);
emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2);
or64(regT1, regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_throw(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_throw);
stubCall.addArgument(currentInstruction[1].u.operand, regT2);
stubCall.call();
ASSERT(regT0 == returnValueRegister);
#ifndef NDEBUG
// cti_op_throw always changes it's return address,
// this point in the code should never be reached.
breakpoint();
#endif
}
void JIT::emit_op_get_pnames(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int base = currentInstruction[2].u.operand;
int i = currentInstruction[3].u.operand;
int size = currentInstruction[4].u.operand;
int breakTarget = currentInstruction[5].u.operand;
JumpList isNotObject;
emitGetVirtualRegister(base, regT0);
if (!m_codeBlock->isKnownNotImmediate(base))
isNotObject.append(emitJumpIfNotJSCell(regT0));
if (base != m_codeBlock->thisRegister() || m_codeBlock->isStrictMode()) {
loadPtr(Address(regT0, JSCell::structureOffset()), regT2);
isNotObject.append(emitJumpIfNotObject(regT2));
}
// We could inline the case where you have a valid cache, but
// this call doesn't seem to be hot.
Label isObject(this);
JITStubCall getPnamesStubCall(this, cti_op_get_pnames);
getPnamesStubCall.addArgument(regT0);
getPnamesStubCall.call(dst);
load32(Address(regT0, OBJECT_OFFSETOF(JSPropertyNameIterator, m_jsStringsSize)), regT3);
store64(tagTypeNumberRegister, addressFor(i));
store32(TrustedImm32(Int32Tag), intTagFor(size));
store32(regT3, intPayloadFor(size));
Jump end = jump();
isNotObject.link(this);
move(regT0, regT1);
and32(TrustedImm32(~TagBitUndefined), regT1);
addJump(branch32(Equal, regT1, TrustedImm32(ValueNull)), breakTarget);
JITStubCall toObjectStubCall(this, cti_to_object);
toObjectStubCall.addArgument(regT0);
toObjectStubCall.call(base);
jump().linkTo(isObject, this);
end.link(this);
}
void JIT::emit_op_next_pname(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int base = currentInstruction[2].u.operand;
int i = currentInstruction[3].u.operand;
int size = currentInstruction[4].u.operand;
int it = currentInstruction[5].u.operand;
int target = currentInstruction[6].u.operand;
JumpList callHasProperty;
Label begin(this);
load32(intPayloadFor(i), regT0);
Jump end = branch32(Equal, regT0, intPayloadFor(size));
// Grab key @ i
loadPtr(addressFor(it), regT1);
loadPtr(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_jsStrings)), regT2);
load64(BaseIndex(regT2, regT0, TimesEight), regT2);
emitPutVirtualRegister(dst, regT2);
// Increment i
add32(TrustedImm32(1), regT0);
store32(regT0, intPayloadFor(i));
// Verify that i is valid:
emitGetVirtualRegister(base, regT0);
// Test base's structure
loadPtr(Address(regT0, JSCell::structureOffset()), regT2);
callHasProperty.append(branchPtr(NotEqual, regT2, Address(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_cachedStructure)))));
// Test base's prototype chain
loadPtr(Address(Address(regT1, OBJECT_OFFSETOF(JSPropertyNameIterator, m_cachedPrototypeChain))), regT3);
loadPtr(Address(regT3, OBJECT_OFFSETOF(StructureChain, m_vector)), regT3);
addJump(branchTestPtr(Zero, Address(regT3)), target);
Label checkPrototype(this);
load64(Address(regT2, Structure::prototypeOffset()), regT2);
callHasProperty.append(emitJumpIfNotJSCell(regT2));
loadPtr(Address(regT2, JSCell::structureOffset()), regT2);
callHasProperty.append(branchPtr(NotEqual, regT2, Address(regT3)));
addPtr(TrustedImm32(sizeof(Structure*)), regT3);
branchTestPtr(NonZero, Address(regT3)).linkTo(checkPrototype, this);
// Continue loop.
addJump(jump(), target);
// Slow case: Ask the object if i is valid.
callHasProperty.link(this);
emitGetVirtualRegister(dst, regT1);
JITStubCall stubCall(this, cti_has_property);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
// Test for valid key.
addJump(branchTest32(NonZero, regT0), target);
jump().linkTo(begin, this);
// End of loop.
end.link(this);
}
void JIT::emit_op_push_with_scope(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_push_with_scope);
stubCall.addArgument(currentInstruction[1].u.operand, regT2);
stubCall.call();
}
void JIT::emit_op_pop_scope(Instruction*)
{
JITStubCall(this, cti_op_pop_scope).call();
}
void JIT::compileOpStrictEq(Instruction* currentInstruction, CompileOpStrictEqType type)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
unsigned src2 = currentInstruction[3].u.operand;
emitGetVirtualRegisters(src1, regT0, src2, regT1);
// Jump slow if both are cells (to cover strings).
move(regT0, regT2);
or64(regT1, regT2);
addSlowCase(emitJumpIfJSCell(regT2));
// Jump slow if either is a double. First test if it's an integer, which is fine, and then test
// if it's a double.
Jump leftOK = emitJumpIfImmediateInteger(regT0);
addSlowCase(emitJumpIfImmediateNumber(regT0));
leftOK.link(this);
Jump rightOK = emitJumpIfImmediateInteger(regT1);
addSlowCase(emitJumpIfImmediateNumber(regT1));
rightOK.link(this);
if (type == OpStrictEq)
compare64(Equal, regT1, regT0, regT0);
else
compare64(NotEqual, regT1, regT0, regT0);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_stricteq(Instruction* currentInstruction)
{
compileOpStrictEq(currentInstruction, OpStrictEq);
}
void JIT::emit_op_nstricteq(Instruction* currentInstruction)
{
compileOpStrictEq(currentInstruction, OpNStrictEq);
}
void JIT::emit_op_to_jsnumber(Instruction* currentInstruction)
{
int srcVReg = currentInstruction[2].u.operand;
emitGetVirtualRegister(srcVReg, regT0);
Jump wasImmediate = emitJumpIfImmediateInteger(regT0);
emitJumpSlowCaseIfNotJSCell(regT0, srcVReg);
loadPtr(Address(regT0, JSCell::structureOffset()), regT2);
addSlowCase(branch8(NotEqual, Address(regT2, Structure::typeInfoTypeOffset()), TrustedImm32(NumberType)));
wasImmediate.link(this);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_push_name_scope(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_push_name_scope);
stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[1].u.operand)));
stubCall.addArgument(currentInstruction[2].u.operand, regT2);
stubCall.addArgument(TrustedImm32(currentInstruction[3].u.operand));
stubCall.call();
}
void JIT::emit_op_catch(Instruction* currentInstruction)
{
killLastResultRegister(); // FIXME: Implicitly treat op_catch as a labeled statement, and remove this line of code.
move(regT0, callFrameRegister);
peek(regT3, OBJECT_OFFSETOF(struct JITStackFrame, globalData) / sizeof(void*));
load64(Address(regT3, OBJECT_OFFSETOF(JSGlobalData, exception)), regT0);
store64(TrustedImm64(JSValue::encode(JSValue())), Address(regT3, OBJECT_OFFSETOF(JSGlobalData, exception)));
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_jmp_scopes(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_jmp_scopes);
stubCall.addArgument(TrustedImm32(currentInstruction[1].u.operand));
stubCall.call();
addJump(jump(), currentInstruction[2].u.operand);
}
void JIT::emit_op_switch_imm(Instruction* currentInstruction)
{
unsigned tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->immediateSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Immediate));
jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size());
JITStubCall stubCall(this, cti_op_switch_imm);
stubCall.addArgument(scrutinee, regT2);
stubCall.addArgument(TrustedImm32(tableIndex));
stubCall.call();
jump(regT0);
}
void JIT::emit_op_switch_char(Instruction* currentInstruction)
{
unsigned tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->characterSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Character));
jumpTable->ctiOffsets.grow(jumpTable->branchOffsets.size());
JITStubCall stubCall(this, cti_op_switch_char);
stubCall.addArgument(scrutinee, regT2);
stubCall.addArgument(TrustedImm32(tableIndex));
stubCall.call();
jump(regT0);
}
void JIT::emit_op_switch_string(Instruction* currentInstruction)
{
unsigned tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset));
JITStubCall stubCall(this, cti_op_switch_string);
stubCall.addArgument(scrutinee, regT2);
stubCall.addArgument(TrustedImm32(tableIndex));
stubCall.call();
jump(regT0);
}
void JIT::emit_op_throw_static_error(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_throw_static_error);
if (!m_codeBlock->getConstant(currentInstruction[1].u.operand).isNumber())
stubCall.addArgument(TrustedImm64(JSValue::encode(m_codeBlock->getConstant(currentInstruction[1].u.operand))));
else
stubCall.addArgument(Imm64(JSValue::encode(m_codeBlock->getConstant(currentInstruction[1].u.operand))));
stubCall.addArgument(TrustedImm32(currentInstruction[2].u.operand));
stubCall.call();
}
void JIT::emit_op_debug(Instruction* currentInstruction)
{
#if ENABLE(DEBUG_WITH_BREAKPOINT)
UNUSED_PARAM(currentInstruction);
breakpoint();
#else
JITStubCall stubCall(this, cti_op_debug);
stubCall.addArgument(TrustedImm32(currentInstruction[1].u.operand));
stubCall.addArgument(TrustedImm32(currentInstruction[2].u.operand));
stubCall.addArgument(TrustedImm32(currentInstruction[3].u.operand));
stubCall.addArgument(TrustedImm32(currentInstruction[4].u.operand));
stubCall.call();
#endif
}
void JIT::emit_op_eq_null(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
emitGetVirtualRegister(src1, regT0);
Jump isImmediate = emitJumpIfNotJSCell(regT0);
loadPtr(Address(regT0, JSCell::structureOffset()), regT2);
Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImm32(0), regT0);
Jump wasNotMasqueradesAsUndefined = jump();
isMasqueradesAsUndefined.link(this);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
loadPtr(Address(regT2, Structure::globalObjectOffset()), regT2);
comparePtr(Equal, regT0, regT2, regT0);
Jump wasNotImmediate = jump();
isImmediate.link(this);
and64(TrustedImm32(~TagBitUndefined), regT0);
compare64(Equal, regT0, TrustedImm32(ValueNull), regT0);
wasNotImmediate.link(this);
wasNotMasqueradesAsUndefined.link(this);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_neq_null(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned src1 = currentInstruction[2].u.operand;
emitGetVirtualRegister(src1, regT0);
Jump isImmediate = emitJumpIfNotJSCell(regT0);
loadPtr(Address(regT0, JSCell::structureOffset()), regT2);
Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT2, Structure::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImm32(1), regT0);
Jump wasNotMasqueradesAsUndefined = jump();
isMasqueradesAsUndefined.link(this);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
loadPtr(Address(regT2, Structure::globalObjectOffset()), regT2);
comparePtr(NotEqual, regT0, regT2, regT0);
Jump wasNotImmediate = jump();
isImmediate.link(this);
and64(TrustedImm32(~TagBitUndefined), regT0);
compare64(NotEqual, regT0, TrustedImm32(ValueNull), regT0);
wasNotImmediate.link(this);
wasNotMasqueradesAsUndefined.link(this);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_enter(Instruction*)
{
emitOptimizationCheck(EnterOptimizationCheck);
// Even though CTI doesn't use them, we initialize our constant
// registers to zap stale pointers, to avoid unnecessarily prolonging
// object lifetime and increasing GC pressure.
size_t count = m_codeBlock->m_numVars;
for (size_t j = 0; j < count; ++j)
emitInitRegister(j);
}
void JIT::emit_op_create_activation(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
Jump activationCreated = branchTest64(NonZero, Address(callFrameRegister, sizeof(Register) * dst));
JITStubCall(this, cti_op_push_activation).call(currentInstruction[1].u.operand);
emitPutVirtualRegister(dst);
activationCreated.link(this);
}
void JIT::emit_op_create_arguments(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
Jump argsCreated = branchTest64(NonZero, Address(callFrameRegister, sizeof(Register) * dst));
JITStubCall(this, cti_op_create_arguments).call();
emitPutVirtualRegister(dst);
emitPutVirtualRegister(unmodifiedArgumentsRegister(dst));
argsCreated.link(this);
}
void JIT::emit_op_init_lazy_reg(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
store64(TrustedImm64((int64_t)0), Address(callFrameRegister, sizeof(Register) * dst));
}
void JIT::emit_op_convert_this(Instruction* currentInstruction)
{
emitGetVirtualRegister(currentInstruction[1].u.operand, regT1);
emitJumpSlowCaseIfNotJSCell(regT1);
if (shouldEmitProfiling()) {
loadPtr(Address(regT1, JSCell::structureOffset()), regT0);
emitValueProfilingSite();
}
addSlowCase(branchPtr(Equal, Address(regT1, JSCell::structureOffset()), TrustedImmPtr(m_globalData->stringStructure.get())));
}
void JIT::emit_op_get_callee(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
emitGetFromCallFrameHeaderPtr(JSStack::Callee, regT0);
emitValueProfilingSite();
emitPutVirtualRegister(result);
}
void JIT::emit_op_create_this(Instruction* currentInstruction)
{
int callee = currentInstruction[2].u.operand;
emitGetVirtualRegister(callee, regT0);
loadPtr(Address(regT0, JSFunction::offsetOfCachedInheritorID()), regT2);
addSlowCase(branchTestPtr(Zero, regT2));
// now regT2 contains the inheritorID, which is the structure that the newly
// allocated object will have.
emitAllocateJSFinalObject(regT2, regT0, regT1);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_create_this(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter); // doesn't have an inheritor ID
linkSlowCase(iter); // allocation failed
JITStubCall stubCall(this, cti_op_create_this);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_profile_will_call(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_profile_will_call);
stubCall.addArgument(currentInstruction[1].u.operand, regT1);
stubCall.call();
}
void JIT::emit_op_profile_did_call(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_profile_did_call);
stubCall.addArgument(currentInstruction[1].u.operand, regT1);
stubCall.call();
}
// Slow cases
void JIT::emitSlow_op_convert_this(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
void* globalThis = m_codeBlock->globalObject()->globalThis();
linkSlowCase(iter);
if (shouldEmitProfiling())
move(TrustedImm64((JSValue::encode(jsUndefined()))), regT0);
Jump isNotUndefined = branch64(NotEqual, regT1, TrustedImm64(JSValue::encode(jsUndefined())));
emitValueProfilingSite();
move(TrustedImm64(JSValue::encode(JSValue(static_cast<JSCell*>(globalThis)))), regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand, regT0);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_convert_this));
linkSlowCase(iter);
if (shouldEmitProfiling())
move(TrustedImm64(JSValue::encode(m_globalData->stringStructure.get())), regT0);
isNotUndefined.link(this);
emitValueProfilingSite();
JITStubCall stubCall(this, cti_op_convert_this);
stubCall.addArgument(regT1);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_to_primitive(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_to_primitive);
stubCall.addArgument(regT0);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_not(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
xor64(TrustedImm32(static_cast<int32_t>(ValueFalse)), regT0);
JITStubCall stubCall(this, cti_op_not);
stubCall.addArgument(regT0);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_jfalse(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_jtrue);
stubCall.addArgument(regT0);
stubCall.call();
emitJumpSlowToHot(branchTest32(Zero, regT0), currentInstruction[2].u.operand); // inverted!
}
void JIT::emitSlow_op_jtrue(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_jtrue);
stubCall.addArgument(regT0);
stubCall.call();
emitJumpSlowToHot(branchTest32(NonZero, regT0), currentInstruction[2].u.operand);
}
void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_bitxor);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_bitor);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_eq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_eq);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_neq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_eq);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call();
xor32(TrustedImm32(0x1), regT0);
emitTagAsBoolImmediate(regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_stricteq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_stricteq);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_nstricteq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_nstricteq);
stubCall.addArgument(regT0);
stubCall.addArgument(regT1);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_check_has_instance(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned value = currentInstruction[2].u.operand;
unsigned baseVal = currentInstruction[3].u.operand;
linkSlowCaseIfNotJSCell(iter, baseVal);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_check_has_instance);
stubCall.addArgument(value, regT2);
stubCall.addArgument(baseVal, regT2);
stubCall.call(dst);
emitJumpSlowToHot(jump(), currentInstruction[4].u.operand);
}
void JIT::emitSlow_op_instanceof(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned value = currentInstruction[2].u.operand;
unsigned proto = currentInstruction[3].u.operand;
linkSlowCaseIfNotJSCell(iter, value);
linkSlowCaseIfNotJSCell(iter, proto);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_instanceof);
stubCall.addArgument(value, regT2);
stubCall.addArgument(proto, regT2);
stubCall.call(dst);
}
void JIT::emitSlow_op_call(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
compileOpCallSlowCase(op_call, currentInstruction, iter, m_callLinkInfoIndex++);
}
void JIT::emitSlow_op_call_eval(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
compileOpCallSlowCase(op_call_eval, currentInstruction, iter, m_callLinkInfoIndex);
}
void JIT::emitSlow_op_call_varargs(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
compileOpCallSlowCase(op_call_varargs, currentInstruction, iter, m_callLinkInfoIndex++);
}
void JIT::emitSlow_op_construct(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
compileOpCallSlowCase(op_construct, currentInstruction, iter, m_callLinkInfoIndex++);
}
void JIT::emitSlow_op_to_jsnumber(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCaseIfNotJSCell(iter, currentInstruction[2].u.operand);
linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_to_jsnumber);
stubCall.addArgument(regT0);
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_get_arguments_length(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int argumentsRegister = currentInstruction[2].u.operand;
addSlowCase(branchTest64(NonZero, addressFor(argumentsRegister)));
emitGetFromCallFrameHeader32(JSStack::ArgumentCount, regT0);
sub32(TrustedImm32(1), regT0);
emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(dst, regT0);
}
void JIT::emitSlow_op_get_arguments_length(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
unsigned dst = currentInstruction[1].u.operand;
unsigned base = currentInstruction[2].u.operand;
Identifier* ident = &(m_codeBlock->identifier(currentInstruction[3].u.operand));
emitGetVirtualRegister(base, regT0);
JITStubCall stubCall(this, cti_op_get_by_id_generic);
stubCall.addArgument(regT0);
stubCall.addArgument(TrustedImmPtr(ident));
stubCall.call(dst);
}
void JIT::emit_op_get_argument_by_val(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int argumentsRegister = currentInstruction[2].u.operand;
int property = currentInstruction[3].u.operand;
addSlowCase(branchTest64(NonZero, addressFor(argumentsRegister)));
emitGetVirtualRegister(property, regT1);
addSlowCase(emitJumpIfNotImmediateInteger(regT1));
add32(TrustedImm32(1), regT1);
// regT1 now contains the integer index of the argument we want, including this
emitGetFromCallFrameHeader32(JSStack::ArgumentCount, regT2);
addSlowCase(branch32(AboveOrEqual, regT1, regT2));
neg32(regT1);
signExtend32ToPtr(regT1, regT1);
load64(BaseIndex(callFrameRegister, regT1, TimesEight, CallFrame::thisArgumentOffset() * static_cast<int>(sizeof(Register))), regT0);
emitValueProfilingSite();
emitPutVirtualRegister(dst, regT0);
}
void JIT::emitSlow_op_get_argument_by_val(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned dst = currentInstruction[1].u.operand;
unsigned arguments = currentInstruction[2].u.operand;
unsigned property = currentInstruction[3].u.operand;
linkSlowCase(iter);
Jump skipArgumentsCreation = jump();
linkSlowCase(iter);
linkSlowCase(iter);
JITStubCall(this, cti_op_create_arguments).call();
emitPutVirtualRegister(arguments);
emitPutVirtualRegister(unmodifiedArgumentsRegister(arguments));
skipArgumentsCreation.link(this);
JITStubCall stubCall(this, cti_op_get_by_val_generic);
stubCall.addArgument(arguments, regT2);
stubCall.addArgument(property, regT2);
stubCall.callWithValueProfiling(dst);
}
void JIT::emit_op_put_to_base(Instruction* currentInstruction)
{
int base = currentInstruction[1].u.operand;
int id = currentInstruction[2].u.operand;
int value = currentInstruction[3].u.operand;
PutToBaseOperation* operation = m_codeBlock->putToBaseOperation(currentInstruction[4].u.operand);
switch (operation->m_kind) {
case PutToBaseOperation::GlobalVariablePutChecked:
addSlowCase(branchTest8(NonZero, AbsoluteAddress(operation->m_predicatePointer)));
case PutToBaseOperation::GlobalVariablePut: {
JSGlobalObject* globalObject = m_codeBlock->globalObject();
if (operation->m_isDynamic) {
emitGetVirtualRegister(base, regT0);
addSlowCase(branchPtr(NotEqual, regT0, TrustedImmPtr(globalObject)));
}
emitGetVirtualRegister(value, regT0);
store64(regT0, operation->m_registerAddress);
if (Heap::isWriteBarrierEnabled())
emitWriteBarrier(globalObject, regT0, regT2, ShouldFilterImmediates, WriteBarrierForVariableAccess);
return;
}
case PutToBaseOperation::VariablePut: {
emitGetVirtualRegisters(base, regT0, value, regT1);
loadPtr(Address(regT0, JSVariableObject::offsetOfRegisters()), regT2);
store64(regT1, Address(regT2, operation->m_offset * sizeof(Register)));
if (Heap::isWriteBarrierEnabled())
emitWriteBarrier(regT0, regT1, regT2, regT3, ShouldFilterImmediates, WriteBarrierForVariableAccess);
return;
}
case PutToBaseOperation::GlobalPropertyPut: {
emitGetVirtualRegisters(base, regT0, value, regT1);
loadPtr(&operation->m_structure, regT2);
addSlowCase(branchPtr(NotEqual, Address(regT0, JSCell::structureOffset()), regT2));
ASSERT(!operation->m_structure || !operation->m_structure->inlineCapacity());
loadPtr(Address(regT0, JSObject::butterflyOffset()), regT2);
load32(&operation->m_offsetInButterfly, regT3);
signExtend32ToPtr(regT3, regT3);
store64(regT1, BaseIndex(regT2, regT3, TimesEight));
if (Heap::isWriteBarrierEnabled())
emitWriteBarrier(regT0, regT1, regT2, regT3, ShouldFilterImmediates, WriteBarrierForVariableAccess);
return;
}
case PutToBaseOperation::Uninitialised:
case PutToBaseOperation::Readonly:
case PutToBaseOperation::Generic:
JITStubCall stubCall(this, cti_op_put_to_base);
stubCall.addArgument(TrustedImm32(base));
stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(id)));
stubCall.addArgument(TrustedImm32(value));
stubCall.addArgument(TrustedImmPtr(operation));
stubCall.call();
return;
}
}
#endif // USE(JSVALUE64)
void JIT::emit_resolve_operations(ResolveOperations* resolveOperations, const int* baseVR, const int* valueVR)
{
#if USE(JSVALUE32_64)
unmap();
#else
killLastResultRegister();
#endif
if (resolveOperations->isEmpty()) {
addSlowCase(jump());
return;
}
const RegisterID value = regT0;
#if USE(JSVALUE32_64)
const RegisterID valueTag = regT1;
#endif
const RegisterID scope = regT2;
const RegisterID scratch = regT3;
JSGlobalObject* globalObject = m_codeBlock->globalObject();
ResolveOperation* pc = resolveOperations->data();
emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, scope);
bool setBase = false;
bool resolvingBase = true;
while (resolvingBase) {
switch (pc->m_operation) {
case ResolveOperation::ReturnGlobalObjectAsBase:
move(TrustedImmPtr(globalObject), value);
#if USE(JSVALUE32_64)
move(TrustedImm32(JSValue::CellTag), valueTag);
#endif
emitValueProfilingSite();
emitStoreCell(*baseVR, value);
return;
case ResolveOperation::SetBaseToGlobal:
ASSERT(baseVR);
setBase = true;
move(TrustedImmPtr(globalObject), scratch);
emitStoreCell(*baseVR, scratch);
resolvingBase = false;
++pc;
break;
case ResolveOperation::SetBaseToUndefined: {
ASSERT(baseVR);
setBase = true;
#if USE(JSVALUE64)
move(TrustedImm64(JSValue::encode(jsUndefined())), scratch);
emitPutVirtualRegister(*baseVR, scratch);
#else
emitStore(*baseVR, jsUndefined());
#endif
resolvingBase = false;
++pc;
break;
}
case ResolveOperation::SetBaseToScope:
ASSERT(baseVR);
setBase = true;
emitStoreCell(*baseVR, scope);
resolvingBase = false;
++pc;
break;
case ResolveOperation::ReturnScopeAsBase:
emitStoreCell(*baseVR, scope);
ASSERT(value == regT0);
move(scope, value);
#if USE(JSVALUE32_64)
move(TrustedImm32(JSValue::CellTag), valueTag);
#endif
emitValueProfilingSite();
return;
case ResolveOperation::SkipTopScopeNode: {
#if USE(JSVALUE32_64)
Jump activationNotCreated = branch32(Equal, tagFor(m_codeBlock->activationRegister()), TrustedImm32(JSValue::EmptyValueTag));
#else
Jump activationNotCreated = branchTest64(Zero, addressFor(m_codeBlock->activationRegister()));
#endif
loadPtr(Address(scope, JSScope::offsetOfNext()), scope);
activationNotCreated.link(this);
++pc;
break;
}
case ResolveOperation::CheckForDynamicEntriesBeforeGlobalScope: {
move(scope, regT3);
loadPtr(Address(regT3, JSScope::offsetOfNext()), regT1);
Jump atTopOfScope = branchTestPtr(Zero, regT1);
Label loopStart = label();
loadPtr(Address(regT3, JSCell::structureOffset()), regT2);
Jump isActivation = branchPtr(Equal, regT2, TrustedImmPtr(globalObject->activationStructure()));
addSlowCase(branchPtr(NotEqual, regT2, TrustedImmPtr(globalObject->nameScopeStructure())));
isActivation.link(this);
move(regT1, regT3);
loadPtr(Address(regT3, JSScope::offsetOfNext()), regT1);
branchTestPtr(NonZero, regT1, loopStart);
atTopOfScope.link(this);
++pc;
break;
}
case ResolveOperation::SkipScopes: {
for (int i = 0; i < pc->m_scopesToSkip; i++)
loadPtr(Address(scope, JSScope::offsetOfNext()), scope);
++pc;
break;
}
case ResolveOperation::Fail:
addSlowCase(jump());
return;
default:
resolvingBase = false;
}
}
if (baseVR && !setBase)
emitStoreCell(*baseVR, scope);
ASSERT(valueVR);
ResolveOperation* resolveValueOperation = pc;
switch (resolveValueOperation->m_operation) {
case ResolveOperation::GetAndReturnGlobalProperty: {
// Verify structure.
move(TrustedImmPtr(globalObject), regT2);
move(TrustedImmPtr(resolveValueOperation), regT3);
loadPtr(Address(regT3, OBJECT_OFFSETOF(ResolveOperation, m_structure)), regT1);
addSlowCase(branchPtr(NotEqual, regT1, Address(regT2, JSCell::structureOffset())));
// Load property.
load32(Address(regT3, OBJECT_OFFSETOF(ResolveOperation, m_offset)), regT3);
// regT2: GlobalObject
// regT3: offset
#if USE(JSVALUE32_64)
compileGetDirectOffset(regT2, valueTag, value, regT3, KnownNotFinal);
#else
compileGetDirectOffset(regT2, value, regT3, regT1, KnownNotFinal);
#endif
break;
}
case ResolveOperation::GetAndReturnGlobalVarWatchable:
case ResolveOperation::GetAndReturnGlobalVar: {
#if USE(JSVALUE32_64)
load32(reinterpret_cast<char*>(pc->m_registerAddress) + OBJECT_OFFSETOF(JSValue, u.asBits.tag), valueTag);
load32(reinterpret_cast<char*>(pc->m_registerAddress) + OBJECT_OFFSETOF(JSValue, u.asBits.payload), value);
#else
load64(reinterpret_cast<char*>(pc->m_registerAddress), value);
#endif
break;
}
case ResolveOperation::GetAndReturnScopedVar: {
loadPtr(Address(scope, JSVariableObject::offsetOfRegisters()), scope);
#if USE(JSVALUE32_64)
load32(Address(scope, pc->m_offset * sizeof(Register) + OBJECT_OFFSETOF(JSValue, u.asBits.tag)), valueTag);
load32(Address(scope, pc->m_offset * sizeof(Register) + OBJECT_OFFSETOF(JSValue, u.asBits.payload)), value);
#else
load64(Address(scope, pc->m_offset * sizeof(Register)), value);
#endif
break;
}
default:
CRASH();
return;
}
#if USE(JSVALUE32_64)
emitStore(*valueVR, valueTag, value);
#else
emitPutVirtualRegister(*valueVR, value);
#endif
emitValueProfilingSite();
}
void JIT::emitSlow_link_resolve_operations(ResolveOperations* resolveOperations, Vector<SlowCaseEntry>::iterator& iter)
{
if (resolveOperations->isEmpty()) {
linkSlowCase(iter);
return;
}
ResolveOperation* pc = resolveOperations->data();
bool resolvingBase = true;
while (resolvingBase) {
switch (pc->m_operation) {
case ResolveOperation::ReturnGlobalObjectAsBase:
return;
case ResolveOperation::SetBaseToGlobal:
resolvingBase = false;
++pc;
break;
case ResolveOperation::SetBaseToUndefined: {
resolvingBase = false;
++pc;
break;
}
case ResolveOperation::SetBaseToScope:
resolvingBase = false;
++pc;
break;
case ResolveOperation::ReturnScopeAsBase:
return;
case ResolveOperation::SkipTopScopeNode: {
++pc;
break;
}
case ResolveOperation::SkipScopes:
++pc;
break;
case ResolveOperation::Fail:
linkSlowCase(iter);
return;
case ResolveOperation::CheckForDynamicEntriesBeforeGlobalScope: {
linkSlowCase(iter);
++pc;
break;
}
default:
resolvingBase = false;
}
}
ResolveOperation* resolveValueOperation = pc;
switch (resolveValueOperation->m_operation) {
case ResolveOperation::GetAndReturnGlobalProperty: {
linkSlowCase(iter);
break;
}
case ResolveOperation::GetAndReturnGlobalVarWatchable:
case ResolveOperation::GetAndReturnGlobalVar:
break;
case ResolveOperation::GetAndReturnScopedVar:
break;
default:
CRASH();
return;
}
}
void JIT::emit_op_resolve(Instruction* currentInstruction)
{
ResolveOperations* operations = m_codeBlock->resolveOperations(currentInstruction[3].u.operand);
int dst = currentInstruction[1].u.operand;
emit_resolve_operations(operations, 0, &dst);
}
void JIT::emitSlow_op_resolve(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
ResolveOperations* operations = m_codeBlock->resolveOperations(currentInstruction[3].u.operand);
emitSlow_link_resolve_operations(operations, iter);
JITStubCall stubCall(this, cti_op_resolve);
stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.addArgument(TrustedImmPtr(m_codeBlock->resolveOperations(currentInstruction[3].u.operand)));
stubCall.callWithValueProfiling(currentInstruction[1].u.operand);
}
void JIT::emit_op_resolve_base(Instruction* currentInstruction)
{
ResolveOperations* operations = m_codeBlock->resolveOperations(currentInstruction[4].u.operand);
int dst = currentInstruction[1].u.operand;
emit_resolve_operations(operations, &dst, 0);
}
void JIT::emitSlow_op_resolve_base(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
ResolveOperations* operations = m_codeBlock->resolveOperations(currentInstruction[4].u.operand);
emitSlow_link_resolve_operations(operations, iter);
JITStubCall stubCall(this, currentInstruction[3].u.operand ? cti_op_resolve_base_strict_put : cti_op_resolve_base);
stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[2].u.operand)));
stubCall.addArgument(TrustedImmPtr(m_codeBlock->resolveOperations(currentInstruction[4].u.operand)));
stubCall.addArgument(TrustedImmPtr(m_codeBlock->putToBaseOperation(currentInstruction[5].u.operand)));
stubCall.callWithValueProfiling(currentInstruction[1].u.operand);
}
void JIT::emit_op_resolve_with_base(Instruction* currentInstruction)
{
ResolveOperations* operations = m_codeBlock->resolveOperations(currentInstruction[4].u.operand);
int base = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
emit_resolve_operations(operations, &base, &value);
}
void JIT::emitSlow_op_resolve_with_base(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
ResolveOperations* operations = m_codeBlock->resolveOperations(currentInstruction[4].u.operand);
emitSlow_link_resolve_operations(operations, iter);
JITStubCall stubCall(this, cti_op_resolve_with_base);
stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[3].u.operand)));
stubCall.addArgument(TrustedImm32(currentInstruction[1].u.operand));
stubCall.addArgument(TrustedImmPtr(m_codeBlock->resolveOperations(currentInstruction[4].u.operand)));
stubCall.addArgument(TrustedImmPtr(m_codeBlock->putToBaseOperation(currentInstruction[5].u.operand)));
stubCall.callWithValueProfiling(currentInstruction[2].u.operand);
}
void JIT::emit_op_resolve_with_this(Instruction* currentInstruction)
{
ResolveOperations* operations = m_codeBlock->resolveOperations(currentInstruction[4].u.operand);
int base = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
emit_resolve_operations(operations, &base, &value);
}
void JIT::emitSlow_op_resolve_with_this(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
ResolveOperations* operations = m_codeBlock->resolveOperations(currentInstruction[4].u.operand);
emitSlow_link_resolve_operations(operations, iter);
JITStubCall stubCall(this, cti_op_resolve_with_this);
stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(currentInstruction[3].u.operand)));
stubCall.addArgument(TrustedImm32(currentInstruction[1].u.operand));
stubCall.addArgument(TrustedImmPtr(m_codeBlock->resolveOperations(currentInstruction[4].u.operand)));
stubCall.callWithValueProfiling(currentInstruction[2].u.operand);
}
void JIT::emitSlow_op_put_to_base(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
int base = currentInstruction[1].u.operand;
int id = currentInstruction[2].u.operand;
int value = currentInstruction[3].u.operand;
int operation = currentInstruction[4].u.operand;
PutToBaseOperation* putToBaseOperation = m_codeBlock->putToBaseOperation(currentInstruction[4].u.operand);
switch (putToBaseOperation->m_kind) {
case PutToBaseOperation::VariablePut:
return;
case PutToBaseOperation::GlobalVariablePut:
if (!putToBaseOperation->m_isDynamic)
return;
linkSlowCase(iter);
break;
case PutToBaseOperation::Uninitialised:
case PutToBaseOperation::Readonly:
case PutToBaseOperation::Generic:
return;
case PutToBaseOperation::GlobalVariablePutChecked:
case PutToBaseOperation::GlobalPropertyPut:
linkSlowCase(iter);
break;
}
JITStubCall stubCall(this, cti_op_put_to_base);
stubCall.addArgument(TrustedImm32(base));
stubCall.addArgument(TrustedImmPtr(&m_codeBlock->identifier(id)));
stubCall.addArgument(TrustedImm32(value));
stubCall.addArgument(TrustedImmPtr(m_codeBlock->putToBaseOperation(operation)));
stubCall.call();
}
void JIT::emit_op_new_regexp(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_regexp);
stubCall.addArgument(TrustedImmPtr(m_codeBlock->regexp(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_new_func(Instruction* currentInstruction)
{
Jump lazyJump;
int dst = currentInstruction[1].u.operand;
if (currentInstruction[3].u.operand) {
#if USE(JSVALUE32_64)
lazyJump = branch32(NotEqual, tagFor(dst), TrustedImm32(JSValue::EmptyValueTag));
#else
lazyJump = branchTest64(NonZero, addressFor(dst));
#endif
}
JITStubCall stubCall(this, cti_op_new_func);
stubCall.addArgument(TrustedImmPtr(m_codeBlock->functionDecl(currentInstruction[2].u.operand)));
stubCall.call(dst);
if (currentInstruction[3].u.operand) {
#if USE(JSVALUE32_64)
unmap();
#else
killLastResultRegister();
#endif
lazyJump.link(this);
}
}
void JIT::emit_op_new_func_exp(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_func_exp);
stubCall.addArgument(TrustedImmPtr(m_codeBlock->functionExpr(currentInstruction[2].u.operand)));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_new_array(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_array);
stubCall.addArgument(TrustedImm32(currentInstruction[2].u.operand));
stubCall.addArgument(TrustedImm32(currentInstruction[3].u.operand));
stubCall.addArgument(TrustedImmPtr(currentInstruction[4].u.arrayAllocationProfile));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_new_array_with_size(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_array_with_size);
#if USE(JSVALUE64)
stubCall.addArgument(currentInstruction[2].u.operand, regT2);
#else
stubCall.addArgument(currentInstruction[2].u.operand);
#endif
stubCall.addArgument(TrustedImmPtr(currentInstruction[3].u.arrayAllocationProfile));
stubCall.call(currentInstruction[1].u.operand);
}
void JIT::emit_op_new_array_buffer(Instruction* currentInstruction)
{
JITStubCall stubCall(this, cti_op_new_array_buffer);
stubCall.addArgument(TrustedImm32(currentInstruction[2].u.operand));
stubCall.addArgument(TrustedImm32(currentInstruction[3].u.operand));
stubCall.addArgument(TrustedImmPtr(currentInstruction[4].u.arrayAllocationProfile));
stubCall.call(currentInstruction[1].u.operand);
}
} // namespace JSC
#endif // ENABLE(JIT)